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ABSTRACT

In a homogeneous group of samples, not all genes of
high variability stem from experimental errors in
microarray experiments. These expression variations
can be attributed to many factors including natural
biological oscillations or metabolic processes. The
behavior of these genes can tease out important
clues about naturally occurring dynamic processes
in the organism or experimental system under
study. We developed a statistical procedure for the
selectionofgenes withhigh variabilitydenotedhyper-
variable (HV) genes. After the exclusion of low
expressed genes and a stabilizing log-transforma-
tion, the majority of genes have comparable residual
variability. Based on an F-test, HV genes are selected
as having a statistically significant difference from the
majority of variability stabilized genes measured by
the ‘reference group’. A novel F-test clustering tech-
nique, further noted as ‘F-means clustering’, groups
HV genes with similar variability patterns, presumably
from their participation in a common dynamic biolo-
gical process. F-means clustering establishes, for the
first time, groups of co-expressed HV genes and is
illustrated with microarray data from patients with
juvenile rheumatoid arthritis and healthy controls.

INTRODUCTION

Even when working with samples from a homogeneous group,
we are able to observe a portion of genes that have high
variability among individuals, which cannot be explained
by experimental error. Genes determined to be significantly
more variable compared to other genes in the same sample,
bear information about some non-synchronized dynamic
events in an otherwise homogeneous group. We developed
a method for selection of this group of genes of higher varia-
bility and named them the ‘hypervariable genes (HV genes)’
based on analysis of residuals of normalized expression using
an F-criterion.

The accuracy of the procedure will be discussed from both
statistical and biological viewpoints. HV genes are determined
with a threshold of P < 1/N (where N is the number of genes
expressed above background) such that the probability for
their appearance by chance is negligible. The additional
validation of their biological relevance is obtained with a
clustering procedure, which demonstrates the existence of
co-expressed genes whose biological interconnection indi-
cates that the appearance of the clustering could not be due
to chance.

Our clustering methodology, the ‘F-means’ clustering, is
based on the use of a statistical criterion (F-test) and produces
as many different clusters as it is possible to discriminate at the
accuracy of the experimental technique, i.e. microarray. The
number of clusters and constituents of each cluster appeared
independent of subjective decisions, such as in the case of
hierarchical and k-means cluster methods.

The interrelationships between the clusters are studied here
by a visual representation of gene correlation called a ‘mosaic’.
The correlation in expression levels across different samples
are demonstrated to help identify genes that are regulated by a
common mechanism or have similar function. Observed altera-
tions and modulations of this mosaic in patient samples against
controls visualize key changes in gene regulatory interrela-
tions and could lead to new insight into pathological genesis.

MATERIALS AND METHODS

Patient selection and preparation of clinical specimens

We studied children newly diagnosed with polyarticular juve-
nile rheumatoid arthritis (JRA). Children were excluded if they
had been treated with corticosteroids, methotrexate or thera-
peutic doses of nonsteroidal anti-inflammatory drugs for
more than 3 weeks. Patients with active disease ranged in age
from 3 to 15 years, and presented with proliferative synovitis of
multiplejointsanderythrocytesedimentationrates rangingfrom
35 to 100 mm/h. Control subjects were laboratory volunteers
under 25 years of age. Leukocyte buffy coat preparations were
made from peripheral blood and total RNA was extracted
with Trizol-reagent (Invitrogen, Carlsbad, CA). Fluorescent-
labeling of cDNA was undertaken using the Micromax
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TSA-labeling kit (Perkin Elmer Life Sciences, Boston, MA).
Labeled cDNAs were hybridized with Perkin Elmer Micromax
cDNA arrays containing 2400 human genes, and arrays were
scanned using an Affymetrix 428 Array Scanner. Designations
for the sample groups: AD—acute disease; AP—acute disease
treated, persistent; PR—partially responsive to treatment;
FR—fully responsive to treatment; HD—healthy donors.
Further details of the patient and control populations have
been previously published (1).

Establishment of the internal standard, the
‘reference group’

After data normalization as our previous publication (2), resi-
duals are created from the control group and they approximate
a normal distribution, based on the Kolmogorov–Smirnov
criterion. The expressed genes are selected out of the group
of residuals whose gene expression is above background noise
levels by a t-test (P < 0.05). Following steps are used to create
the ‘reference group’. First, the SD of all residuals taken
together is calculated along with the SD for every gene indi-
vidually. Next, an F-test is performed for every gene against
the reference group to determine whether each gene should be
included in the reference group. All genes whose F-statistic
was significant (a = 0.05) or whose SD was higher than the
total group’s SD are removed to reduce variability in the
group. This process is repeated with the new smaller subset
until the group is homoscedastic. These residuals present
an internal standard of measurement (ISM) for the baseline
variations introduced by instrumental errors and stochastic
fluctuations present among samples.

Selection of ‘hyper-variable genes’ (HV genes)

By comparing a gene’s variability to the ISM’s variability
through an F-test (P = 1/N), we are able to select genes
that exhibit variation above the predetermined baseline
measurement. The threshold selected, P = 1/N, is a less
conservative version of the Bonforonni correction, P < a/N,
for multiple-hypothesis testing. It is important to note that
there are HV genes even within homogeneous group of sam-
ples such as the control or treatment groups. Their hypervaria-
bility can significantly exceed the established ISM and
therefore may reflect some non-synchronized gene expression
dynamics. Their expressions in given samples are
considered snapshots of some biological process in which
they participate. Correlation of these expressions reflects
some functional interconnections in the aforementioned
dynamical processes.

F-means clustering algorithm

After establishing the ISM, all HV genes are clustered using an
additional F-test. Begin by comparing the variability of HV
gene 1 to the variability of every other HV gene on a one-by-
one basis. Repeat for genes 2 through N. Next, sort all genes
based on the number of associations to other HV genes. Asso-
ciation can be defined as follows: Gene X is associated to Gene
Y if and only if the difference between the variances of Gene X
and Gene Y is less than the ISM variance as measured by an
F-test with a user-specified alpha level. Next, let the number of
genes associated be denoted ‘connectivity’. Cluster 1 com-
prises the gene with the highest connectivity and all genes

that are ‘associated’. The gene of the second highest connec-
tivity and all of its peers comprise cluster 2. This sequence is
repeated until all genes are examined. Genes that appear in
more than one cluster are considered to be likely functional
links among these clusters. Genes that have zero connectivity
do not belong to any cluster.

The clustering procedure can be summarized in the follow-
ing steps:

� Gene expression normalization, log-transformation and
rescaling as noted above.

� Identification of and limiting subsequent analyses to gene
whose expressions determined to be significantly different
from normally distributed background spots through a
Student’s t-test with a = 0.05.

� Determination of the ISM.
� Identification of HV genes by comparing a gene’s residual

variability with the ISM through an F-test with a = 1/N.
� Determination of connectivity for each of hypervari-

able gene.
� HV genes contained within each group were sorted by their

connectivity and the clustering process is started.
� Gene co-expression and cluster relationships are repre-

sented by a correlative mosaic.

RESULTS

Analysis of residuals for selection of hypervariable
genes

Array expression data among groups of samples were first
normalized and log-transformed (see Materials and Methods).
Residuals—deviations of the expression values from common
regression line in robust regression analysis—were calculated
as described previously (2). After log-transformation and
exclusion of weakly expressed genes, the residuals have a
nearly normal distribution (Figure 1A). Besides that the resi-
duals of the majority of genes have relatively homogeneous
variations following closely to an F-distribution (Figure 1B).
However, a portion of these residuals has enormously high
variability as judged by F-test based on the SD of replicated
residuals for a given gene against the SD of all other genes. We
used a very high threshold level (P < 0.0005 for approximately
2000 genes expressed distinctively from background) for
selection of hypervariable genes, which makes it unlikely
for the selections to appear just by chance. The level of varia-
bility of these genes as well as the proportion of genes being
hypervariable exceeds significantly the statistically expected
ranges. It intrigues us to consider this group of genes as dis-
tinctive from the majority of biologically stabile genes, and
to look for some biological rationale for their appearance in
the homogeneous group of samples.

HV genes exist in all groups of samples. Hypervariations app-
earing from experimental errors (influence of dirty spots, etc.)
were excluded from this analysis statistically—comparing
the variability of the residuals in replicated group of samples
with the variability obtained after excluding either the
maximum or minimum one at a time. A statistical decrease
in variability after excluding one replicate provides evidence
of possible error in that particular replicate. Such genes
were excluded from the family of HV genes as being falsely
selected.
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Figure 1. (A1) Scatter plot of residuals derived from common regression line in a robust regression analysis as described in Materials and Methods. The points
represent residuals where the black are of normal variability and the grey are outliers. (A2) A continuation of A1 where instead of points, the variability is expressed by
error bars. The black represent expected variability and the grey signify HV genes. The determination of HV is different for each expression level and is determined by
an F-test. (B) A normality plot revealing the normality of the log-transformed non-background spots. (C) A histogram of the log-transformed non-background spots
superimposed by a red normal distribution line. (D) Vertical bar chart of the variance ratio between individual genes and the variability of the reference group. The
black lines represent the ratio frequencies of non-HV genes. The blue line is a superimposed F-distribution showing expected frequencies. The grey bars show the
frequency of HV genes as they distort the tail of the F-distribution.
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Co-expression of HV genes

To search for biological meaning of the HV genes, we carried
out ‘F-means’ clustering analysis of 27 expression profiles
derived from different stages of JRA and healthy donors—
AD, AP, PR, FR and HD groups. The abbreviation for
each group was described in Material and Methods. This
procedure selects genes whose expression is different from
the reference group, but similar to one another. The simulated
data was generated using a Monte Carlo simulation for
each of the 27 samples based on its expression average and
variability. Clustering for the simulation data provides a sta-
tistical validation of the F-means clustering procedure for
HV genes:

� No cluster was identified in the simulation data from all 27
samples. In contrast, clustering of the real data produced
15 clusters with 2 and more members (maximum—5
members). Two biggest clusters are presented in
Figure 2A and B.

� Only one cluster with 3 members was obtained in simula-
tion of control data of 10 samples (HD and FR patients).
Real data analysis gave 26 such clusters (maximum
17 members). Two biggest clusters are presented in
Figure 2C and E.

� No clusters with 3 and more genes were produced in simu-
lation of data from AD and AP patients with 13 samples.
Clustering of the real data produced 12 clusters with 3
and more members (maximum 7 members). The biggest
cluster of this group is presented in Figure 2F.

It is necessary to emphasize that as opposed to a longitu-
dinal study, the shapes of the clustered profiles presented in
each plot of Figure 2 are the result of an arbitrary arrangement
of samples. The co-expression of the selected genes in all 27
samples bear the biological significance rather than the
clusters’ shape, which can be manipulated through sample
arrangement as demonstrated in Figure 3.

The presence of gene clusters independent of sample source
in the control and patient data but not in the simulated data

Figure 2. (A and B) F-means clustering of genes from 27 patients and healthy controls [patients with acute disease (AD), non-responsive to the treatment (persistent)
(AP), partially responsive to treatment (PR), demonstrating full response (FR) and from control group of healthy donors (HD)]. Here the two largest clusters are
presented consisting exclusively of ribosomal genes. (C and E) The two largest clusters in combined HD and FR groups. (D and F) Gene clustering of two groups with
acute disease. (D) Genes from largest cluster HD and FR (C) having similar patterns in AD and AP groups. (F) Largest cluster in AD and AP groups.
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provide compelling evidence that the appearance of the cluster
is not random, and there are potential functional interconnec-
tions between genes in the same cluster. The common func-
tionality of genes in a single cluster can be seen in the clusters
presented in Figure 2A and B as both clusters consist of solely
ribosomal proteins.

There is evidence of the uniformity in these clusters’ con-
stituents. A significant portion of genes clustered in the biggest
cluster in HD and FR group of samples (Figure 2C) had a very
similar profile to the profile in AD and AP samples (Figure 2D)
akin to the expression profile for the bigger cluster in this
group (Figure 2F).

The fact that co-expression of some genes is reproducible
across different groups of samples between patients and con-
trols, such as in Figure 2A and B indicates that these clusters
represent genes involved in some biological processes inde-
pendent of the disease pathology under investigation. In the
mean time, some other clusters, which could not be reproduced
between control and patient groups (data not shown), could be

involved in the pathogenesis of the disease under study and
will be manifested in the next section.

Comparative analysis of co-expressed genes in
different groups

With the use of colored correlation mosaics, complicated
interdependencies between genes can be visualized and differ-
ences between subgroups quickly assessed (Figure 4). The
image is a visual representation of a correlation coefficient
matrix with different colors symbolizing different strength of
correlation with strongest positive correlation to be 1 and the
strongest negative correlation being �1. For this presentation,
we selected genes from the two largest HV clusters obtained
from healthy donors. Genes HV in control, but stable or non-
expressed in disease were excluded from this analysis. The HD
group reveals the presence of two highly correlated clusters of
genes represented by two orange squares. These highly cor-
related genes in a single group of HD exhibit some differences
when studied in both patient groups of non-treated (AD) and
treated partially responding (PR) patients as demonstrated by
the change of color on the mosaic. Gene orders are kept the
same between these two groups and along the axes.

When attention was focused on the genes with altered func-
tional interconnections within each clusters taking place in AD
and PR patients, their involvement in the pathology become
obvious. Information from these genes and their relationship
to known pathology (here JRA) was obtained from literature
and is presented in Table 1.

DISCUSSION

Our analysis of microarray expression data suggests that after
background correction and log-transformation, the majority of
the genes expressed significantly above background have
stable normal errors, and this result is in good agreement
with the approximate analysis in (16). After that it seems to
be possible to apply an F-test for the selection of the small
portion of genes having statistically significant increase in
variability, which in our terminology are HV genes. HV
genes are selected as genes expressed significantly higher
than background and having statistically higher variations
based on use standard F-test with threshold high enough to
prevent the appearance of false-positive selections. To validate
the biological significance of these variations, HV genes were
clustered at a threshold of P < 0.0005 to exclude random
affiliations. Clusters of HV genes provide empirical evidence
that the observed variations are not random fluctuations of
individual gene expressions (errors), but the reflections of
multi-participatory dynamical processes. This is especially
evident when cluster analysis is able to reveal group of
genes reproducibly co-expressed across sampling conditions
(control and patients).

A special provision is made within our algorithm for exclu-
sion from HV gene selections those genes whose high varia-
bility is produced by the erroneous signal in one replicate.
These precautions take into account the opportunity for the
appearance of a single mistake in the set of gene measurements
within group because the probability for more than one
mistake is negligibly low in our experience.

Figure 3. Diagrams illustrating the formation of the cluster profiles for HV
genes in a homogeneous group. (A) Possible assortment of nine samples
representing two dynamical processes with participation of several genes
each whose profiles are shown in either red or black. (B) Variant of (A) in
which only the order of samples was changed. This is valid since all samples
were collected simultaneously and are part of a homogeneous group. The gene
co-expression is preserved in all possible arrangements of samples and in these
co-expressions is where F-means clustering can tease out the involvement of
these genes in common dynamical processes.
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Identification of HV genes within homogeneous groups of
samples provided evidences for some dynamical processes
normally taking place in an organism’s physiology. These
processes are not static; consequently, each sample gives a
snapshot of the same process much like an observer gazing
into a hall of mirrors sees an object from many vantage points,
but is unable to discern the ‘true’ image. Due to the third
person view of the dynamics in play, we are unable to tell
the order of the phases, only that they all belong to the same
biological process. Moreover, these dynamical processes are

not chaotic, but in a coordinated system as genes involved in a
common process fall into a single cluster. Changes in the
dynamical coordination evidenced by the alteration of cluster
constituents between control and patients may contribute to
the pathology of a disease by destroying the sensitive balance
between biologic pathways.

Here we used a novel clustering technique based upon
empirical variance estimates. This procedure is free from com-
mon drawbacks of traditional clustering algorithms because
the decision determining the number of clusters and their

Figure 4. Correlation mosaics for genes from the two largest clusters in the control group. Each spot in the plot presents correlation coefficients of expressions for
genes along the axes. A red spot is highly correlated, conversely a blue spot is highly anti-correlated. Gene order is chosen to present joined co-expressed genes in two
largest clusters of the HD samples. The same order of the genes along axis is used for all three mosaics.
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constituents is based on statistical estimates derived from the
data not determined a priori by the researcher.

Clustering procedures were broadly applied for identifica-
tion of differential gene expressions under a wide range of
conditions (17). Here, we demonstrated the application of this
clustering procedure to characterize hypervariable genes in
homogeneous samples. Validation of this method comes
from the following:

� significantly more cluster constituents than can be
expected by chance;

� functional homogeneity of the cluster constituents [biggest
clusters in Figure 2A and B consist exclusively of riboso-
mal genes; co-expression of ribosomal genes was also
described in (18,19)];

� reproducibility of the cluster constituents of biggest
clusters between different groups of samples (Figure 2C
and D);

The fact that the majority of HV genes with altered patho-
logical interrelationships (as seen from comparison of the
correlation mosaics—Figure 4) are characterized in literature
as associated with various manifestations of the inflammation
and rheumatoid arthritis [Table 1, please refer to our previous
publication (1)]. These findings indicate that appearance of
high variation genes in homogeneous groups could be the
manifestation of some biological processes taking place in
normal tissues and modulated by pathological processes in
patients samples.

Table 1. Genes of different co-expression patterns in pathology compared with health donors as displayed by mosaics of correlations in Figure 4

Order on Figure 4/symbol/name References and description

4/ETS2/V-ets erythroblastosis virus
E26 oncogene homolog 2

(3) There was an increased expression of ets-2 in 30% of rheumatoid arthritis samples and
an up to 30-fold decreased expression of the potential metastasis suppressor gene nm23-H1 in 90% of
RA tissues, compared with control tissues.

(4) demonstrated a role for the ETS1 and ETS2 transcription factors in regulating the expression
of p16(INK4A) in these different contexts based on their ability to activate the p16(INK4A) promoter
through an ETS binding site and their patterns of expression during the life span of human diploid fibroblasts.

(5) They studied the expression of cyclin-dependent kinase inhibitors in rheumatoid synovial cells as
a means of suppressing synovial cell proliferation. Synovial cells derived from hypertrophic synovial tissue
readily expressed p16INK4a when they were growth-inhibited. This was not seen in other fibroblasts, including
those derived from normal and osteoarthritis-affected synovial tissues. In vivo adenoviral gene therapy with the
p16INK4a gene efficiently inhibited the pathology in an animal model of rheumatoid arthritis. Thus, the induction
of p16INK4a may provide a new approach to the effective treatment of rheumatoid arthritis.

6/JUNB/Jun B proto-oncogene (6) Differential junB mRNA expression in synovial membranes and isolated synovial fibroblasts from rheumatoid
arthritis patients

20/ TIAF1/TGFB1-induced (7) TGFB1-induced anti-apoptotic factor 1 inhibits tumor necrosis factor cytotoxicity.
anti-apoptotic factor 1 (8) TIAF1 binds to Jak3 and inhibits apoptosis induced by IL-2 deprival.

(9) TIAF1 protects murine L929 fibroblasts from TNF cytotoxicity. TIAF1 induced growth inhibition and apoptosis
of monocytic U937 and other types of cells. TIAF1 increased the expression of p53, Cip1/p21, and Smad proteins;
suppressed ERK phosphorylation; and altered TGF-beta1-mediated Smad2/3 phosphorylation in U937 cells.
Antisense TIAF1 mRNA significantly enhanced the proliferation of mink lung Mv1Lu epithelial cells. Together,
these observations indicate that TIAF1 participates in the TGF-beta-mediated growth regulation.

(10) T helper cells are important modulators of the allograft immune response. A small number of genes are
already known to be differentially expressed in T helper 1 (Th1) and T helper 2 (Th2) cells, but it is likely that
many other genes are functionally important. To study gene expression in Th1 and Th2 cells, we used serial
analysis of gene expression. One of the differentially expressed genes was TIAF-1, which is a TGF-beta 1-induced
antiapoptotic factor, known to inhibit the cytotoxic effects of tumor necrosis factor-alpha on mouse fibroblasts.
We hypothesized that TIAF-1 differentially expressed in Th1 and Th2 cells and plays a protective role against
apoptosis during allograft rejection.

TIAF-1 mRNA and protein were not detectable in normal kidney and liver; however, the expression of TIAF-1
was up-regulated in most biopsy specimens with chronic and a few with acute allograft rejection.
Immunohistochemistry for TIAF-1 revealed expression in the inflammatory infiltrate and in tubular epithelial
cells. CONCLUSIONS: TIAF-1 mRNA and protein are predominantly up-regulated in kidney and liver allografts
with chronic rejection. Expression of TIAF-1 in the lymphocytes during chronic allograft rejection may be related
to the predominance of a Th2 response in this condition. The expression in the transplanted tissue may protect
these cells from apoptosis.

21/STAT6/signal transducer and
activator of transcription 6,
interleukin-4 induced

(11) CD23 is atypically highly expressed in various chronic diseases, including B-CLL, lupus erythematodes and
rheumatoid arthritis. Cooperation between NF-AT and STAT factors might be one of the molecular mechanisms
responsible for high-level expression of CD23 on the surface of B-CLL cells.

(12) Serum soluble CD23 levels and CD23 expression on peripheral blood mononuclear cells in juvenile
chronic arthritis.

(13) The finding that STAT6(�/�) T(h)2 cells did not show any down-regulation of VLA-2 expression and
expressed the same levels of VLA-2 as T(h)1 cells indicated a critical role for the IL-4 receptor/STAT6 signaling
pathway in IL-4-dependent down-regulation of VLA-2 on T(h)2 cells. Our results indicate that VLA-2 is a novel
functional marker that dissociates T(h)1 from T(h)2 cells, and thus might be useful for therapeutic monitoring
of T(h)1-dependent immune diseases such as rheumatoid arthritis or Crohn’s disease.

27/WARS/tryptophanyl-tRNA
synthetase

(14) Sera of patients bearing autoimmune diseases (rheumatoid arthritis and systemic lupus erythematosus)
show the presence of autoantibodies against tryptophanyl-, tyrosyl- and phenylalanyl-tRNA synthetases.

28/BMP2/bone morpho-genetic
protein 2

(15) Bone morphogenetic proteins 2 and 6, expressed in arthritic synovium, are regulated by proinflammatory
cytokines and differentially modulate fibroblast-like synoviocyte apoptosis.
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