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Abstract

Purpose: To implement a protocol for intravoxel incoherent motion (IVIM) of the

thyroid, to determine base parameters in healthy volunteers, and to provide

preliminary experience on clinical applicability in one patient.

Materials and methods: Eight healthy volunteers underwent 3T MRI using a

diffusion weighted echo-planar imaging sequence with 12 different b-values

between 0–800 s/mm2. The IVIM parameters diffusion coefficient D, pseudo-

diffusion coefficient D*, perfusion fraction Fp, and the optimal b-values thresholds

were calculated for each thyroid lobe, muscle tissue and the cerebrospinal fluid

(CSF) using a non-parametric multi-step algorithm and compared with a Student's

t-test. A p-value <0.05 was considered significant.

Results: Mean values for healthy thyroid tissue were: D 1.01 ± 0.13 × 10−3 mm2/

s, D* 71.0 ± 52.5 × 10−3 mm2/s and Fp 17.1 ± 4.2%; for muscle: D 0.50 ± 0.21 ×

10−3 mm2/s, D* 58.3 ± 99.2 × 10−3 mm2/s and Fp 26.5 ± 9.3%; and for CSF D

2.18 ± 0.93 × 10−3 mm2/s, D* 99.2 ± 41.2 × 10−3 mm2/s and Fp 74.6 ± 12.7%.

The optimal b-value threshold separating diffusion and perfusion effects in thyroid

ranged between 0–70 s/mm2. Healthy thyroid tissue showed similar Fp compared to

muscle, both lower than CSF.

Conclusions: The proposed IVIM protocol provides surrogate markers on cellular

diffusion restriction and perfusion; thereby providing a more comprehensive

description of tissue properties compared to conventional DWI.

Keywords: Physiology, Anatomy, Medicine, Medical imaging, Pathology

Received:
19 October 2016

Revised:
12 January 2017

Accepted:
24 January 2017

Heliyon 3 (2017) e00239

http://dx.doi.org/10.1016/j.heliyon.2017.e00239

2405-8440/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:anton.becker@usz.ch
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2017.e00239&domain=pdf
http://dx.doi.org/10.1016/j.heliyon.2017.e00239


1. Introduction

Thyroid nodules are some of the most common incidentally reported lesions in

radiology with a reported prevalence of up to 67% [1] especially in geographic

areas with low iodine in the everyday diet [2]. The vast majority of incidental

thyroid nodules, particularly when small in size (defined as <1 cm), are benign in

nature (“regressive changes”) and need no treatment or follow up [3]. However, a

small percentage of nodules represent thyroid carcinomas. When detected early,

the differentiated papillary and follicular thyroid carcinomas (the two most

common types) are well treatable with radiotherapy and/or surgery, with a 30-year

cancer death rate of only 8% and a recurrence rate of 30% [4]. Medullary and

anaplastic thyroid cancer however, are often only diagnosed in later stages and

represent very aggressive types of cancer, with overall median survival limited to

only several months [5]. Thus, accurate differentiation of thyroid findings is of

paramount importance for the early detection and appropriate treatment of thyroid

cancer.

Ultrasonography and 131Iodine- or 99mTechnetium-scintigraphy are the main

diagnostic modalities used in thyroid nodule workup [6]. Ultrasonography in the

clinical routine is only able to deliver anatomical; and, apart from Doppler-

sonography for vascularity, no functional information about the tissue is provided.

Classic imaging features such as calcifications, shape and contrast enhancement

are fairly non-specific [7], neither can dynamic contrast enhanced CT differentiate

between benign and malignant nodules [8]. Contrast enhanced sonography with

ligand targeted contrast media (“microbubbles”) is an interesting novel approach to
add metabolic or molecular information to the modality [9]; however, it is still only

in an experimental stage and has not been approved for routine clinical usage. As

an additional drawback, ultrasonography is heavily operator-dependent [10].

Scintigraphy on the other hand yields excellent functional information, but has

poor spatial resolution and is associated with a substantial radiation dose to the

whole body and the thyroid gland in particular, due to local accumulation of the
131I- or 99mTc isotopes and the relatively high natural radiosensitivity of the

thyrocytes [11, 12].

MRI somewhat unifies advantages of both modalities, with the ability to

objectively examine the anatomy with rather high spatial resolution and intrinsic

high soft tissue contrast while also providing functional information about the

tissue [13] without use of ionizing radiation. Quantitative diffusion weighted MRI

has been shown to correlate with the hypercellularity in thyroid carcinomas [14].

However, detailed knowledge about the diffusion properties of healthy thyroid

tissue as well as quantification of thyroid perfusion is essential in order to be able

to discriminate between physiological and pathological changes.
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MRI offers several non-invasive options to measure tissue perfusion. For instance,

arterial spin labeling (ASL) has been shown to reliably generate single-slice

perfusion maps of the thyroid gland with a flow-sensitive alternating inversion-

recovery spin preparation and a true fast imaging in steady precession technique

[15] and was subsequently used to quantify perfusion changes in Hashimoto

thyroiditis [16]. Yet, precise perfusion quantification with ASL is difficult due to

the signal contribution of intravascular tagged spins, early magnetization decay of

tagged spins and a low signal-to-noise ratio (SNR).

Alternatively intravoxel incoherent motion (IVIM) imaging has recently been

proven to be a reliable tool providing tissue characteristics on cellularity as well as

perfusion-dependent biomarkers [17]. The principle behind IVIM was first

postulated in 1988 by Le Bihan et al. [18].

The aim of this study was to optimize and implement an MRI protocol allowing for

acquisition of diffusion datasets suitable for IVIM analysis of the thyroid gland, to test

a parameter-free post-processing algorithm for IVIM analysis in healthy volunteers,

to report baseline parameters of healthy volunteers, as well as an anecdotal example

of a benign focal pathology (autonomous adenoma) in one patient.

2. Materials and methods

2.1. Study cohort

The study was approved by the institutional review board. The population

consisted of nine volunteers in total: Eight healthy volunteers (5 male, 3 female;

28.3 ± 5.1 years old), and one (female, 55y) with a known autonomous adenoma in

the left thyroid lobe. Oral and written informed consent was obtained.

2.2. MRI protocol

All MRI scans were performed on a clinical 3.0T MRI scanner (Ingenia, Philips

Healthcare, Best, NL). Subjects were laid in supine position in a 15-channel head

& neck coil. Room temperature was kept at a constant 21 °C. All sequences were

acquired perpendicular to the axis of the spinal column (“transverse” or “axial”
orientation). In a first step, T1/T2 weighted fast spin echo (FSE) sequences (field

of view 22 × 22 × 29 cm, voxel size 0.85 × 0.85 mm/0.76 × 0.76 mm, no. of slices

40, slice thickness 4 mm, slice spacing 3.3 mm, TR and TE of 580 and 18 ms/3400

and 90 ms, flip angle 90°, acquisition time 4:20 min) were acquired in order to gain

sufficient anatomical information about the region to a) plan the acquisition of the

diffusion weighted images precisely over the thyroid and b) screen for structural

abnormalities that would alter the DWI measurements (eg. cysts or large regressive

nodules). In a second step, a DWI sequence using single-shot spin-echo echo-

planar imaging with signal averaging in three orthogonal directions was applied
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(field of view 20 × 20 × 17.6 cm, voxel size 1.39 × 1.39 mm, no. of slices 22, slice

thickness 3.5 mm, slice spacing 4.5 mm, TR 5000 ms, TE 69 ms, bandwidth 1.8

kHz, fat suppression by spectral attenuated inversion recovery (SPAIR), b-values:

0, 10, 20, 40, 70, 100, 150, 300, 400, 500, 650, 800 s/mm2; Sensitivity Encoding

(SENSE) factor 2, acquisition time 25:15 min). A typical example of the sequence

planning and representative diffusion images are presented in Fig. 1.

2.3. Post-processing

IVIM exploits a so-called “pseudodiffusion-effect” which corresponds to fast

moving water molecules in the capillaries [18, 19, 20]. This effect will, depending

on the tissue, superimpose the signal decay caused by true diffusion. It is typically

observed at low b-values (<150 s/mm2). The phenomenon can be described by a

bi-exponential equation:

Sb=S0 ¼ 1� Fpð Þexp �bDð Þ þ Fpexp �bD�ð Þ (1)

In the above equation, S represents the signal, D the apparent molecular diffusion,

D* the pseudodiffusion and Fp the relative perfusion fraction. In the brain, the

[(Fig._1)TD$FIG]

Fig. 1. (a) T2 weighted anatomical sequence, sagittal slice in paramedian position through the neck of a

healthy volunteer. The white line depicts the axial orientation of the subsequent acquired images and the

position of (b) an anatomical axial T2 weighted image through the neck with no structural

abnormalities. (c) diffusion weighted images with the 12 different b-values later used for IVIM analysis.

Note the rapid and consistent signal decay (0 to 800, from hyper- to hypointense) in the CSF consistent

with near-free diffusivity. The signal values in all images range from 0 to 1 (black to white, gray scale

omitted).
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product Fp × D* has been shown to linearly correlate with the blood flow measured

after bolus contrast injection [20, 21].

Proprietary built-in automatic three-dimensional motion correction was success-

fully applied to all images (“diffusion registration” package, Philips Healthcare).

All IVIM-analyses were performed with optimized in-house MATLAB (Math-

Works, Natick MA, USA) computer programs.

Polygonal regions of interest (ROIs) weremanually placed in each lobe of the thyroid,

the sternocleidomastoid muscle and the cerebrospinal fluid (CSF) in the cervical

spinal canal. While drawing the ROIs, inclusion of large vessels such as the internal

jugular vein or carotid artery were avoided, and were not placed in close proximity to

the extracorporal or tracheal airspaces, to minimize distortive effects from pulsation

or susceptibility artifacts. Any necrotic regions were avoided as well in order to

minimize the influence of potential measurement errors. The ROIs were placed on the

b0 slice with the best visibility of all structures in question (thyroid parenchyma,

muscle and CSF) and automatically copied to the images of the remaining 11 b-

values, generating a decay curve comprising 12measurement points (x = b-value/y =

signal-intensity). ROI definition was performed by two readers independently (AB, 3

years and TF, 5 years of experience in clinical MRI), and by one of the readers (AB)

after >6 months, to assess inter- and intrareader agreement, respectively. For the

IVIM analysis a multi-step variable b-value threshold fitting approach was used,

which has been shown to deliver more consistent results than conventional bi-linear

fitting [22]. Our approach consists of the routine:

1.) D is calculated from the highest n b-values with the assumption, that perfusion

contributions to the signal decay are negligible at high b-values. Initially, n is

equal to the number of b-values. D is calculated using a first-order polynomial

fit to the log-transformed signal intensities:

logSb ¼ �D× bþ logS
0
0 (2)

2.) The perfusion fraction Fp is subsequently calculated from the measured signal

intensity at b = 0 (S0) and the derived S0′:

Fp ¼ S0 � S0′
S0

(3)

3.) Using the computed values for D and Fp as fixed factors, D* is determined for

all b-values by fitting the signal intensities to Eq. (1) using a non-linear least-

sqaures algorithm based on the Levenberg-Marquardt technique. The

corresponding MATLAB function “lsqcurvefit” also provides the sum of the

squared residuals to the fit.
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4.) Steps 1–3 are repeated with the next lower b-value dropped in step 1 and 2 to

determine the initial D and Fp. Therefore, the algorithm will loop n-1 times

through the data with n equal to the number of b-values acquired. In the end,

only the two highest b-values remain as for the highest b-value alone no

polynomial fit can be calculated.

5.) Lastly, the optimal b-value threshold and resulting IVIM-parameters can be

determined by using the b-value threshold with the corresponding lowest

number of squared residuals from step 3, equaling the best fit to the measured

signal intensities.

In addition to the ROI analysis, voxel-wise IVIM analysis of the selected slices was

done to generate parametrical b-value threshold, Fp-, D- and D*-maps of the whole

examined region, which were digitally fused with the corresponding b0 DWI-

image, as a visual instrument to verify the quantitative measurements obtained by

the ROI analysis.

2.4. Statistical analysis

Statistical analysis was performed using R v. 3.3.1. (R Foundation for Statistical

Computing, Vienna, Austria). ROI size was expressed as median and interquartile

range (IQR). For all 9 subjects, the optimal b-value threshold was determined for

CSF, muscle and each thyroid lobe, as well as additionally an adenoma in one subject.

The median of these b-value thresholds was calculated per structure. Means and

standard deviations of the IVIM parameters Fp-, D- and D* were computed for each

anatomical structure of all subjects at this median b-value. These results were

compared with a Student t-test with Bonferroni correction for multiple comparisons,

yielding p = 0.05/3 = 0.017 as an indicator of significant differences. All plots

including an exemplary fitting process in the thyroid were plotted with ggplot2 from

the rawMATLAB output (cf. Fig. 2). The 1 case of an autonomous adenomawas also

compared to the mean and confidence intervals of the results from the healthy

subjects. Intra- and interreader agreement/reliability were assessed with the intraclass

correlation coefficient (ICC) and Bland-Altman plots, respectively. ICC values were

interpreted as follows: poor (<0.20), fair (0.20–0.39), moderate (0.40–0.59),
substantial (0.60–0.79), and excellent (>0.80) agreement.

3. Results

3.1. Qualitative and quantitative analysis of IVIM parameters in
healthy subjects

The three examined anatomical compartments: Thyroid, muscle and CSF showed

distinct and consistent differences in the signal decay over the different b-values.

Three exemplary decay curves are depicted in Fig. 2a, showing a faster signal

decay in the CSF when compared to muscle and the thyroid gland. The thyroid
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gland exhibited a decay pattern in between CSF and muscle with a fast initial decay

at b = 10–20 s/mm2 similar to CSF, but after b = 70 almost paralleling the slow

decay of the muscle-curve. The subsequent results of the fitting algorithm applied

to the thyroid-curve of Fig. 2a is graphically depicted in Fig. 2b, where 11 IVIM

fitting curves with increasing b-value thresholds were tested and according to step

5 of our routine the function with lowest residuals was selected as the optimal b-

value threshold function (in this example threshold b-value 20, marked red and

bold).

Median ROI size was 55 px (IQR: 46–71 px) for the left, 69 px (52–80 px) for the

right thyroid, 130 px (124–138 px) for muscle and 37 px (32–73 px) for the CSF.

The median optimal b-value thresholds were 40 and 20 s/mm2 for the left and right

thyroid lobe, 500 s/mm2 for the skeletal muscle and 20 s/mm2 for CSF (cf.

Table 1). The thyroid gland showed a simlar Fp, compared to skeletal muscle

(19.6% vs. 26.5%, p = 0.12). Fp was significantly higher in the spinal canal (74.6%,

p < 0.001), probably corresponding to the physiological CSF-pulsation (Fig. 3a).

Similarly, D* and D were high in CSF and low in the muscle (p < 0.001),

consistent with the free water diffusion in the CSF and physiologically restricted

diffusion in the parallel oriented muscle fibers. In contrast to Fp, D* and D of the

parenchymatous thyroid gland exhibited values between the respective parameters

of CSF and muscle (Fig. 3b and c). The small differences of the IVIM parameters

Fp, D* and D between the two lobes of the thyroid gland were never significant

(Fig. 3), indicating good reproducibility.

3.2. Parametrical maps of the healthy subjects

Fig. 4arepresents an exemplary section of a T2-weighted anatomical sequence,

with Fig. 4b depicting the corresponding DWI section at b = 0 s/mm2. The DWI

image was used for the fusion with the parametric maps, since the DWI as well as

[(Fig._2)TD$FIG]

Fig. 2. (a) Measured signal from one of the volunteers showing a more rapid signal decay in the thyroid

gland at very small b-values (<70) with subsequent equalization of the decay slope to muscle tissue

leading to a nearly constant difference between the two curves. (b) Exemplary multi-step fitting

approach on the thyroid signal data. Note the different scale. The optimal b-value threshold determined

by the smallest sum of squared differences from the measured points to the curve was a b-value of 20 s/

mm2 highlighted in red and bold, which seems to optimally reflect the early steep signal decay.
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the maps showed small distortions due to magnetic field inhomogeneities, eg. in

proximity to air-tissue interfaces, as can be seen in the isthmus of the thyroid gland.

The maps were in concordance with the results from the quantitative measure-

ments, depicting a low b-value threshold for thyroid gland and CSF and

substantially higher b-value threhold for the muscles (Fig. 4c), high Fp in and

around the spinal canal and lower in muscle and thyroid tissue (Fig. 4d) as well as

intermediate D and D* in the thyroid when compared with CSF and muscles

(Fig. 4e and f). The latter have shown the most inhomogeneous pattern of the

examined structures. Additionally, a “hotspot” of high Fp and D* could be

appreciated around the right internal jugular vein, probably corresponding to the

slow macroscopic blood flow within this large vein in the supine position.

Table 1. Summary Table with means and standard deviations of the IVIM parameters for the examined

structures, as well as the measurement for the singular adenoma. The perfusion fraction (Fp) of the thyroid

was similar to muscle and lower than in the CSF. Whereas the diffusion coefficient (D) as well as the

pseudodiffusion (D*) of the throid ranged between muscle and CSF. The adenoma showed markedly

different IVIM parameters (ie. lower Fp, higher D and D*) compared to the healthy thyroid tissue. The b-

value threshold is given as median [interquartile range], the remaining coefficients are expressed as mean ±

standard deviation.

Parameter Left Thyroid Right Thyroid Thyroid Adenoma Muscle CSF

n 8 8 1 9 9

Fp 22.1 ± 3.4% 17.1 ± 4.2% 3.0% 26.5 ± 9.3% 74.6 ± 12.7%

D* [× 10−3 mm2/s] 64.2 ± 43.7 71.0 ± 52.5 95.2 58.3 ± 10.9 99.2 ± 41.2

D [× 10−3 mm2/s] 0.96 ± 0.18 1.01 ± 0.13 2.28 0.50 ± 0.21 2.18 ± 0.93

Optimal b-Value [s/mm2] 40 [20–40] 20 [10–70] 0 500 [500–650] 20 [20–20]

[(Fig._3)TD$FIG]

Fig. 3. (a) While the perfusion fraction Fp was not significantly different between thyroid and muscle

tissue, the CSF, presumably through its physiological pulsation, showed a very high Fp. (b) The

pseudodiffusion coefficient D* was relatively high in the thyroid and CSF with greater variability, when

compared to the muscles. (c) Diffusion was nearly unrestricted in the CSF (high D), and less restricted

in the loose thyroid parenchyma than in the tough muscle fibers (lowest D).
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3.3. Quantitative and qualitative comparison with the autono-
mous adenoma

The adenoma showed the following imaging characteristics: Well demarcated,

inhomogeneously iso- to slightly hyperintense on T1 and markedly hyperintense on

T2 weighted anatomical sequences, as shown in Fig. 5a and b. The optimal

threshold on the functional DWI sequences was found to be 0 s/mm2, in the

contralateral, normal lobe it was 20 s/mm2 as shown in Fig. 5d, in congruency with

the other, healthy thyroid glands. The resulting fitted curve was an almost mono-

exponential signal decay from b0 to b800, depicted in Fig. 5g together with a normal

thyroid decay curve. The decay is still not purely exponential, as this would require

the line of the log transformed Consecutively, a very low Fp was detected (3.0% vs.

19.6%; Fig. 5e and h) and a relatively high diffusion coefficient D (2.2 vs. 0.98 ×

10−3 mm2/s; Fig. 5f and i); Table 1. Both parameters were well outside of the

99.7% confidence intervals of the respective parameter of the healthy thyroid

gland. D* in the adenoma was only slightly higher than in the normal thyroid and

well within the 95% confidence intervals.

[(Fig._4)TD$FIG]

Fig. 4. (a) T2 weighted anatomical sequence, axial slice through the neck on the level of the thyroid (b)

Diffusion weighted image with b-value = 0 s/mm2, note the distortion of the thyroid isthmus due to its

location between the extracorporal and tracheal air. Sample ROI definitions in the left thyroid, muscle

and CSF are shown (dashed yellow lines). This image was used for the fusion with the parametric maps

in (c–f) as determined in the by-voxel IVIM analysis: (c) Optimal b-value threshold (d) Perfusion

fraction Fp [%] (e) Diffusion coefficient D [mm2/s] (f) Pseudodiffusion coefficient D* [mm2/s].
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3.4. Intra- and interreader agreement

The first complete readout of Reader 1 is provided in Table 2. Intrareader

agreement was excellent for Fp (ICC = 0.87, 95%-CI = 0.74–0.93) and substantial

for D* (0.68, 0.38–0.84) and D (0.77, 0.54–0.88). Interreader analysis exhibited the
same pattern with excellent agreement for Fp (0.93, 0.85–0.96) and substantial for

D* (0.71, 0.45–0.85) and D (0.79, 0.59–0.89). Bland-Altman plots (Fig. 6) showed

no gross deviation of the mean from zero in any case, confirming the results of the

ICC analysis.

4. Discussion

In the present study we demonstrated that tissue characterization of the thyroid

gland is feasible using an IVIM diffusion imaging approach, which provides

biomarkers on restriction of water diffusion (cellularity) and perfusion (Table 1).

Computation of parametrical maps provided a satisfying spatial resolution and

image quality. Using a non-parametrical post-processing algorithm, the optimal b-

[(Fig._5)TD$FIG]

Fig. 5. (a) T1 weighted (b) T2 weighted anatomical sequence, axial slice through the neck on the level

of the thyroid gland and adenoma. This adenoma had a typical MR appearance, isointense on T1 and

hyperintense on T2 and consequently hyperintense on (c) the b0 image. Below on (g) two exemplary

fitted curves from the ROI analysis are shown, comparing healthy thyroid to the adenoma with

markedly different signal decay characteristics, which is in turn reflected in (e) and (h) showing the low

Fp and (f) and (i) the high D in the adenoma compared to the healthy thyroid tissue.
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value for separation of perfusion and diffusion effects for healthy tissue could be

determined to be in the range of 20–40 s/mm2. Moreover, base parameters in a

cohort of healthy volunteers could be obtained. Preliminary experience on the

clinical applicability of the proposed protocol could be derived from a

measurement in a patient with an autonomous adenoma.

Table 2. Measured perfusion fraction (Fp), apparent and pseudo-diffusion coefficient (D and D*) for each

structure examined in the ROI analysis for every healthy subject.

Structure Subject Optimal b-value [s/mm2] Fp [%] D [× 10−3 mm2/s] D* [× 10−3 mm2/s]

Left Thyroid 1 20 18.6 0.84 71.9

Left Thyroid 2 20 19.8 0.92 77.6

Left Thyroid 3 40 26.1 1.23 55.7

Left Thyroid 4 40 21.0 0.88 157.3

Left Thyroid 5 20 18.3 1.22 52.2

Left Thyroid 6 40 21.2 0.79 44.2

Left Thyroid 7 40 25.5 0.78 51.1

Left Thyroid 8 70 26.3 0.98 34.9

Right Thyroid 1 70 16.8 0.98 39.5

Right Thyroid 2 10 17.3 0.85 72.6

Right Thyroid 3 20 25.7 1.06 73.2

Right Thyroid 4 70 20.7 0.96 33.9

Right Thyroid 5 70 17.2 1.21 68.0

Right Thyroid 6 20 14.9 0.88 43.2

Right Thyroid 7 0 12.5 0.99 18.7

Right Thyroid 8 0 17.1 1.23 19.6

Muscle 1 500 20.3 0.38 58.9

Muscle 2 300 25.9 0.50 60.3

Muscle 3 650 41.1 0.20 50.4

Muscle 4 100 43.5 0.47 62.1

Muscle 5 500 22.0 0.58 57.2

Muscle 6 650 20.4 0.61 51.3

Muscle 7 500 22.1 0.40 45.9

Muscle 8 650 18.2 0.95 83.7

Cerebrospinal Fluid 1 70 60.5 4.02 39.8

Cerebrospinal Fluid 2 20 88.3 1.67 170.7

Cerebrospinal Fluid 3 20 82.6 1.56 100.3

Cerebrospinal Fluid 4 70 53.2 2.24 37.2

Cerebrospinal Fluid 5 10 74.2 3.00 87.7

Cerebrospinal Fluid 6 20 62.1 0.76 119.4

Cerebrospinal Fluid 7 20 83.9 1.76 116.4

Cerebrospinal Fluid 8 20 82.9 2.42 109.3
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Of the examined structures, the different muscles showed the most inhomogeneous

pattern on the parametric maps. This can partly be explained by different activity

before and during the scan, which locally alters muscle perfusion and thus the

measured IVIM parameters [23]. Some of the “hotspots” may be explained through

slightly larger arterioles and venules coursing through the muscle. Another factor

that may contribute to this picture is the different 3-dimensional muscle fiber

orientation of the different muscle groups. IVIM does not take the directionality of

[(Fig._6)TD$FIG]

Fig. 6. Bland-Altman plots of the perfusion fraction Fp, the pseudodiffusion coefficient D* and the

diffusion coefficient D (top to bottom) within the same reader after >6 months (intrareader analysis:

a–c) and two separate readers (interreader analysis, d–f). Mean difference ± 1.96 SD are shown by the

dashed lines. In none of the comparisons, the mean deviates far from zero, indicating no systematic bias

in the readouts.
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diffusion and pseudodiffusion effects into account, which is an important factor to

consider in the skeletal muscles, where diffusion is highly restricted orthogonally

to the muscle fiber orientation [24]. These limitations may explain the difference in

homogeneity of the maps.

The elevated Fp in the cervical spinal canal has also been reported in the lumbar

and thoracic spinal canal [25] and could be explained by the physiological, slow

CSF pulsation. Though it should be noted that the IVIM model assumes

microscopic flow in a capillary network and hence is probably not ideal to describe

the CSF pulsation. Moreover, on careful examination of the parametric map in

Figs. Fig. 44 d and Fig. 55 b, there is a slight incongruence of the red, high-Fp area

and the bright CSF signal, with some of the high-Fp area located more in the

epidural fat. We presume that an additional factor contributing to the high Fp may

be the blood flow in the epidural venous plexus, which is most largely developed in

the anterior portion. Whether this effect could be used for other diagnostic

purposes, i.e. for differentiation of intraspinal masses, is beyond the scope of this

study.

The adenoma showed a low restriction of passive water diffusion (high D) when

compared to the normal thyroid parenchyma of volunteers or of the contralateral

side in the patient, which may be explained with larger cell size or smaller

extracellular fluid space, i.e. poor vascularization [25, 26]. Benign focal lesions

have been reported to show low ADC in conventional DWI, and malignant lesions

typically show even lower ADC values as a result of the high cellularity [26].

Compared to these previous studies using conventional DWI, the proposed IVIM

analysis additionally provides information on tissue perfusion potentially resulting

in a better discrimination between benign and malignant lesions. A further

application may be the use of IVIM for therapy response monitoring of nodular or

diffuse thyroid pathologies. We believe that IVIM of the thyroid has some potential

to increase accuracy and; thereby, minimize harm in the diagnostic workup of

thyroid pathologies, but further prospective studies are needed to uncover the full

value of thyroid IVIM-imaging.

Our study has several limitations. (i) The duration of our protocol with the

acquisition of 12 b-values was fairly long (approx. 25 min) and in the current state

would be difficult to implement as an additional sequence to an existing clinical

neck MR protocol. However, the number of b-values may potentially be decreased

without losing diagnostic accuracy, and such approaches have successfully been

tested for IVIM. Moreover, the introduction of multi-band DWI sequences with

simultaneous excitation of multiple slices with subsequent unaliasing of the

acquired data have been shown to result in a dramatic decrease of acquisition time.

In the future, such an approach may potentially be successfully applied for IVIM

measurements. (ii) Another limitation of thyroid MRI with a large FOV is the

Article No~e00239

13 http://dx.doi.org/10.1016/j.heliyon.2017.e00239

2405-8440/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2017.e00239


limited spatial resolution. In our study we used a relatively large FOV in order to

be able to compare the thyroid characteristics with other anatomical structures. A

reduced FOV potentially provides a better spatial resolution as reported by Lu et al.

[13], though the increased spatial resolution poses further problems for IVIM

acquisitions. Firstly, in order to obtain a sufficient signal-to-noise ratio (SNR),

more acquisitions have to be performed as the SNR is directly proportional to the

voxel volume, and subsequently an even longer measurement time as compared to

our protocol would be necessary. Moreover, the examination with reduced FOV

would be prone to folding artifacts in the phase encoding direction, which,

however, could be compensated by zoomed echo-planar imaging with parallel

transmission if the required MR scanner hardware is available.

(iii) ssEPI as used in the present study for IVIM is very sensitive to magnetic field

inhomogeneities, which occur at soft tissue-air and soft tissue-bone interfaces in

head and neck imaging. The parameters may thus be inaccurate for regions of the

thyroid lobes bordering the trachea; and an evaluation of the isthmus, which

happens to be very thin and unfavorably located between extracorporeal and

tracheal air, is not possible.

(iv) Lastly, the IVIM approach is sensitive to movement in between the acquisition

of the different b-values. For small movements compensation should be possible

by the built-in proprietary software. From the consistency of our data between the

subjects we infer that motion was not a serious issue in our cohort of healthy

volunteers. Clinically, this could potentially constitute a problem when patients

feel the need of excessive swallowing during the examination, since the thyroid

may exhibit large movements together with the whole larynx (an effect usually

exploited for manual palpation).

In conclusion, we demonstrated that IVIM measurements in the thyroid gland are

feasible using the proposed protocol. The tissue characterization using IVIM

provides biomarkers on cellular diffusion restriction and perfusion; thereby

providing a more comprehensive description of tissue properties compared to

conventional DWI.
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