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Abstract
The cDC1 subset of classical dendritic cells is specialized for priming CD8 T
cell responses through the process of cross-presentation. The molecular
mechanisms of cross-presentation remain incompletely understood because of
limited biochemical analysis of rare cDC1 cells, difficulty in their genetic
manipulation, and reliance on  systems based on monocyte- andin vitro
bone-marrow-derived dendritic cells. This review will discuss
cross-presentation from the perspective of studies with monocyte- or
bone-marrow-derived dendritic cells while highlighting the need for future work
examining cDC1 cells. We then discuss the role of cDC1s as a cellular platform
to combine antigen processing for class I and class II MHC presentation to
allow the integration of “help” from CD4 T cells during priming of CD8 T cell
responses.
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Introduction
Dendritic cells (DCs) are a distinct lineage of innate immune cells 
that was originally defined based on its unique stellate morphol-
ogy and ability to prime T cell responses1–3. DCs broadly segregate 
into four groups, plasmacytoid DCs (pDCs), classical DCs (cDCs), 
Langerhans cells, and monocyte-derived DCs (moDCs) based on 
function and surface markers. pDCs are potent producers of type 
I interferons in response to viral pathogens4–7. cDCs themselves 
are divided into two lineages, recently renamed8 as cDC1 (CD8α+ 
DCs) and cDC2 (CD8α- DCs). The cDC2 lineage is heterogeneous 
and expresses the Irf4 transcription factor9–11. Notch 2-dependent 
cDC2s are required for IL-23 production in response to Citrobacter 
rodentium infection12,13, while a separate Klf4-dependent subset 
of cDC2s is required for type II responses to house dust mite 
antigen and Schistosoma mansoni infection14. By contrast, cDC1 
cells require the Irf810,15,16 and Batf3 transcription factors10,16,17 and 
produce the IL-12 necessary for protection against Toxoplasma 
gondii18,19. They are also the subset involved in priming CD8 
T cell responses to tumors and virally infected cells through 
cross-presentation17,20. All cDCs in vivo arise from a common DC 
progenitor (CDP) in the bone marrow21.

Cultures of monocytes in GM-CSF and IL-4 are able to produce 
DC-like cells, distinct from those that develop from the CDP22, 
termed monocyte-derived DCs (moDCs), in large numbers23. 
Similar cells that derive from cultures of whole bone marrow 
with GM-CSF with or without IL-4 in vitro have been referred 
to as “moDCs”, despite the uncertainty of the origin, or bone- 
marrow-derived DCs (BMDCs). BMDCs have been the basis for 
many studies aimed at understanding the properties of cDCs24,25. 
Recent studies have shown that these cultures are actually hetero-
geneous and that it may not be appropriate to refer to the cells that 
are generated as moDCs, since many display macrophage charac-
teristics and the precursor to the DC-like cells from whole bone 
marrow is not known26. Some investigators object to the use of the 
term moDC for in-vitro-derived cells from whole bone marrow 
since it is misleading with regard to their development; however, 
it has been argued that the DC-like cells that develop from GM-CSF 
cultures develop from monocytes27. The term BMDC can also lead 
to confusion, since DCs can also be derived from bone marrow  
cultures with fms-related tyrosine kinase 3 ligand (Flt3L) and 
produce cells that are distinct from those produced in GM-CSF  
cultures27. Therefore, in this review, we will refer to cells generated 
from monocytes as moDCs and cells generated from whole bone 
marrow GM-CSF cultures as GMDCs. Conceivably, both may be  
derived from monocytes and distinct from in-vivo-derived cDCs.

In this review, we will first highlight new discoveries regard-
ing cross-presentation and discuss how molecular mechanisms 
governing cross-presentation by cDC1s may be distinct from the 
cross-presentation pathways identified in moDCs or GMDCs 
in vitro. We will then describe how cDC1s initiate and maintain 
anti-viral responses, including through their interactions with CD4 
T cells.

Molecular mechanisms of cross-presentation
Cross-presentation is the process by which exogenous antigens 
are taken up by antigen-presenting cells and presented on major 

histocompatibility class I (MHCI)28. cDC1s are the unique DC 
subset specialized in cross-presentation in vivo20. The molecular 
mechanisms specific to DCs that govern cross-presentation have 
been the subject of a large body of work over the past decade29, 
with much of the early work on cross-presentation carried out in  
macrophages30–32, though the majority of our understanding of 
cross-presentation is based on experiments carried out using 
GMDCs. GMDCs are generated from bone marrow cultures with 
GM-CSF alone or GM-CSF with IL-4 originally developed in the 
early 1990s24–26. While these cells can cross-present in vitro, it is 
unlikely that these are the cells that operate in vivo, since Batf3-/- 
mice that lack cDC1s fail to mount CD8 T cell responses to chal-
lenges requiring cross-presentation17. However, Batf3-/- mice can 
generate moDCs that are able to cross-present normally in vitro33, 
indicating that any moDCs that may develop in vivo do not compen-
sate for the loss of cDC1s for in vivo cross-presentation.

Surprisingly little work has been done to analyze cross- 
presentation in DCs derived from bone marrow cultures with Flt3L. 
DCs that resemble splenic cDC1 and cDC2 by surface markers 
can be generated in large numbers in bone marrow cultures with 
Flt3L34,35. These cells are able to present antibody-targeted anti-
gens and activate T cells to a similar extent as cDCs of the same 
lineage derived in vivo36. Also, Flt3L-derived DCs express Rab43, 
a molecule necessary for cross-presentation in in vivo cDC1s but 
not moDCs37. While more studies may be needed to compare the  
cross-presentation efficiency of Flt3L-derived DCs to in-vivo- 
generated cDCs, Flt3L-derived DCs are arguably more appropriate 
for in vitro studies of DC function than GMDCs. Nonetheless, the 
examination of macrophages and GMDCs has been useful for iden-
tifying the components of two major cross-presentation pathways, 
the cytosolic and vacuolar pathways.

In the cytosolic pathway, exogenous antigens that are taken up into 
phagosomes are exported into the cytosol to enter the traditional 
proteasome- and TAP-dependent MHCI presentation pathway32,38,39. 
The cytosolic pathway is dependent on the reduced acidification of 
phagosomes produced by the activity of NADPH oxidase Nox2, 
leading to delayed antigen degradation40,41. Recruitment and locali-
zation of NOX2 components was determined to be regulated by 
the activities of Rac2 and Rab27a41,42. Phagosomal alkalization has 
also been demonstrated to involve Rab3c (a marker of recycling 
vesicles43), Rab34 (an LPS-regulated protein that can delay phago-
lysosomal fusion44), and TFEB (a transcription factor that can 
negatively regulate cross-presentation45). The delay in antigen 
degradation caused by phagosomal alkalization acts to allow anti-
gens to move into the cytosol, possibly through channels such as 
Sec61, promoting antigen processing and presentation through the 
normal MHCI pathway46. These pathways have mainly been shown 
to act in phagosomes containing latex beads, raising the question 
of whether this process is specific to uptake of beads or if anti-
gens that bind different receptors are processed through similar 
mechanisms.

NOX2 has been shown to play a role in cross-presentation in vivo40,42, 
suggesting that phagosomal alkalization may also be important 
for cross-presentation by cDC1s. However, the magnitude of the 
contribution of this pathway is limited, as loss of NOX2 activity 
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decreased cross-presentation of antibody-targeted antigen only 
by about 50%40. The remainder of the molecules in the cytosolic  
pathway, including Rac2, Rab27a, Rab3c, Sec61, TFEB, and 
Rab34, have not been examined in in vivo cDCs41–45. Genetic  
studies with mouse models will be necessary to determine the 
importance of these molecules and the cytosolic pathway in general 
to cross-presentation in vivo.

The vacuolar pathway involves the loading of MHCI molecules by 
antigens processed directly within endosomes without transport to 
the cytosol and is independent of TAP and the proteasome47,48. One 
molecule linked to the vacuolar pathway is the insulin-regulated 
aminopeptidase (IRAP)49. IRAP can trim peptides in DC phago-
somes to lengths appropriate for loading into MHCI molecules49, 
similar to the action of endoplasmic reticulum aminopeptidase 
associated with antigen processing (ERAAP) in the endoplasmic 
reticulum50. The role of IRAP in vivo remains unclear. Although 
an early study detailing the mechanism of IRAP was conducted 
using in vitro GMDCs, IRAP-deficient mice were also shown to 
have reduced cross-presentation49. However, a subsequent study 
concluded that IRAP was not required for cross-presentation of 
soluble OVA or OVA-coated splenocytes by splenic cDC1s in vitro, 
suggesting that IRAP may not play a role in cDC1-mediated cross-
presentation51. But another study, using OVA-expressing yeast 
in vitro, showed that IRAP is recruited to endosomes in cDC1 cells 
and that cross-presentation is reduced in IRAP-deficient cDC1s52. 
Conceivably, the use of differing forms of antigen underlies some 
of these variances. While the ability of cDC1 cells to cross-present 
is not solely due to their ability to capture antigens53,54, it is plau-
sible that distinct antigen internalization and processing pathways 
are used for different forms of antigen. For example, cell-associated 
and soluble antigens are not cross-presented equally and cDC2s, 
which do not cross-present in vivo20, have the capacity to present 
soluble antigens in vitro52,54. Therefore, work is still needed to com-
pare cross-presentation of different antigens by cDC1s and cDC2s 
in vitro to find a system that mimics in vivo models where only 
cDC1s are able to cross-present. Developing standardized assays 
for the field through careful comparison of DC subsets may help to 
eliminate confusion between whether or not molecules are neces-
sary for cross-presentation in vivo as in the case of IRAP.

Presentation through the vacuolar pathway requires the loading 
of MHCI molecules within endosomes. The molecule Sec22b 
was described in GMDCs to regulate the movement of the pep-
tide-loading complex to endosomes55. It has also been shown that 
GMDCs contain pools of MHCI in endosomal recycling compart-
ments marked by Rab11a56. A model has been proposed where TLR 
signals induce MHCI movement from these intracellular pools 
to phagosomes, where they meet antigen and the peptide-loading 
complex machinery brought by Sec22b56. A second proposed model 
involves CD74, the MHCII invariant chain, which was also shown 
to control the movement of MHCI to endosomes and to regulate 
cross-presentation in vivo57. CD74 acts in both splenic cDC1s and 
GMDCs, meaning CD74 and IRAP are the two molecules shown 
to be involved in the vacuolar pathway of cross presentation in 
cDC1s52,57. However, as with the cytosolic pathway, many gaps 
still remain in our understanding of what proteins and signals are 
involved in regulating the cross-presentation ability of cDC1s.

Role of moDCs in vivo
The discovery that moDCs cannot compensate for the loss of cross-
presentation by cDC1s in vivo has called into question their rel-
evance in vivo33. Bone marrow cultured with GM-CSF produces a 
heterogeneous population of CD11c+ MHCII+ cells which contain 
functionally distinct macrophages and DCs26. While moDCs have 
a stellate morphology, express the cDC-specific ZBTB46 transcrip-
tion factor58, and can cross-present cell-associated antigens, they do 
so in a manner distinct from ex vivo cDC1 cells33,51.

Further, recent work has called into question if moDCs exist 
in vivo. Studies of moDCs started with the observation that trans-
ferred monocytes are able to generate CD11c+ DC-like cells 
in vivo22. These moDCs have been observed in numerous models 
including viral infections59, alum-OVA immunization60, arthritis61,  
and house dust mite exposure62. They can be distinguished from 
cDCs in vivo by expression of CD64 and MAR-160,62 and are 
dependent on CCR2 and CD115 (MCSF-R)60,63. However, it is 
unclear whether the moDCs identified in these studies in vivo are 
equivalent to those generated with GM-CSF and IL-4 in vitro. 
Recent lineage tracing has suggested that the inflammatory cells 
that develop during house dust mite challenge lack expression of 
the cDC marker ZBTB4658 and instead express the macrophage-
specific transcription factor MafB64,65, suggesting that these cells 
are not moDCs but rather monocyte-derived macrophages. Further-
more, others have shown little functional difference among moDCs, 
monocyte-derived macrophages, myeloid-derived suppressor cells, 
and immature monocytes8,66,67, also suggesting that in vivo moDCs 
may actually be monocyte-derived macrophages. In addition, no 
in vivo model has yet to be described where moDCs are required 
for cross-presentation. Lineage tracing of in vivo moDCs and com-
parisons to in vitro-derived GMDCs will be necessary to determine 
whether GM-CSF cultures are an appropriate model to study DC 
function. Owing to the observed differences between GMDCs and 
cDC1s, studies of cross-presentation in vitro should rely on either 
ex vivo cDCs or Flt3L-derived DCs to more appropriately model 
how cross-presentation occurs in vivo.

Cross-presentation during viral infections
Though cDC1s are the major cell that appears to carry out cross-
presentation for expanding CD8 T cells in vivo20, many cells are 
able to present antigens on MHCI to CD8 T cells68. Therefore, it 
is unclear whether cross-presentation is the only pathway used in 
priming CD8 T cells to pathogens, or alternately whether direct 
presentation by infected cells might contribute in some settings. 
Indeed, the cell type responsible for T cell priming and the pathway 
of antigen processing may vary with the pathogen and could depend 
on factors such as viral tropism and the time after infection69–71. For 
example, using DC-tropic vaccinia virus expressing an extended 
OVA peptide that could not be cross-presented, Xu et al. demon-
strated that direct presentation is sufficient for generating a CD8 
T cell response69. However, during infection with mouse cytome-
galovirus, another DC-tropic virus, the predominant T cell clones 
react to epitopes that were presented through cross-presentation70,71. 
It is likely that both direct and cross-presentation can contribute in 
priming CD8 T cell responses and that the predominant form of 
presentation may depend on the stage of infection. Early during 
infection, antigen presentation requires viral replication, suggesting 
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direct presentation is playing a role; however, late during  
infection most presentation occurs by uninfected DCs through 
cross-presentation72 (Figure 1). Imaging of T cells and cDC1s dur-
ing vaccinia virus infection showed a similar phenomenon and it 
was observed that multiple DC subsets could prime CD8 T cell 
responses early during infection; however, later in infection CD8 
T cells interacted with only XCR1-expressing cDC1s73. cDC1s are 
also essential for priming CD8 T cell responses during second-
ary infections and generating T resident memory cells, a process 
recently shown to depend on cross-presentation74,75.

In lymph nodes, cDC1s can be separated into two categories of 
migratory and resident DCs that are developmentally related76, 
either of which could be involved in the presentation of antigen to 
CD8 T cells during an infection. Tracking of migratory DCs from 
the skin during herpes simplex virus (HSV) infection has shown 
that CD8 T cell priming occurs in lymph nodes and movement of 
migratory DCs from the skin is required for priming to occur77. 

Then in the lymph node, antigens acquired by migratory DCs can 
be transferred to lymph-node-resident DCs for presentation to CD8 
T cells77 (Figure 1C). These results imply that there may be two 
distinct priming events: an initial priming from migratory cDC1s 
that directly captured antigen and then a secondary priming that 
occurs after antigen has been transferred to resident cDC1s. Imag-
ing of the anti-viral response to HSV suggested that CD4 T cells 
are primed before CD8 T cells and that they interact with migratory 
DCs, while CD8 T cells interact with resident cDC1s in the lymph 
node78. However, others have demonstrated that antigen-specific 
CD8 T cells preferentially interact with migratory cDC1s79,80. These 
results raise the question of whether all CD8 T cell priming occurs 
through migratory cDC1s, which are directly exposed to anti-
gens, or through resident cDC1s, which can present their antigens 
through either cross-presentation73,77 or cross-dressing, a process by 
which loaded MHCI is transferred between different cells81. Con-
ceivably, early CD8 and potentially CD4 T cell priming is mediated 
by direct presentation from migratory cDC1s, since they encounter 

Figure 1. Model for CD8 T cell priming by resident classical CD8α+ dendritic cells (cDC1s). (A) Antigen is captured by migratory cDC1s or 
CD11b+ cDCs (cDC2s) at the site of infection by either direct infection or phagocytosis. (B) After antigen capture, migratory cDC1s or cDC2s 
with antigen then migrate to the draining lymph node, where they prime naïve antigen-specific CD4 and possibly CD8 T cells through major 
histocompatibility (MHC):T cell receptor (TCR) interactions. (C) Migratory cDCs transfer antigens to resident cDC1s through either “cross-
dressing”, the process by which loaded MHCI is transferred between cell membranes, or by transferring the antigen itself, which is then taken 
up by the resident cDC1s for cross-presentation. (D) Resident cDC1s receive “help” through CD40:CD40L interactions with CD4 T cells, 
which allow them to prime antigen-specific naïve CD8 T cells through MHCI:TCR interactions. Mig-DC, migratory dendritic cell.
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antigen first, and then later CD8 T cell priming occurs after antigen 
transfer to and cross-presentation by lymph-node-resident cDC1s 
(Figure 1A and D).

CD4 T cells and cDC1s
For many pathogens, DCs alone are not enough to prime a CD8 
T cell response. CD4 T cells and type I interferons have been 
shown to be involved in the “help” reaction, which stimulates DCs 
and enables them to prime CD8 T cells82,83. Early work on cross- 
presentation showed that CD4 T cell help to DCs is necessary for 
the generation of a CD8 T cell response against cell-associated 
antigens82. This help is mediated through interactions between 
CD40 on DCs and CD40L on CD4 T cells84–86. These results describe 
a “bridge” model, where CD4 T cells and CD8 T cells interact 
with the same dendritic cell, albeit likely at different times, in order 
to properly prime a cytotoxic T cell response78,85. This suggests 
that CD4 T cells must be activated prior to CD8 T cells, likely by 
migratory cDCs, in order for them to act on cDC1s through CD40L 
to help induce CD8 T cell priming (Figure 1B and D).

Questions remain as to whether the interaction between cDC1s and 
CD4 T cells is antigen specific. Initial studies that showed that CD4 
T cell help for CD8 T cell priming required cognate CD4 T cell 
interactions82. However, later it was suggested that CD40 signal-
ing was sufficient to provide help, even when DCs lack MHCII85. 
In vitro analysis of presentation by DC subsets using antibody- 
targeted antigen implied that cDC1s were relatively poor in  
antigen presentation to CD4 T cells relative to cDC2s, while cDC2s 
were adept at activating CD4 T cells in vitro36,87. This leads to the 
question of whether cDC1s use MHCII presentation solely to 
obtain help from previously activated CD4 T cells for CD8 T cell 
priming or, alternatively, whether cDC1s can also prime naïve 
CD4 T cells. A recent study has shown that CD8 T cells cluster 
with cDC1s, while CD4 T cells cluster with cDC2s during OVA 
immunization88, suggesting that T cell priming may be DC-subset 
specific. However, late during viral infection both cDC1 and cDC2 
subsets have the capacity to activate CD4 T cells79. In addition, both 
CD4 and CD8 T cell priming against insulin in non-obese diabetic 
mice is decreased in the absence of cDC1s89. Since CD4 T cells 
were shown to be primed first by migratory DCs78, it is possible 
that migratory cDC1s prime the CD4 T cells that later help lymph- 
node-resident cDC1s induce CD8 T cell priming (Figure 1B 
and D). Further studies will be necessary to determine to what 
extent each DC subset contributes to T cell priming in different 
infection contexts.

Conclusion
cDC1s are the predominant cross-presenting cells functioning 
in CD8 T cell priming in vivo20. Recent imaging studies suggest 

that cDC1s also function as a platform for CD4 T cell help during 
viral infections74,78, likely through CD40–CD40L interactions84,85. 
However, it remains unclear whether cDC1s can also prime naive 
CD4 T cells or whether they receive only help from them36,79,82,89. 
More sophisticated in vivo models will need to be generated in 
order to determine the role of cDC1s in priming CD4 T cell 
responses in vivo in order to further distinguish the unique roles of 
DC subsets.

Transcriptional profiling has suggested that moDCs may not be a 
functional cross-presenting DC subset in vivo33 and at least in one 
setting may represent monocyte-derived macrophages65. Many 
molecules described previously to be involved in cross-presentation 
were evaluated in the context of GMDCs and need to be examined 
in the context of cDC1s41–45. Recent advances in DC biology have 
allowed for the conditional deletion of genes in cDC1s through 
the use of XCR1-cre90 and analysis of transcriptional differences 
between DC subsets91. Examining molecules described in moDCs 
also in cDC1s and studying other cDC1-specific genes will aid 
in our understanding of how cross-presentation against viral and 
cancer antigens occurs and may provide more insight into whether 
moDCs are a true DC subset in vivo. Elucidating the mecha-
nisms by which cDC1s activate CD8 T cells and the mechanisms 
underlying the various interactions between DC subsets and T cells 
should be of value in designing DC-based cancer vaccines.
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