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Abstract

The ability to predict seizures may enable patients with epilepsy to better manage their 

medications and activities, potentially reducing side effects and improving quality of life. 

Forecasting epileptic seizures remains a challenging problem, but machine learning methods using 

intracranial electroencephalographic (iEEG) measures have shown promise. A machine-learning-

based pipeline was developed to process iEEG recordings and generate seizure warnings. Results 

support the ability to forecast seizures at rates greater than a Poisson random predictor for all 

feature sets and machine learning algorithms tested. In addition, subject-specific 

neurophysiological changes in multiple features are reported preceding lead seizures, providing 

evidence supporting the existence of a distinct and identifiable preictal state.
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1. Introduction

Epilepsy affects 0.5–1% of the world’s population1 and is characterized by recurrent, 

spontaneous seizures. Anti-epileptic medications are effective in many cases, but in 20–40% 

of cases they do not eliminate seizures2. Resective surgery3 and neurostimulation4,5 can be 

effective treatments if medications fail, but for many patients seizures persist despite these 

procedures. Further, a significant aspect of epilepsy-related disability beyond the occurrence 

of the seizures is their unpredictability6–8. One consequence is that patients taking 

medication typically do so daily, and incur considerable side effects to prevent a condition 

that may happen only a few times per year2,9,10. During initialization of treatment with anti-

epileptic drugs, systemic toxicity causes treatment failure as often as lack of efficacy in 

controlling seizures11. So, the ability to reliably forecast seizures may not only have 

therapeutic benefits, it might also permit patients to manage their daily activities and 
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medications to minimize what might otherwise be a significant side-effect profile12. In 

addition, a closed-loop seizure forecasting system capable of neurostimulation during 

preseizure warnings could abort seizures before they begin by altering the preseizure 

neurodynamics underlying the brain’s seizure-prone state.

Prior reports of seizure forecasting approaches follow a similar hypothesis and sequence of 

data processing methods13–16: The fundamental hypothesis tested is that there exists a 

preictal (pre-seizure) state associated with an increased probability of seizure occurrence 

that can be distinguished from brain state(s) with low probability of seizure occurrence 

(interictal). Measurements of brain state are derived from some physiological signal (e.g., 

scalp EEG, intracranial (iEEG), functional MRI, or other modalities). Features are extracted 

from the brain state measurement to characterize the important pre-seizure changes in the 

underlying signals. These features are used with a labeled set of training data to create a 

predictive model of the brain’s state changes before a seizure event. The accuracy of the 

predictive model is estimated using cross validation against a portion of the labeled training 

data, reserved for testing17. If the accuracy estimated from cross validation is adequate, the 

predictive algorithm can be applied to new data, and ultimately in real time as the data is 

acquired18. Prior studies suggest that the characteristics and timing of the preictal brain state 

are subject-dependent19 and may require retraining of the predictive algorithm for every 

subject. Moreover, some measures of the brain state change over time20. This suggests that 

predictive algorithms may need to be revised periodically to maintain their accuracy, and 

that the ability of signal-acquisition components (e.g., electrodes) to faithfully detect 

neurophysiologic data also changes over time.

While prior studies have demonstrated the effectiveness of machine learning methods at 

forecasting seizures12,16,18,19, progress has been limited by the lack of high-quality, open-

access recordings allowing direct comparison of different feature sets and algorithms21. In 

addition, the exact nature and characteristics of the changes in the iEEG signal that precede 

seizures remain unclear. Understanding these dynamics would assist in selection of 

predictive features for seizure forecasting and may provide clues to the physiological 

processes that generate seizures.

This study investigates the dynamics of the pre-seizure state and describes the development 

of a processing pipeline for seizure forecasting. Three features were evaluated for observable 

preictal changes and compared with the performance of cross frequency coupling reported 

by Alvarado-Rojas, C., et al22. The results are assessed and validated using open-access 

iEEG recordings from canines with naturally occurring epilepsy (see https://www.ieeg.org/ 

and http://msel.mayo.edu). The relative contributions of different feature sets, preprocessing 

methods, and predictive modeling approaches are described and assessed. The machine 

learning based pipeline was able to predict seizures, using a 90-minute prediction window, 

with an average Area Under ROC curve 0.83±0.07. The investigation on pre-seizure 

dynamics provided evidence supporting the existence of a distinct and identifiable preictal 

state.
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2. Subjects and Methods

Approval of the Institutional Animal Care and Use Committee (IACUC) at Mayo Clinic, the 

University of Minnesota, and University of Pennsylvania were obtained for acquisition of 

the data analyzed in this paper.

2.1. Subjects

The NeuroVista Seizure Advisory System23,24 was implanted in eight canine subjects with 

naturally occurring epilepsy and spontaneous seizures. The dogs were housed in the 

University of Minnesota and University of Pennsylvania veterinary clinics. The subjects 

were continuously monitored with video and iEEG. Anti-epileptic medications were 

provided as needed to the dogs during this study. Five dogs had an adequate number of 

seizures and length of interictal recordings for algorithm training and testing (Table 1), and 

data from these five dogs was used for analysis (Table 1).

2.2. Device

The NeuroVista system is pictured in Figure 1. The NeuroVista Seizure Advisory System 

(Figure 1) was used to acquire continuous iEEG recordings over multiple months from 

freely behaving canines23,24. The system consists of (1) an Implantable Lead Assembly 

(ILA), (2) an Implantable Telemetry Unit (ITU); and (3) an external Personal Advisory 

Device (PAD), which is contained in a vest worn by the canine. The iEEG signals are 

recorded from the ILA contacts, filtered, amplified, and digitized (sampling rate 400 Hz) 

within the ITU and then wirelessly transmitted to the external PAD device. The ITU is 

charged daily for approximately an hour via an external inductive charging device. The PAD 

collected continuous iEEG data wirelessly from the ITU and stored data on removable flash 

media. The PAD has the capability to run embedded seizure detection algorithms, and to 

provide seizure warnings via a wireless data link and audible alarms24, but this capability 

was not used in the present study.

3. Data

3.1. Acquisition

Sixteen-channel iEEG recordings sampled at 400 Hz were wirelessly transmitted to the 

PAD, stored on a flash memory card, and regularly uploaded to shared, central, cloud-based 

servers. A high sensitivity automated seizure detector was used to detect seizure-like 

events25. Candidate iEEG detections were visually reviewed, and a synchronized recorded 

video was reviewed to verify and identify clinical and subclinical seizures. Intracranial EEG 

data from this study are freely available from Mayo Clinic (http://msel.mayo.edu/data.html) 

and the iEEG portal (https://www.ieeg.org/).

3.2. Data Preprocessing

Wireless telemetry between the ITU and PAD was prone to interference and short data 

dropouts. Data loss could also occur due to changing removable storage, battery failure in 

the recording device, and occasional equipment maintenance. Because of these factors, the 

recorded iEEG data exhibits occasional gaps, which appear as discontinuities in the 
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recording. Figure 2 shows a recording with discontinuities and groupings of seizures. 

Seizures tend to occur in clusters clinically26, and prediction of lead seizures is a more 

meaningful clinical problem. In addition, restricting analysis to lead seizures prevents 

postictal phenomena from contaminating the preictal iEEG data. Seizures that were not 

preceded by another seizure in the 4 preceding hours were considered as lead seizures. 

Seizures that had a recording gap greater than 5 minutes during the preceding four hours 

were not counted as lead seizures to allow for the possibility that the discontinuity could 

contain a seizure. The proportion of recorded seizures that qualified as lead seizures is listed 

in Table 1.

Due to the large number of brief discontinuities, data gaps less than 20 seconds in duration 

were ignored and processed along with continuous data segments. Data discontinuities 

longer than 20 seconds were flagged, and analysis segments were chosen to avoid these 

gaps. The iEEG recording was classified into four categories (Figure 3) or phases: 1) the 

ictal period, representing recorded seizure activity of variable duration, 2) the postictal 

period, characterized by synchronous slow-wave activity following termination of the 

seizure, 3) the interictal period, which represents normal baseline activity, and 4) the preictal 

period, which represents a seizure-prone state, from which seizures are likely to arise. In this 

study we restricted the interictal iEEG periods to be a minimum of 1 week removed from 

marked seizures.

This very conservative standard was used to ensure the interictal training data truly 

represented baseline data and had the minimum possible chance of contamination with any 

type of pre-ictal effects. In addition, seizures occurring less than 4 hours apart from one 

another were excluded to minimize the potential for contamination of the preictal iEEG data 

by lingering subtle postictal characteristics. To ensure seizure forecasting rather than early 

detection of seizures and to allow for possible subtle ictal changes undetected by the expert 

reviewer, a 5-minute forecast horizon was used. The seizure warning had to occur at least 5 

minutes before seizure onset to be counted as a valid forecast. This horizon may also enable 

fast-acting interventions (medications or neurostimulation) to forestall seizures in a real 

world application.

The raw iEEG data was transformed into derived features that may be relevant to pre-seizure 

activity. These features were computed on the iEEG of the interictal and preictal data for 

each 1-minute data window. Prior studies have shown some ability to forecast seizures using 

univariate spectral power in band (PIB) features14,16, and bivariate channel synchrony 

measures13,19. To analyze these classes of features, we have calculated PIB features, as well 

as time domain correlations (TMCO) and spectral coherence (SPCO) between different pairs 

of channels. The data segments were divided into non-overlapping, one-minute analysis 

windows. Each of these segments contained one minute of iEEG recording across all 16 

recorded channels. The PIB, TMCO, and SPCO features were evaluated for each one-minute 

data segment.

PIB features were calculated for each channel, as power in each 1-Hz frequency band from 

0–50 Hz, power in 5-Hz bands in 50–100 Hz, and power in 10-Hz bands between 100–180 

Hz. The higher resolution used in calculating the powers in the lower part of the spectrum 
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reflects the power law in EEG27. Power of the signal within a frequency range [f1 – f2], Pr is 

obtained from Equation 3.1, where X is the Discrete Fourier Transformation (DFT) of the 

time domain iEEG segment.

(3.1)

This produced 69 features for each channel and therefore 1104 features for a one-minute 

analysis window.

TMCO features were calculated as the linear absolute correlation coefficient between 

different pairs of channels in a one-minute clip. TMCO features were calculated for each 

distinct pair of the 16 channels, producing 120 TMCO features for each one-minute clip.

SPCO features were calculated as the magnitude squared coherence between different pairs 

of channels in a one-minute clip. The coherence function (at frequency w) of two signals x 
and y is given by Equation 3.4.

(3.1)

where Pxx, Pyy are power spectral densities of x, y and Pxy is the cross power spectral 

density of x and y. For a Fourier domain signal of N discrete frequencies, since only real 

frequencies are considered including DC (0Hz), a PSD of length N/2 + 1 is obtained. Since 

PSDs are length of N/2 + 1, spectral coherence also has a length of N/2 + 1. Magnitude 

squared coherences of pairs of channels at each real frequency is taken as the SPCO 

features.

We considered the adjacent pairs, vertical pairs, and left-right pairs (Figure 1, ILA) 

producing 28 pairings of electrodes. The DFT was taken with 128 points, and frequencies 

above the Nyquist limit were discarded, producing a 65-point spectrum and 1820 SPCO 

features per one-minute analysis window.

4. Prediction Algorithms

For the purpose of analyzing the iEEG data in a sequential and structured fashion, the 

various processing steps were incorporated into a seizure prediction pipeline with 

interchangeable algorithms at each step (Figure 4). The pipeline consists of four distinct 

steps: feature extraction, dimensionality reduction, a machine learning classifier, and 

forecasting and assessment. The four components are implemented modularly in MATLAB 

so that different techniques can be employed at each step to individually assess each 

component’s contribution to overall performance. The software was developed using 

MATLAB version 2014a and the machine learning components were implemented using 

MATLAB’s packages.
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4.1. Feature Extraction

For each one-minute analysis window, the features PIB, TMCO and SPCO were extracted as 

explained in section 3. As a result, each one-minute clip had an 1104 dimensional power-in-

band feature vector, a 120-dimensional time-correlation feature vector, and an 1820 

dimensional spectral coherence feature vector.

4.2. Dimensionality Reduction

The dimensionality reduction (DR) block took the features extracted by the feature 

extraction block as input and produced a set of features with reduced dimensionality. 

Dimensionality reduction decreases the size of the feature set while maintaining useful 

information. It reduces computational time for model training, and may improve overall 

performance by reducing over-fitting by the ML algorithm. Two widely used DR techniques 

were investigated and compared to simple averaging of adjacent features, and model training 

without DR. Principal component analysis (PCA) is an unsupervised dimensionality 

reduction technique28 that reduces the dimension of the data by finding orthogonal linear 

combinations of the original variables accounting for the largest variance in the data. Partial 

least squares (PLS) regression is a supervised dimensionality reduction technique that finds 

constituents in the feature set that contribute to the discriminability of the different classes29.

In contrast to PCA, PLS regression identifies components from the features that are relevant 

to the different classes as linear combinations of those components. Specifically, PLS 

regression performs a simultaneous decomposition of the features and the classes with the 

requirement that the components explain the covariance between the features and the classes 

as much as possible. This is followed by a regression step where this decomposition is used 

to predict the classes.

In all trials, the dimensionality of the reduced dataset was kept constant at 50 coefficients, 

maintaining approximately 90% of the variance of the original data. This was kept constant 

over all trials to maintain a consistent comparison between techniques. For comparison the 

ML algorithms were also trained on the full feature set with no DR, and a set of features 

computed by summing every 4 adjacent features (e.g. summing every 4 frequency bins in 

PIB). The full PIB and SPCO feature sets overran Matlab’s memory buffers, and we trained 

on every 50th interictal sample. Computational time required for model training was 

measured for each DR method.

4.3. Machine Learning

The machine-learning block took a set of training features, corresponding labels, and a set of 

test features as inputs. It applied a machine learning algorithm to produce the labels and 

likelihood probabilities of the given test features. This block was implemented using three 

different ML techniques used successfully in a recent online seizure prediction competition 

(Brinkmann et. al., in review): Support Vector Machine30 (SVM), Artificial Neural 

Networks31 (ANN) and Random Forests Classifier32 (RFC). Box constraint and 

misclassification costs for SVM, number of neurons, number of layers, misclassification 

costs for ANN, input fraction used for training, and misclassification costs for RFC were 
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chosen by tuning on a subset of the labeled training data and achieving the best classifier 

performance for each subject.

4.4. Forecast Assessment

The forecast assessment block generated seizure warnings and quantified the accuracy of 

prediction. The seizure-forecasting algorithm generates a seizure warning when the ML 

algorithm’s preictal likelihood probability exceeds a defined seizure risk threshold. In the 

present study the seizure risk threshold was varied to create a receiver operator characteristic 

(ROC) curve for assessment, but in an implanted device this threshold could be tuned to 

optimize the balance between false positive and false negative warnings for a patient’s 

particular situation or preference. Once triggered, the seizure warning persisted for 90 

minutes in the present study, to provide direct comparison with prior results. The total time 

in warning state was used as a measure of false negative rate in this study. This is a stringent 

measure, as a perfect seizure predictor could have up to 90 minutes of warning preceding 

each seizure. However this is consistent with our prior work, and it fundamentally addresses 

the effectiveness of a seizure-forecasting device while avoiding assumptions about 

sequential warnings and choice of warning duration.

The preictal state represents a period of increased seizure probability, and seizures could 

occur at any time during the warning period. If a seizure does not occur at some point during 

the warning period the warning is counted as a false positive forecast. If a seizure warning 

was not generated less than five minutes before a seizure, it is counted as a false negative.

Statistical significance of the seizure forecasting algorithm’s performance was evaluated 

against a random Poisson-process chance prediction profile, as described by Snyder et al.33. 

The Poisson-process model computes p-values using identical warning duration time, 

warning persistence rules, and forecasting horizon as the candidate algorithm. A forecasting 

algorithm must perform significantly (p<0.05) better than a matched chance predictor to be 

considered capable of seizure forecasting. The assessment block computes several metrics, 

including the fraction of the lead seizures that were correctly predicted (lead sensitivity), the 

fraction of the total time spent in seizure warnings (time in warning), and the p-value 

measure for the forecasting algorithm.

The overall computational flow of the forecasting pipeline was run using a top-level wrapper 

(Fig. 5) that controlled which features were calculated, the dimensionality reduction method 

used, and the machine-learning algorithm selected, which returns the algorithm assessment. 

The final results are determined by a five-fold cross-validation applied with shuffling to 

equalize the proportion of preictal and interictal points in each cross-validation fold. Two-

thirds of the one-minute windows were chosen randomly for training, while the remaining 

one-third were used for testing and assessment with each iteration. This produced 5 

randomly overlapping training and test sets. Performance for each combination of features, 

dimensionality reduction, and machine learning algorithm is reported as the mean and 

standard deviation area under the ROC curve (AUC) for the five cross-validation folds. 

While sensitivity (Sn) and specificity (Sp) are practical metrics, these measures assume a 

specific operating point on the ROC curve. We report sensitivity at 75% specificity so as to 

compare the predictability at a consistent operating point, but in a real seizure forecasting 

Varatharajah et al. Page 7

Int J Neural Syst. Author manuscript; available in PMC 2017 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



device the operating point would be chosen by the patient and physician to provide the 

greatest possible benefit to the patient.

5. Results

Figure 6 shows the forecasting results using different features and analytical methods. AUC- 

metrics for lead seizures for each combination of techniques were averaged over all the 

canines to produce the means (μ) and standard errors (SE) listed in Figure 6 (A). The 

number of canines for which a given combination of features and methods generated a 

forecasting method with p<0.05, and the sensitivity of the algorithm at 75% specificity are 

reported in Figure 6 (B) and Figure 6 (C) respectively. The performances of the two DR 

techniques are compared against (i) not using any DR techniques and (ii) using a less 

complex DR technique (denoted as ‘SUM’ in the legends). When using PCA and PLS, the 

dimensionality of the features were reduced such that 95% of the variance was kept in the 

data. SUM method was implemented by adding adjacent k features together. The value k 

was chosen as 5 for PIB and 6 for SPCO. TMCO features were used as they were because of 

its low dimensionality.

Table 2 lists the measured running times for model training of each ML classifier used in the 

prediction framework. These running times were generated for the largest feature set (SPCO 

features of Subject 3) among all. The mean values and standard errors (SE) were calculated 

by averaging the running times over 5 cross-validations.

6. Discussion

6.1. Algorithm Performance

While the SVM algorithm with PIB features had the highest mean AUC, the RF algorithm 

may have generalized better, achieving forecasting greater than a chance predictor in all five 

canines studied. The ANN learning algorithm did not perform as well as the SVM and RF 

algorithms in any trial, suggesting it may not be as accurate or robust as the other methods. 

The simple sum DR method and full feature set gave the best performance for all features 

and ML algorithms The DR methods reduced the feature space and algorithm training time, 

but in many trials PCA and PLS degraded performance somewhat.

Overall the PLS DR technique and neural network ML algorithm performed poorly 

compared to other techniques in many trials, suggesting these methods could be eliminated 

in future explorations. Good performance was obtained for all feature sets studied, 

suggesting preictal changes may be present and identifiable in all three feature sets.

6.2. Preictal and Postictal Data Characteristics

These results suggest that machine learning algorithms can identify subtle changes in iEEG-

derived features preceding seizures. It may be possible to analyze and derive specifically 

what changes are occurring prior to a seizure for each subject, and this information could 

help us better understand the physiological changes underlying ictogenesis. Identifying the 

changes in the iEEG data during the transition from the interictal baseline to a preictal, 

seizure-permissive state is complicated by the fact that the exact timing of this transition is 

Varatharajah et al. Page 8

Int J Neural Syst. Author manuscript; available in PMC 2017 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unknown. Prior seizure forecasting studies have analyzed data between 30 and 90 minutes 

preceding seizure onset. In this context, the analysis in this paper was begun 120 minutes 

before the seizure to ensure adequate coverage of the preictal period. Similarly, the duration 

of postictal effects following seizure termination is variable, and subtle effects may persist 

beyond visible changes in the iEEG. Two hours post seizure was also analyzed, as this 

extends beyond published postictal studies34.

For each one-minute analysis window, PCA was applied to the 1109 PIB features, 120 

TMCO features and 1820 SPCO features, and the first 10 PCs were computed for each 

feature group. To quantify the 10 PCs as a single numerical value, the sum of the squared 

(squared L2 norm) 10 PCs was calculated. The means and variances of the numerical 

measures were calculated considering all the lead seizure data segments for each specific 

subject. In addition, we reviewed cross-frequency coupling22 as a potential indicator of 

preictal activity. Mean power in the (30–55 Hz) and high gamma (65–100 Hz) ranges was 

correlated to the phase envelope of the signal in the 1–20 Hz range. The mean and variance 

of these correlations were plotted over the 120-minute preictal and postictal ranges. These 

data plots are presented for each of the five canines studied individually in Figure 6(a)–(e).

Postictal changes in the mean and variance of multiple measures were observable in most of 

the canine data, and the duration of these changes appeared to be specific to each canine 

subject. Preictal changes in the mean and variance of these metrics were observed in many 

of the canine subjects and preceded the seizure (where present) by 10–60 minutes. In some 

cases, preictal changes appeared only in the variance envelope of the metric, while the mean 

appeared unchanged. While this is perhaps not as instructive or practically useful for seizure 

forecasting as cases in which the mean value deviates (e.g., Dog 6), it does represent a 

change in the underlying iEEG features and may indicate the timing of a physiological 

preictal change. Of note, however, is that no specific feature was predictive in all dogs. This 

is not unexpected, as physiologic aspects of each dog’s seizure onset, seizure type, and 

seizure etiology are not the same. In human patients, this pathophysiologic heterogeneity 

would also be present, possibly to a greater extent. This fact necessitates certain engineering 

considerations for any future seizure-prediction device based on the paradigm presented in 

this report. An iterative machine learning approach would need to be used on a patient-by-

patient basis and would need to use a combination of features, dimensionality reduction 

techniques, and machine learning paradigms that proved robust in trials such as those 

presented here. It would also be necessary to retrain the algorithms and reevaluate 

performance over time. This is because impedance changes occur at electrodes, 

neuroplasticity takes place, medication adjustments occur, and epileptogenic boundaries 

change over time.35

7. Conclusions

These results demonstrate changes in multiple of iEEG features prior to seizures and support 

the hypothesis of a distinct, measurable, preictal (pre-seizure) state that has an increased 

probability of seizure occurrence. All sets of features, dimensionality reduction, and 

machine learning techniques investigated showed some capability to forecast seizures, but 

SVM and RF machine learning classifiers performed consistently better than ANN. All 
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feature sets tested produced forecasting results greater than chance in all five canines studied 

with some combination of dimensionality reduction and machine learning algorithms. 

Preictal changes in mean and variance PIB, TMCO, and SPCO metrics as well as low 

gamma (30–55 Hz) and high gamma (65–100 Hz) were observed in multiple canines and 

occurred as early as 40 minutes before seizures (Figure 7). These results may provide insight 

into the timing and duration of the underlying physiological changes that lead to seizures.
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Fig. 1. 
Seizure Advisory System (SAS) in Canines with Epilepsy. The implantable device for 

recording and storing continuous iEEG includes the Implantable Lead Assembly (ILA) 

consisting of four subdural electrode strips. The Implantable Telemetry Unit (ITU) is 

implanted beneath the dog’s shoulder and connected to the ILA. The system acquires 16 

channels of iEEG and wirelessly transmits the data to the receiver.
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Fig. 2. 
iEEG Recording with Discontinuities. Mean energy in the low frequency band illustrates 

occasional gaps, or discontinuities in the recorded data from device signal dropout. Seizures 

are marked by vertical red lines, and the expanded view shows a grouping of seizures over 

approximately 60 hours. Post-surgical changes in the data were noted in the first 70 days 

post surgery in all the recordings, and these regions were excluded from analysis.
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Fig. 3. 
Interictal, Preictal, and Postictal Periods in Canine iEEG Recording. Interictal segments are 

taken at least one week prior to a seizure event. Interictal periods are treated as baseline. 

Preictal periods are the periods of time prior to a seizure, with a 5-minute horizon used as a 

test of validity. The ictal (seizure) period (marked in red) has a variable length, while the 

postictal period is characterized by synchronous slow-wave activity following termination of 

the seizure.
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Fig. 4. 
Predictive Pipeline Top-Level Flow Diagram. Feature Extraction from iEEG dealt with 

resolving Power in Band (PIB), Time Correlation (TMCO), Spectral Coherence (SPCO). 

Dimensionality Reduction was performed with PCA or PLS. Machine Learning Classifier 

analysis involved Artificial Neural Network (ANN), Support Vector Machine (SVM), and 

Random Forest Classifier (RFC). Forecasting was evaluated by traditional statistical means.
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Fig. 5. 
Seizure Forecasting Overview. The seizure forecasting workflow extracts features from the 

iEEG data and applies a dimensionality reduction technique to reduce the feature space for 

both training and testing data. For training, the labeled features are used to train a machine 

learning classifier, or predictor, which is used to classify the unlabeled testing data. 

Following classification of the testing data, performance is estimated and compared to a 

random predictor.
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Fig. 6. 
Forecasting AUC (A), Sensitivity and specificity (B), and per canine statistical significance 

(C) comparing the learning algorithms, features, and dimensionality reduction algorithms 

investigated.
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Fig. 7. 
of PIB, TMCO, SPCO, and CFC Low-Gamma and High-Gamma are shown for A. Dog 1, B. 

Dog 3, C. Dog 4, D. Dog 6, and E. Dog 7 for two hours before and two hours after lead 

seizures. The red line indicates seizure onset; The mean across all seizures is plotted in blue, 

while the variance is shown in pink. In nearly every case, ictal changes occurred in mean and 

variance. Depending on the feature and dimensionality reduction combination, mean and/or 

variance changes occurred preictally and postictally.
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Table 2

Training time of each ML classifier for different DR methods

ML Time for model training (in seconds) – mean (SE)

No DR Sum PCA PLS

SVM 115.4
(4.2)

1132.27
(104.8)

74.8
(20.7)

1053.420
(58.6)

RFC 3.0
(0.06)

1.6
(0.3)

1.4
(0.01)

1.5
(0.05)

NN 41.9
(0.04)

22.9
(0.05)

20.2
(0.09)

18.9
(0.03)
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