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Transcription factors (TFs) are essential regulators of gene expression, and mutated TF genes have been shown to
cause numerous human genetic diseases. Yet to date, no single, comprehensive database of human TFs exists. In this
work, we describe the collection of an essentially complete set of TF genes from one depiction of the human
ORFeome, and the design of a microarray to interrogate their expression. Taking 1468 known TFs from TRANSFAC,
InterPro, and FlyBase, we used this seed set to search the ScriptSure human transcriptome database for additional
genes. ScriptSure’s genome-anchored transcript clusters allowed us to work with a nonredundant high-quality
representation of the human transcriptome. We used a high-stringency similarity search by using BLASTN, and a
protein motif search of the human ORFeome by using hidden Markov models of DNA-binding domains known to
occur exclusively or primarily in TFs. Four hundred ninety-four additional TF genes were identified in the overlap
between the two searches, bringing our estimate of the total number of human TFs to 1962. Zinc finger genes are by
far the most abundant family (762 members), followed by homeobox (199 members) and basic helix-loop-helix genes
(117 members). We designed a microarray of 50-mer oligonucleotide probes targeted to a unique region of the
coding sequence of each gene. We have successfully used this microarray to interrogate TF gene expression in species
as diverse as chickens and mice, as well as in humans.

[Supplemental material is available online at www.genome.org.]

Transcription factors (TFs) constitute a large and diverse group of
regulatory proteins that, in the typical case, bind to DNA rela-
tively close to a target gene to activate or repress its transcription.
Gene regulation via TF binding is the primary mechanism by
which complex processes of development and differentiation are
controlled. In a recent review of 144 human developmental dis-
orders in which the function of the causative gene had been
identified, 49 (34%) were due to mutated TF genes, a number
nearly double that of the next largest class (Boyadiev and Jabs
2000). The activity of TFs that are developmental regulators is
commonly controlled at the level of mRNA synthesis (Semenza
1998). In contrast, many of the TFs that regulate physiological
targets are constitutively present, and their activity is determined
by posttranslational modifications such as phosphorylation (Se-
menza 1998; Brivanlou and Darnell 2002). Nevertheless, some of
these latter classes of TFs have also been found to be develop-
mentally regulated at the transcriptional level (Ranger et al 1998;
Crabtree 1999).

There are two major types of TFs in eukaryotes. The first are
those that participate in the ordered assembly of RNA polymerase
II transcription-initiation complexes, which include the general
TFs, coactivators, corepressors, and chromatin and histone modi-
fiers. The second type are those that activate or repress the trans
cription of particular genes directly by binding to characteristic
regulatory sites (for reviews, see Lemon and Tjian 2000; Brivan-
lou and Darnell 2002). The groups that sequenced the human
genome estimated that there are between two and three thou-
sand TFs in the human genome (International Human Genome
Sequencing Consortium 2001; Venter et al. 2001). However, this

was only an estimate, and to date, no study has cataloged the
entire TF gene content of man.

In the current report, we sought to identify the vast majority
of human TFs with the intention of using this collection of se-
quences to design a more comprehensive microarray than is cur-
rently available for expression profiling this important set of
regulatory genes. Furthermore, by designing oligonucleotide
probes from the coding regions of these genes, we sought to use
this same array to study TF expression in closely related organ-
isms, such as mouse and chicken.

RESULTS
The initial informatics component of this study consisted of two
steps: collecting a set of known human TFs (a seed set) and then
using that seed set to search for additional uncharacterized TFs in
the human transcriptome and ORFeome as defined by the Script-
Sure collection of genome-nucleated expressed sequence tags
(ESTs).

Known Human TFs
Figure 1 shows our strategy for building a set of known human
TFs. We gathered known genes from three sources: TRANSFAC
(http://www.gene-regulation.com; Wingender et al. 2000), Inter-
Pro (http://www.ebi.ac.uk/interpro/; Apweiler et al. 2001), and
FlyBase (FlyBase Consortium 1999). TRANSFAC was chosen as a
starting point because it is a pre-existing database devoted to the
listing and binding characteristics of numerous TFs. The freely
available version of TRANSFAC contained records for 479 human
TF genes. InterPro was searched for human proteins that met the
Gene Ontology (GO; http://www.geneontology.org) project defi-
nition of a TF (The Gene Ontology Consortium 2000). This re-
sulted in the identification of 852 InterPro entries. We next
turned to a well-studied organism with a fully sequenced genome
that had been annotated with GO identifiers. At the time this
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work was performed, the human genome and the GO annota-
tions of it were incomplete. The best available GO-annotated
eukaryotic genome was Drosophila melanogaster, as represented
in FlyBase (http:///flybase.bio.indiana.edu/). FlyBase contained
932 genes annotated as encoding TFs. For most of these, FlyBase
listed human orthologs, and those it omitted were obtained via
Homologene (Zhang et al. 2000).

Genes gathered from the three sources were merged into
one list, and redundancies were eliminated. In some cases, not
every member of a known TF gene family was present in the
nonredundant set. For example, LocusLink lists eight known hu-
man members of the chromobox gene family (CBX1–8), but we
identified only three of these from TRANSFAC, InterPro, and Fly-
Base combined. In this case we manually added the five missing
CBX genes to our initial list. At this stage we also eliminated core
components of RNA and DNA polymerases from our seed set,
because these are ubiquitously and highly expressed. The result-
ing nonredundant seed set of human TF genes contained 1468
members.

Identifying Homologous Transcript Clusters
To identify more potential TF genes, we searched the ScriptSure
transcript database (http://sapiens.wustl.edu/ScriptSure; J. Glass-
cock and W. Gish, in prep.). ScriptSure is a database of genome-
anchored human transcript clusters (ESTs, mRNAs, and RefSeqs).
ScriptSure clusters were built by using the genomic DNA se-
quence as a scaffold onto which transcripts were then aligned.
Contaminants such as chimeric sequences and incorrect submis-
sions were thus filtered out when they failed to correctly align to
the genomic sequence. After passing strict criteria of minimum
length and similarity to the genome, each EST was assigned to
the locus with the highest scoring alignment in the genome,
thereby reducing cases in which highly similar but distinct se-
quences merged into a single cluster. Overlapping EST-to-genome
alignments created a genome-anchored transcript cluster. The
underlying high-quality genomic sequence was used as the clus-
ter consensus. These factors translate into a database that is less
redundant, less contaminated, and composed of higher-quality
sequence than are other available databases. We chose to search
only the ScriptSure clusters that were annotated as spliced with
multiple underlying transcripts to eliminate the spurious identi-
fication of processed pseudogenes (frequent for TFs in the human
genome; Harrison et al. 2002; Zhang et al. 2003) and to eliminate
rare and possibly spurious transcription events. Although this
step ensures a high-quality data set, it will also inevitably result
in a failure to identify any TFs that are encoded by single-exon
genes, or TFs that are only rarely represented in the EST databases
(for more on these points, see Discussion).

We were able to match 1361 of our 1468 TF sequences with
ScriptSure clusters (92.7%). Thus, we failed to identify 107 genes
out of our seed set within ScriptSure. This occurred because the
version of ScriptSure we used was built on a draft genome assem-
bly (International Human Genome Sequencing Consortium 2001)
in which there were still gaps. However, this number is useful,
because it provides us with an estimate of the rate of false nega-
tives in our overall BLASTN analysis (7.3%).

Two methods of searching ScriptSure were used: a high-
stringency BLASTN (http://blast.wustl.edu) of ScriptSure with
each seed TF, and a query of each ScriptSure transcript, concep-
tually translated, against a collection of TF DNA-binding hidden
Markov models (HMMs) extracted from Pfam (Fig. 2). We rea-
soned that the combination of these two approaches would pro-
vide a balance between sensitivity and specificity. The BLASTN
search alone would yield false positives, and requiring each can-
didate to have a TF’s DNA-binding domain would alleviate that
problem. The conservative combination of these two search
methods will, however, result in some false negatives (discussed
below) and an overall slight underestimate of the total TF gene
content.

A repeat-masked version of the 1468 TF seed sequences was
used as a BLASTN query against the complete ScriptSure database.
The query identified 5130 potential new TF candidate clusters
that met our criteria. The bit score cutoff used in the analysis was
determined from our analysis of a bit score distribution of HOX
gene family members (see Methods). We next filtered out clusters
that contained no introns (possible spurious alignments to pro-
cessed pseudogenes) and clusters that were represented by only
one or two aligned ESTs. The number of newly identified clusters
that passed through this filter was 3338.

Further Selection Through TF Pfam Signatures
We were concerned that our ScriptSure BLASTN searches would
yield false positives from homologies within conserved domains
that are not TF-specific, such as protein–protein interaction do-
mains. Therefore, we sought to select the clusters that contained
bona fide TF protein motifs. The database used in this analysis
was a subset of Pfam, containing DNA-binding domains found
in TF genes (see Methods). We searched the entire set of
“Spliced � Multiple” ScriptSure clusters (i.e., >22,000 clusters and
not just the 3338 clusters identified by BLASTN) for Pfam TF
DNA-binding motifs and found 3748 clusters that contained at
least one TF protein motif. These clusters included 1236 out of
the 1369 seed set present in ScriptSure, indicating that this Pfam
method has a false-negative rate of ∼10%. Therefore, the Pfam
search identified 2512 new putative TFs. Because the HMM used
in our Pfam search used a relatively low cutoff for motif similari-
ties, we expected to also detect false positives by this route. To

Figure 1 Creation of the seed set. Known TF genes were gathered from
three databases: TRANSFAC, InterPro, and FlyBase. Each gene was manu-
ally confirmed to be described as a TF in the literature or annotated as a
TF in LocusLink. After removing redundancies and adding some known
TFs that were not present in our source databases, our seed set of human
TFs contained 1468 members.

Figure 2 Search for paralogous TFs. By using the seed set of 1468
known human TF genes, we searched ScriptSure, a representation of the
human transcriptome, using two methods: a high-stringency BLASTN
search and an hmmpfam search for DNA-binding domains known to
occur exclusively or primarily in TFs. The BLASTN search netted 3338
additional potential TFs, the domain search 2512. There were 494 genes
that were found with both search methods; these 494 comprise the
“found” set of human TF genes.

Messina et al.

2042 Genome Research
www.genome.org



remove these and the BLASTN false posi-
tives, we tested for overlaps between the re-
sults from the two search methods. The
overlap between the 3338 BLASTN clusters
and the 2512 Pfam clusters comprised 494
clusters (Fig. 2). These 494 newfound clus-
ters, plus the 1468 seed set constituted a to-
tal of 1962 potential TF gene sequences. In-
terestingly, when all of the ESTs comprising
the 1962 potential TF sequences were com-
pared with all spliced EST clusters from
ScriptSure, we found that the medians of
the two distributions were significantly dif-
ferent. The putative TF set had a threefold
higher level of alternative splice forms
when compared with the non-TF set, sug-
gesting that extensive potential isoform di-
versity may be encoded by this set as a
whole. These genes and their accession
numbers are listed in the online Supple-
mental material.

Genomic Localizations of TF Genes
Tight clustering of genes is sometimes in-
dicative of coregulated gene expression
(Boutanaev et al. 2002; Lercher et al. 2002).
For TFs in particular, there are precedents
for biologically significant clusters of HOX
genes on human chromosomes 7, 17, 12,
and 2. We sought to determine if the newly
identified set of putative TF genes were dis-
tributed randomly throughout the human
genome or were found to cluster at discrete
chromosomal locations.

Because heterochromatic and euchro-
matic regions of the genome are known to
be relatively gene-poor and gene-rich, re-
spectively, apparent clustering of genes was
expected (International Human Genome
Sequencing Consortium 2001). Taking this
into consideration, we measured how often
we observed three or more TF genes appear-
ing in a window of eight clusters, translat-
ing to a probability of 0.37 under a binomial model (Fig. 3). This
analysis identified 29 regions that passed the criteria. Four of
these regions were Hox clusters, and another nine clusters were
attributed to zinc finger clusters on chromosome 19 (19p12,
19q13.2, and 19q34; Eichler et al. 1998). The remaining 16 clus-
ters had little underlying annotation of their transcript members.
Interestingly, a comparison of the 29 clusters with the completed
mouse genomic DNA sequence revealed that 18 out of the 29
were conserved in the mouse, supporting the notion that there
may be functional reasons for some of this clustering. For a list of
the genes comprising each putative cluster, see Supplemental
materials.

Microarray Design
From the set of 1962 TF genes, we designed a microarray of 50-
mer oligonucleotide probes with which to interrogate their ex-
pression. One of the major issues in designing a microarray of TFs
is that many of these genes fall into families that share significant
regions of conserved sequence homology. For example, there are
>500 TFs that contain zinc finger domains (Eichler et al. 1998;
this study, see below). To design a probe that will measure the
expression of only one gene, it was necessary to identify se-
quence regions in each gene that were unique to it. The obvious

choice in this situation is to target the 3� untranslated region
(3� UTR), which is usually the most evolutionarily divergent re-
gion in a transcript. However, our intention in building a TF
microarray was to use it across species, at least for organisms that
are evolutionarily close enough to retain a high degree of se-
quence similarity, such as the mouse and the chicken. Therefore,
we chose to design 50-mer oligonucleotide probes from within
each coding region (determined by conceptual translation of
each putative TF) and as 3� as possible within the coding se-
quence. It should be noted that designing probes far away from
the 3� ends of genes may result in a significant loss of sensitivity
when used with 3� biased amplification protocols. One way to
circumvent this potential limitation is to use alternative ampli-
fication methods such as full-length amplification (Castle et al.
2003). We also selected these probes to be matched for Tm (Li and
Stormo 2001). These probes are listed in Supplemental materials.
This array has been successfully used to interrogate TF gene ex-
pression across species as distant as chicken, mouse, and man
(Hawkins et al. 2003).

DISCUSSION
In this study we collected a set of known human TFs and used
two complementary computational methods to search the hu-

Figure 3 Genomic locations of TF clusters. Clusters of TF genes are shown on an ideogram
representation of the 24 human chromosomes. As shown in the legend at the top right, the four
canonical Hox gene clusters are shown in blue, the previously described chromosome 19 zinc finger
gene clusters are shown in green, and putative TF clusters identified in this study are shown in red.
The number in parentheses following each in the legend indicates the number of each type of
cluster shown in this figure. Clusters containing known genes are labeled. Labels are not included
for hypothetical and unnamed genes, and so clusters consisting entirely of these are unlabeled. For
a list of the genes comprising each cluster, see Supplemental materials.
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man transcriptome for the entire set of human TF genes. Our
analysis identified 1962 putative TF genes, a number that corre-
lates well with previous estimates (International Human Genome
Sequencing Consortium 2001; Venter et al. 2001).

This number is an estimate, but our seed set searches pro-
vide us with some idea of the error rates in that estimate. To
count a gene as a TF, we required that it must either be previously
annotated or described as such in the literature (the seed set), or
be paralogous to a known TF gene and contain a DNA-binding
domain known to occur exclusively or primarily in TFs (the
found set). The term “transcription factor” encompasses many
types of proteins. Those factors that do not bind directly to DNA
are likely to be underrepresented in our analysis. However, our
seed set did contain some non–DNA-binding TFs that had been
experimentally verified and described in the literature.

There are four variables that influence our estimate of total
TF genes: gaps in the human genome sequence, the incomplete-
ness of Pfam, the degree of comprehensiveness of dbEST, and the
exclusion of single-exon predicted genes from our analysis. Our
finding that ∼7% of our 1468 input seed set failed to find matches
in the genome-nucleated ScriptSure database indicates that we
may be missing ∼35 genes in our “new” set of 494 at this filtering
step. We also found that ∼10% of our seed set ScriptSure matches
failed the Pfam criteria. Among these are oddities such as Myc-
binding protein 1 (MBP-1), an alternate translation product of
the glycolytic enzyme �-enolase (ENO1; Feo et al. 2000), and a
bona fide TF that has been shown to bind to the c-myc P2 pro-
moter and repress transcription of a reporter gene (Ray and Miller
1991; Subramanian and Miller 2000). Querying the MBP-1
mRNA sequence against the Pfam database, even at low strin-
gency, yields no match to a known DNA-binding domain (data
not shown). We would estimate that perhaps a further 50 genes
(10% of the 494) may have failed this Pfam criteria. We can also
make some estimate of the error rates inherent in confining our
analysis to multi-exon genes and multiple ESTs. Multi-exon
genes encode ∼92% of our original seed set genes. Choosing to
work with the higher confidence spliced clusters in our analysis
may have resulted in excluding ∼8% of the single exon TF genes
in our found set. This 8% translates to 40 genes. EST databases
appear to be quite comprehensive in terms of TF coverage. A
survey of the rate of new TF discovery (using our seed set Script-
Sure clusters as a benchmark) indicates that 92% of our clusters
were represented as early as 1997 (data not shown). Rate of dis-
covery after this year has declined drastically. Nevertheless, it
remains possible that some transiently expressed or low abun-
dance TF mRNAs remain to be discovered. Taken together, these
variables indicate that our analysis may have missed ∼130 TF
genes (6.6% of our total estimate).

Table 1 shows a summary of the human TF genes we have
found, classified by family. This table also shows the TF gene
content of three other completed eukaryotic genomes: Saccharo-
myces cerevisiae, Caenorhabditis elegans, and Drosophila melanogas-
ter. Zinc-binding TFs constitute the largest class, amounting to
over one-third of all human TF genes. Homeobox-containing
genes are the second largest family, with ∼200 members. The
forkhead family has also expanded substantially in humans com-
pared with the other species. This latter finding is of particular
interest, as many of the metazoan-specific forkhead genes show
tissue-specific expression and are involved in cell-type determi-
nation and differentiation (for review, see Carlsson and Mah-
lapuu 2002). For example, in the vertebrate embryo, forkhead
genes are required for the development of the notochord (Hood-
less et al. 2001; Yamamoto et al. 2001) and patterning of paraxial
mesoderm and somites (Kume et al. 2001). Another forkhead
gene (FOXP2) has been implicated in the ability to develop lan-
guage (Enard et al. 2002). The “other” category in Table 1 con-

tains a mixture of genes, mostly members of the core transcrip-
tional machinery, and the “structural” category includes genes
that are thought to regulate transcription by altering chromatin
structure, such as the HMGA family (for review, see Reeves 2001).

Looking at the data listed in Table 1 in another way, we can
estimate the proportion of the total transcriptome that encodes
TFs in each of the four species (Table 2). We do not know the
precise gene content of all of these species, but assuming that
current numbers are approximately correct, it appears that TFs
account for between 8% and 9% of all human genes. As one
might expect, we see an upward trend in the proportion of TFs as
the complexity of the organism increases. The development of
more, and more finely tuned, regulatory mechanisms in higher
eukaryotes has been hypothesized to explain their greater bio-
logical sophistication (Huang et al. 1999; Claverie 2001). This
idea has been expounded upon in many recent studies in which
“evolvability” (Kirschner and Gerhart 1998) and the evolution of
development (Jacob 2001; Revilla-I-Domingo and Davidson
2003; Wray 2003) have been linked to increased complexity in
regulatory networks. Our observation that humans devote at
least 8% of their ORFeome to primary regulators of transcription
(a number that is probably an underestimate given the levels of
alternative splicing in TF genes) is consistent with the idea that
developmental and body plan complexity are related to complex-
ity in transcriptional regulatory networks.

The TF microarray we describe here is a versatile tool widely
applicable to many areas of biological research. Two key features
distinguish it from other microarrays. First, no other array de-
scribed to date has probes for measuring the expression of as
many TF genes. The Affymetrix U133 Genechip set, a large and
commonly used human gene microarray, contains probes for
∼85% of the TF genes represented on this array (C. Helms, D.
Messina, and M. Lovett, unpubl.). Second, although our probes
were designed by using human DNA sequences, they represent
coding sequences and not 3� UTR. Thus, this microarray can (and
has) been used to successfully measure TF gene expression in
other species, including mouse and chicken (Hawkins et al.
2003). The evolutionary distance to the last common ancestor of
human and chicken is ∼310 million years (Ureta-Vidal et al.
2003). Based on this distance, we would expect the TF array to be
useful for studies in many vertebrate species, including chimpan-
zee, rhesus monkey, rat, dog, cat, horse, pig, cow, and sheep. A
comparison of a random sampling of 50 TF genes from chicken
and zebrafish to our collection of oligonucleotides revealed an
average of 84% nucleotide identity for chicken and 79% nucleo-
tide identity for zebrafish (diverged by 450 million years from
human). Thus, this array may also prove useful for more diver-
gent species such as zebrafish, pufferfish, and frog. However, we
would urge caution in applying this tool to species more diverged
than chicken. In these cases the rate of false negatives will in-
crease (i.e., 50-mer oligonucleotides that fail to match their or-
thologous gene) and decreased hybridization stringencies will
lead to an overall compression of dynamic range. Careful valida-
tion steps, and tuning of hybridization conditions, are required
in all of these cross-species applications.

METHODS

Seed List
To build an initial set of TFs for the array, we gathered records
from TRANSFAC (version 4.09-public; Wingender et al. 2000).
The version of TRANSFAC we used did not have references to
commonly used sequence identifiers, such as SWISS-PROT or
GenBank sequence records. Therefore, we took gene names and
descriptions from TRANSFAC records and correlated them by
hand with GenBank records, from which we were able to obtain
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mRNA sequences. It should be noted that the latest version of
TRANSFAC (TRANSFAC 6.0; Matys et al. 2003) contains more
entries than the version we used, but when different splice forms
are eliminated, these all appear to overlap with our final set of
genes. Additional human TFs were extracted from InterPro (Ap-
weiler et al. 2001) and FlyBase Consortium (1999). We searched
InterPro for all records annotated as “human” and occurring at or
below the “transcription factor” node of the GO hierarchy (GO
ID 0003700). InterPro records contain protein, not mRNA se-
quence. We therefore used LocusLink (http://www.ncbi.nlm.nih.
gov/LocusLink/) to identify the GenBank mRNA records that cor-
respond to the EMBL protein identification in the InterPro re-
cord. If available, we chose mRNA sequences from the RefSeq
database (Pruitt and Maglott 2001); RefSeqs comprise the major-
ity of our set (1270/1468). Otherwise, we took the most complete
GenBank mRNA sequence or EST representing that gene (198/
1468). For four genes (GSH1, HMX3, DLX1, and CHX10), the
best available sequences were RefSeq gene models (see http://
www.ncbi.nlm.nih.gov/LocusLink/refseq.html for description).
Thirteen genes were extracted from genomic sequence, and two
(GSC and HMX2) were obtained from an Ensembl gene model
(http://www.ensembl.org). For zinc finger genes, we manually

removed subclasses of zinc finger proteins that are known not to
bind DNA. However, it is possible that some of the zinc binding
TFs in our final set will later be determined to be non–DNA-
binding.

Additional known TF family members not identified by the
above procedures were identified by using LocusLink or extensive
literature searches and added to our database. Once data from
these multiple sources have been collected, duplicates were elimi-
nated, yielding a set of 1468 known human TFs (http://hg.wustl.
edu/lovett/projects/nohr/Tfarray.html/).

Homologous Transcript Clusters
Each initial seed list member (Fig. 1) was matched to its best
ScriptSure cluster, requiring a lower bound of 90% coverage of
the seed sequence and 80% identity in the alignment between
the seed sequence and the ScriptSure cluster. The 1369 seed se-
quences found to have a matching ScriptSure cluster were then
masked for repetitive sequence. RepeatMasker with the param-
eters “-w �s �no_is �xsmall” was used for one round of mask-
ing, identifying interspersed repeats. RepeatMasker was used
again in a separate round of masking by using the parameters

Table 1. A Comparison of Transcription Factors in Selected Eukaryotes

Gene family

Homo sapiens

Seed Found All S.c. C.e. D.m.

Zinc bindinga,b 422 340 762 139 309 420
Homeobox 186 13 199 9 84 103
BHLH 92 25 117 8 25 46
�-Scaffolda 77 10 87 11 34 45
BZip 59 13 72 21 25 21
NHR 49 0 49 0 252 21
Trp cluster 38 8 46 10 13 14
Forkhead 36 4 40 4 15 18
Bromodomaina 14 3 17 10 13 16
T-box 16 1 17 0 21 8
Jumonji 6 7 13 1 1 2
E2F 9 1 10 0 4 3
Dwarfin 9 0 9 0 3 3
Paired box 9 0 9 0 7 5
Heat shock 6 2 8 5 1 1
Tubbya 5 2 7 0 1 1
AF-4b 7 0 7 0 0 2
RFX 6 0 6 1 1 1
Methyl-CpG-bindinga 4 1 5 0 2 4
AP-2 4 0 4 0 4 1
TEAa 4 0 4 5 5 5
Pocket domain (Rb)a 3 0 3 0 1 2
GCMc,d 2 0 2 0 0 2
Other 214 14 228 — — —
Coactivators and corepressors 111 11 122 — — —
Structural 80 39 119 — — —
Total 1468 494 1962 224 821 744

The set of transcription factors is shown for four species, divided into families by the type of DNA-binding domain present
and sorted by abundance in human. The data for human transcription factors show the seed and found set numbers
separately, as well as the total number from the two sets added together. The Homo sapiens data are from this study. Unless
otherwise specified, the data for S. cerevisiae, C. elegans, and D. melanogaster are from Riechmann et al. (2000). bHLH
indicates basic helix-loop-helix; bZip, basic leucine zipper; C.e., Caenorhabditis elegans; D.m., Drosophila melanogaster;
GCM, glial cell missing; NHR, nuclear hormone receptor; RFX, regulatory factor X; S.c., Saccharomyces cerevisiae; TEA,
transcriptional enhancer activator (TEA/ATTS); and Trp cluster, tryptophan cluster.
aS. cerevisiae, C. elegans, and D. melanogaster data on zinc binding subfamilies AN1, BTB/POZ-containing, MYND, and
PHD, �-scaffold subfamily cold shock, bromodomain family, Tubby family, methyl-CpG-binding family, TEA family, and
pocket domain (Rb) family from Rubin et al. (2000); supplemental information (http://www.sciencemag.org/feature/data/
1049664.shl).
bS. cerevisiae, C. elegans, and D. melanogaster data on zinc binding subfamily MIZ and AF-4 family from “species distri-
bution” feature of Pfam Web site (http://pfam.wustl.edu).
cD. melanogaster data on GCM family from Akiyama et al. (1996).
dS. cerevisiae and C. elegans data on GCM family from “species distribution” feature of Pfam Web site
(http://pfam.wustl.edu).
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“-s �noint �no_is �xsmall”; this works best for masking simple
repeats. Lastly, low complexity sequence was masked by using
nseg with the parameters “12 1.0 1.0 �z 1 �x”. A merge was
performed on the results of these three masks, resulting in one
tri-masked sequence for each of the 1369 seed sequences.

The tri-masked sequences were used in a BLASTN query
against the complete ScriptSure database. WU-BLAST BLASTN 2.0
was used with the parameters “-S=200 S2=100 gapS2=200 X=26
gapX=55 W=11 gapW=18 gapall Q=11 R=11 M=5 N=�11
Z=300000000 Y=3000000000 V=10000 B=10000 gi novalidc-
txok nonnegok hspsepqmax = 200000 gapsepqmax = 1000000
lcmask topcomboN=1 hspmax=5000 -wordmask dust �mask-
extra 15”. The seed set genes were subtracted out of the
“Spliced|Multiple” results leaving 3338 potential additional TFs
identified by the BLASTN search.

Bit Score Cutoff
The cutoff for determining positives in our BLASTN analysis was
determined from a bit score distribution of known positives and
known negatives. By using the well-characterized HOX gene clus-
ters, ScriptSure clusters for each of the genes in the HOXA,
HOXB, HOXC, and HOXD clusters were identified. Each of the
HOX ScriptSure clusters was used as a query against the complete
ScriptSure database. All clusters identified in the analysis (along
with their bit scores) were put into one of two categories; HOX or
non-HOX. An equivalency bit score, in which the number of
false positives equaled the number of false negatives, was deter-
mined. This bit score was used as the cutoff in our BLASTN por-
tion of the analysis.

Pfam TF Clusters
The starting point for this analysis was all the ScriptSure clusters
that originated from spliced transcript clusters with multiple un-
derlying transcripts (a total of 22,086 clusters). These clusters
were translated in all six reading frames to amino acid sequences.
The translated products were then searched by using hmmpfam
from the HMMER 2.2 package (http://hmmer.wustl.edu). The da-
tabase used in this query was a subset of the Pfam 7.1 database,
the members (398) of which were annotated with the terms
“DNA binding” or “transcription” (http://pfam.wustl.edu); 3748
clusters of the 22,086 clusters searched (17%) were found to

match the transcription subset of the Pfam database with a P
value of �0.0001; 2512 of these were clusters that did not match
our seed list.

Mapping TFs to Genomic Contigs
The Human Genome Consortium’s June 2002 draft of the hu-
man genome was used as the template for the version of Script-
Sure we used in our analysis (June 2002b). Therefore, this same
draft of the genome was used to place our identified clusters back
onto the genome. The TF genes in our seed set as well as those
identified in the overlap of the BLASTN and Pfam analysis were
mapped back to the genome (1968 clusters total). Because Script-
Sure reports its cluster coordinates relative to genomic contigs
(rather than chromosome coordinates), UCSC’s “lft” file was used
to translate between contig and chromosome coordinates
(http://genome.ucsc.edu). Loci were considered significant if
three TF clusters were found in a colinear cluster of eight total
clusters (P = 0.37 under binomial model).

Oligonucleotide Probe Design
For each TF we identified, we designed a 50-mer to represent that
gene on our array. We designed probes with four criteria: (1) the
probe must be from a unique region of the sequence of a gene to
eliminate potential cross-hybridization to other genes; (2) to al-
low use of the array on nonhuman samples, the probe must be
from protein coding sequence (CDS); (3) the design was targeted
to a region of coding sequence as 3� as possible; and (4) the
probes were matched for melting temperatures (Tm). The vast
majority of probes had a Tm of 72°C, with very occasionally a
probe varying by as much as 3°C when severe design constraints
existed. We were able to automate the selection of probes meet-
ing criteria 1 and 4 with a microarray probe design program,
Probes2 (Li and Stormo 2001); the other steps were semiauto-
mated with custom Perl scripts. The Sanger Centre/Ensembl set
of 27,395 verified human cDNA sequences (downloaded on July
14, 2001, current version available at ftp://ftp.ensembl.org/pub/
current_human/data/fasta/cdna/) was used in conjunction with
Probes2 to identify unique regions of each gene and design 50-
mer probes. After candidate probes meeting these criteria were
generated, we performed BLASTN similarity searches (default pa-
rameters) against the human genome sequence and inspected
the results manually to confirm all criteria were met. Probes were
synthesized (Sigma Genosys), resuspended at 60 µM in 1.5 M
betaine and 6% DMSO, and spotted in duplicate on poly-L-lysine
coated microscope slides with a GMS-417 arrayer (Affymetrix).
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