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Abstract

Mineral and bone disorder (MBD) is observed universally in patients with chronic kidney dis-

ease (CKD). Detrimental MBD-related skeletal changes include increased prevalence of

fracture, cardiovascular disease, and mortality. MicroRNAs (miRNAs) have been identified

as useful biomarkers in various diseases, and the aim of this study was to identify miRNAs

associated with parathyroid hormone level in peritoneal dialysis (PD) patients. Fifty-two PD

patients were enrolled and grouped by their intact parathyroid hormone (iPTH) level; 11

patients had low iPTH (<150 pg/mL) and 41 patients had high iPTH (�150 pg/mL). Total

RNA was extracted from whole blood samples. Total RNA from 15 patients (7 and 8 patients

in the low and high iPTH groups, respectively) underwent miRNA microarray analysis, and

three differentially upregulated (>2-fold change) miRNAs previously associated with human

disease were selected for real-time quantitative PCR (qPCR) analysis. Interaction analyses

between miRNAs and genes were performed by using TargetScan and the KEGG pathway

database. Microarray results revealed 165 miRNAs were differentially expressed between

patients with high iPTH levels and low iPTH levels. Of those miRNAs, 81 were upregulated

and 84 were downregulated in patients with high iPTH levels. Expression levels of miR-

1299, miR-3680-5p, and miR-548b-5p (previously associated with human disease) in 52

patients were analyzed by using qPCR. MiR-3680-5p was differentially expressed in low

and high iPTH patients (P < 0.05). The predicted target genes of miR-3680-5p were USP6,

USP32, USP46, and DLT, which are involved in the ubiquitin proteolysis pathway. This path-

way has roles in PTH and parathyroid hormone related protein degradation and proteolysis.

The mechanisms involved in the associations among low PTH, adynamic bone disease,

miR-3680-5p, and the target genes should be explored further in order to elucidate their

roles in CKD-MBD development.
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Introduction

Chronic kidney disease (CKD) is a public health condition, affecting 13% to25% of the world-

wide population. [1, 2]. Mineral and bone disorder (MBD) is a common systemic complication

of CKD that can begin as early as CKD stage 3 in the course of failing kidney function. A dam-

aged kidney cannot effectively excrete phosphorus, nor can it produce the active metabolite

1,25(OH)2D (calcitriol), thereby leading to secondary hyperparathyroidism (SHPT). The dis-

rupted mineral and endocrine functions in CKD are vital factors in the regulation of bone

metabolism. As a result, altered bone remodeling and loss of bone volume are observed exten-

sively in dialytic CKD and in the majority of CKD stages 3–5 patients. [3–5]. In addition to

SHPT, the prevalence of adynamic bone disease (ABD) is not negligible in CKD patients and

is observed in 10% to 71% of patients in CKD stage 5D [6–9]. These bone remodeling prob-

lems result in a higher prevalence of hip fracture in CKD patients than in the healthy popula-

tion [10–16], furthermore, hip fracture in CKD stages 3–5 patients with is associated with a

mortality rate twice that in non-dialysis patients with a hip fracture [12, 17]. Additionally, car-

diovascular disease is associated with 70% of all deaths in patients with CKD. Coronary artery

calcification is one of the primary causes of cardiovascular-related death in patients on dialysis

as it can lead to cardiac ischemia and sudden death [18–20].

Increased awareness of the detrimental effects of CKD-MBD has resulted in extensive

research focused on finding mechanisms and diagnostic bone markers related to CKD-MBD

development. The main bone markers studied to date are parathyroid hormone (PTH), alka-

line phosphatase, tartrate-resistant acid phosphatase, bone collagen-derived peptides, and

non-collagenous bone proteins. Of those markers, PTH is the most reliable reference marker

of bone disease, with high levels (>600 pg/mL, 9 folds the upper limit of normal) indicating

increased bone resorption and turnover (e.g., SHPT) and low levels (<150 pg/mL,2 folds the

upper limit of normal) indicating decreased bone resorption and turnover (e.g., ABD). More-

over, both high and low levels of PTH are potentially harmful to the cardiovascular system as

both high and low bone turnover rates are associated with increased vascular calcification and

mortality [21, 22].

The correlation of serum PTH level and bone histomorphometric parameters of renal

osteodystrophy (ROD) can replace diagnostic bone biopsy at a moderate degree of accuracy

[23, 24]. That can be accomplished in part because variable amounts of PTH fragments may

have specific effects that are antagonistic to that of the intact molecule, and because normal

and low bone turnover rates occur over a wide range of PTH levels (i.e., 2- to 9-fold the upper

normal limit of the PTH assay) [25]. In 2009, a new PTH threshold 2–9 times that of the upper

normal limit [26] compared to the conventional PTH level of 150–300 pg/mL [27] was sug-

gested by the Kidney Disease Improving Global Outcomes (KDIGO) for CKD stage 5 patients.

Due to the differences in PTH assay methods and reference ranges, the use of PTH level as the

primary tool for defining and monitoring bone turnover changes in CKD patients has not

fully elucidated the complex bone disease process. Thus, there is a demand to identify addi-

tional makers associated with changes in PTH level and bone disease.

MicroRNAs (miRNAs) are small non-coding RNAs involving in post-transcriptional regu-

lation of gene expression. Identification of miRNA function can indicate novel targets for

genetic regulation across a wide spectrum of biological processes of cell differentiation, organo-

genesis, and development [28–30]. Disregulated miRNA expression has a crucial role in the path-

ogenesis of genetic and complicated disorders, as well as in cancers, inflammatory diseases, and

cardiovascular disease [31, 32]. Differential miRNA expression is associated with disease status,

suggesting potential roles of miRNAs as diagnostic, prognostic, and predictive markers [33]. It

has been suggested that miRNA profiles can be significantly altered in parathyroid adenoma, and
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parathyroid miRNAs are essential for the development of SHPT, regulation of PTH; moreover,

miRNAs can be used as bone disease biomarkers [34, 35]. However, there is limited information

available describing the relationships among miRNAs, PTH regulation, and bone disease. The

aim of the present study was to identify the role of miRNAs in end-stage renal disease (ESRD)

patients with CKD-MBD and to elucidate possible links between miRNAs and the traditional

bone turnover serum marker PTH. The results will assist in describing the mechanisms associ-

ated with high or low bone turnover disease in ESRD patients.

Materials and methods

Patients and protocol

This prospective study was carried out between July 2015 and February 2016 in a nephrology

department of a tertiary hospital in Seoul, Korea. The study was approved by the hospital’s eth-

ics committee (IRB: H-1507-098-689). According to the approved IRB procedure, two written

informed. consents for study participation and genetic testing of blood samples were obtained

from all study subjects. The documents of written consents and consents activity were recorded

and secured. Inclusion criteria were: age 18 years or older and required to undergo chronic

maintenance peritoneal dialysis (PD). Exclusion criteria included systemic active infection,

severe liver disease, active malignancy, parathyroidectomy history, pregnancy, and immuno-

suppressant treatment. Patients indicated for intact PTH (iPTH) testing (secondary generation,

normal range 10–65 pg/mL) to detect mineral disorders and that satisfied the selection criteria

were asked to enroll in the study. Fifty-two patients fulfilled the selection criteria and agreed to

enroll in the study. Routine laboratory blood examinations for ESRD patients were conducted

for all study participants. Blood samples were collected at the same day as clinical evaluation.

MiRNA expression analysis

Blood sample preparation. A 2.5 mL sample of whole blood from each patient was

drawn directly to a PAXGene Blood miRNA Kit (PreAnalytiX, Qiagen BD, Manchester, UK),

held for 2 h att ambient temperature (18–25˚C), and then stored at −80˚C in a freezer prior to

performing miRNA expression analysis. Total RNA quality and quantity were assessed by

using an Agilent 2100 Bioanalyzer system (Agilent Technologies, Santa Clara, CA, USA).

Microarray analysis. Analysis of human miRNA expression was initiated by using a miR-

CURY LNA microRNA Array kit (Exiqon, Vedbaek, Denmark). Processed microarray slides

were then scanned with an Agilent G2565CA Microarray Scanner System (Agilent Technolo-

gies). Scanned images were imported by Agilent Feature Extraction software version 10.7.3.1

(Agilent Technologies), and fluorescence intensities of each image were quantified by applying

the modified manufacturer’s protocol.

qPCR analysis with a TaqMan method. Among the differentially expressed miRNAs

identified by microarray analysis, three miRNAs reported to be related to human disease were

selected for qPCR analysis. The expression levels of miR-548b-5p, miR-3680-5p, and miR-1299

were measured by using the appropriate TaqMan MicroRNA Assay (ABI assay IDs 002408,

465029_mat, and 241065_mat, respectively; Foster City, CA, USA). A 384-well high-throughput

analysis was performed by using the ABI Prism 7900 Sequence Detection System (PE Applied

Biosystems, Foster City, CA, USA). The reverse transcriptase reactions contained a 10 ng RNA

sample, 50 nM stem-loop RT primer, 1 × RT buffer, and 0.25 mM of each dNTP, 3.33 U/μL

MultiScribe reverse transcriptase, and 0.25 U/μL RNase Inhibitor (Applied Biosystems). The

synthesized cDNA was amplified, and the thermal cycling conditions included initial denatur-

ation at 95˚C for 10 min followed by a reaction cycle (95˚C for 30 s and 60˚C for 1 min) that

was repeated 40 times. The quantitative fluorescence data were analyzed by using sequence
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detection software (SDS version 2.2, PE Applied Biosystems). The cycle number at which the

amplification plot crossed the threshold was calculated, and the threshold cycle (Ct) value was

normalized to U6-snRNA (ABI assay ID 001973). Relative quantification of miRNA expression

was calculated by using the 2−ΔΔCt method.

MiRNA target prediction and pathway analysis

The target genes associated with the three selected differentially expressed miRNAs were deter-

mined by searching the TargetScan 6.2 database (http://www.targetscan.org/vert_71/). The tar-

get prediction runs were performed with a context percentile of 95% and a conserved method.

To locate miRNA targets within various biological networks, the characterization of target

gene list was based on the functional annotation terms contained within the KEGG pathway

database [36]. Gene to miRNA associations were classified according to their level of statistical

significance. Fisher’s exact test was used to determine the over representation of specific bio-

chemical pathways statistically. The probability was computed for each annotation term based

on a hypergeometric distribution. We estimated the likelihood that the selected target genes

actually belonged to a specific annotation term by applying the model presented by Tavazoie

et al. (1999) [37]. Pathways with a Benjamini-Hochberg adjusted P-value < 0.01 were deemed

significant.

Statistical analysis

The required sample size for microarray was calculated assuming log scale gene expression

was under normal distribution. The power to detect 2-fold difference of expression between

two groups was 80%, significance level was p value<0.05. According to this calculation, the

sample size per group was approximately 8 per group [38] Since there was no known estab-

lished sample size calculation for qPCR, all the PD patients who satisfied the inclusion criteria

during the research period were asked to participate. The significance of the differences in

miRNA expression levels derived from microarray results between the low iPTH (<150 pg/mL)

and high iPTH (�150 pg/mL) groups were determined by using Mann-Whitney U tests. The P-

values were corrected by using the Benjamini-Hochberg procedure. The correlations between

miRNA expression levels and iPTH levels were explored using both Pearson correlation and

Spearman correlation analyses. Differences in qPCR-derived expression levels between the two

groups were analyzed by applying Mann-Whitney U tests. Conditional logistic regressions were

performed to determine the independent risk factors associated with a low iPTH level. Indepen-

dent variables included in the multivariate analysis were those with significant univariate analy-

sis results. Statistical analyses were conducted by using SPSS software (version 22, IBM SPSS,

Chicago, IL, USA), and all tests of significance were based on a two-sided 0.05 level.

Results

Patient characteristics

Fifty-two PD patients met the selection criteria and agreed to participate in the study. The partici-

pant’s median (range) age was 51.5 (23–72) years, and 23 patients were male (44.23%). The

patients’ causes of ESRD included glomerular nephritis (n = 24), hypertension (n = 7), diabetes

(n = 9), and others (n = 12, which included autosomal dominant polycystic kidney disease, vesi-

coureteral reflux disease, renal anomalies, etc.). The median (range) PD duration was 61.5 (16.0–

93.5) months. Renal Kt/Vurea was calculated using data from 24-hour collection of urine. Perito-

neal Kt/Vurea and creatinine clearance (Ccr) were calculated by performance of 24-hour collection

of dialysate effluent. Total Kt/Vurea was measured by the sum of renal and peritoneal Kt/Vurea.

miRNA and CKD-MBDs
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Median (range) biochemical laboratory results were: iPTH 304.5 (67.0–1366) pg/mL, Ca 9.1 (7.5–

10.3) mg/dL, P 5.2 (2.6–9.3) mg/dL, alkaline phosphatase 87 (36.0–225.0) IU/L, and hemoglobin

10.3 (7.3–13.6) g/dL. The iPTH-based distribution of the participants was<150 pg/mL iPTH

(n = 11), 150–300 pg/mL iPTH (n = 14), 300–600 pg/mL iPTH (n = 20), and>600 pg/mL iPTH

(n = 7).

Total twenty-nine (55.8%) of the participants had bone problems; 19 patients had bone dual

energy X-ray absorptiometry (DEXA) confirmed osteopenia, 7 patients had DEXA confirmed

osteoporosis, 2 patients had fracture history, and 1 patient had renal osteodystrophy. Baseline

demographic and biochemical characteristics of patients with low iPTH (<150 pg/mL) and

high iPTH (�150 pg/mL) were compared (Table 1), and only hemoglobin and phosphorous

levels were significantly different between the two iPTH groups.

Association of miRNAs expression and PTH level change

Microarray analysis. At initial enrollment, 15 patients were selected for miRNA expression

microarray analysis. Given that an iPTH level of 150 pg/mL is indicated as the lower limit of nor-

mal bone turnover in dialysis patients, 8 patients with iPTH� 150 pg/mL and 7 patients with

iPTH< 150 pg/mL had their miRNA profiles compared. All the microarray data was deposited in

GEO (GSE90991: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=fparzqkgqugqexi&acc=

Table 1. Demographic and baseline biochemical parameter characteristics of study participants.

Characteristics Patients (N = 52) P value

1. Low iPTH

2. (<150 pg/mL)

3. (N = 11)

1. high iPTH

2. (�150 pg/mL)

3. (N = 41)

Male sex, n (%) 6 (54.5) 17 (41.5) 0.442

Age, years, median (range) 54 (24–72) 50 (23–69) 0.346

BMI, kg/cm2, median (range) 20.89 (17.5–28.1) 22.45 (16.57–29.73) 0.308

Cause of CKD, N(%) 0.785

DM 1 (9.1) 8 (19.5)

HTN 2 (18.2) 5 (12.2)

GN 6 (54.5) 18 (43.9)

others 2 (18.2) 10 (24.4)

Dialysis information, median(range)

Kt/Vurea 1.9 (1.52–3.03) 1.89 (1.50–3.69) 0.875

duration, month 17.06 (1.13–238.83) 63.77 (4.1–225.03) 0.554

Biochemical level, median (range)

corrected calcium (mg/dL) 9.54 (8.42–9.84) 9.24 (8.0–10.42) 0.996

Phosphorus (mg/dL) 4 (2.9–8.4) 5.7 (3.9–9.3) 0.022

ALP (IU/L) 69.5 (45–121) 92 (36–225) 0.208

Hb (g/dL) 11.2 (7.6–13.6) 10.2 (7.3–11.9) 0.004

Albumin (g/dL) 3.7 (3.1–4.1) 3.8 (3–5) 0.542

Serum creatinine (mg/dL) 6.21 (10.77–21.22) 12.73 (3.95–25) 0.485

Na (mmol/L) 138 (131–143) 138 (126–144) 0.860

K (mmol/L) 4.3 (3.6–6.1) 4.8 (3.2–7.2) 0.131

Abbreviations: BMI, body mass index; CKD, chronic kidney disease; DM, diabetes mellitus; HTN, hypertension; GN, Glomerulonephritis; Kt/V: (Kurea × Td)/

Vurea (Kurea is the effective (delivered) dialyzer urea clearance integrated over the entire dialysis, Td is the time measured from beginning to end of dialysis,

and Vurea is the patient’s volume of urea distribution; iPTH, intact parathyroid hormone; ALP, alkaline phosphatase; Hb, hemoglobin. *Significant results

were marked in bold

doi:10.1371/journal.pone.0170535.t001
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GSE90991). The identities of the miRNAs detected by microarray analysis were confirmed by

accessing the mirBase (http://www.mirbase.org), microRNA.org (http://www.microrna.org/

microrna/home.do), and mirDB (http://mirdb.org/miRDB) databases.

A mean of 1918 miRNAs were detected in the blood samples obtained from the 15 assessed

PD patients. The differential expression results, after P-value adjusted for multiple testing by

the Benjamini-Hochberg correction, demonstrated that the expressions of 165 miRNAs were

significantly different (adjusted P-value <0.05) between the low and high iPTH patients. Of

these, 81 miRNAs were upregulated and had a mean (range) fold increase of 1.91 (1.50–7.59),

whereas 84 miRNAs were downregulated and had a mean (range) fold decrease of 1.75 (1.50–

3.74) (Fig 1).

The upregulated and downregulated miRNAs associated with low and high iPTH levels in

the 15 assessed PD patients are listed in S1 Table and S2 Table. Fig 2 shows a heat map repre-

sentation of the differentially expressed miRNAs in patients with low and high iPTH levels.

Real-time PCR analysis. According to the results of the microarray analysis, three of the

most differentially expressed miRNAs with previously documented functional characteristics

related to human diseases were selected for further analysis. That investigation involved per-

forming qPCR of all 52 study participants. Among the differentially expressed candidate

Fig 1. Volcano plot for differentially expressed miRNAs in patients with low (<150 pg/mL) and high (�150 pg/mL)

iPTH levels.

doi:10.1371/journal.pone.0170535.g001
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miRNAs, three (miR-548b-5p, miR-3680-5p, and miR-1299) were markedly upregulated (fold

changes 4.85, 4.09, and 2.56, respectively). Upregulation of MiR-3680-5p was significantly dif-

ferent (P< 0.05) between the PD patients with low and high iPTH levels, whereas upregula-

tions of miR-1299 and miR-548b-5p were not significantly different between the low and high

iPTH groups (Fig 3).

Pearson and Spearman Correlation were performed between iPTH level and 3-miRNAs,

and phosphate and 3-miRNAs, to find out any association among the variables. The result pre-

sented that only miR-3680-5P was associated with iPTH level (P = 0.045), with r = 0.279.

Univariate logistic regression results showed that phosphorous, hemoglobin, and miRNA-

3680-5p levels were significantly associated with iPTH level. Accordingly, phosphorous, hemo-

globin, and miRNA-3680-5p data were included in a multivariate logistic regression analysis.

The multivariate logistic regression results showed that phosphorous was not significantly

associated with iPTH level (P = 0.120), but both hemoglobin and miRNA-3680-5p were signif-

icantly associated with iPTH level (P< 0.05) (Table 2).

MiRNA target prediction and pathway analysis

Target gene prediction was performed by using TargetScan with the 95% context percentile

and conserved method (S3 Table). Among the 16 predicted genes listed, the most cited genes

(USP6, USP32, USP46 and DTL) were annotated to the ubiquitin-dependent protein catabolic

Fig 2. Heat map illustrating miRNAs profiles in patients with low (<150 pg/mL) and high (�150 pg/mL)

iPTH levels. The log2 values were calculated for each sample by normalizing to the count number of reads

alone. The heat map analysis was performed by using Cluster 3.0 with the Euclidean distance algorithm and

average linkage (Padj <0.05 and log2 fold change >2). Group 1: iPTH < 150 pg/mL, Group 2: iPTH� 150 pg/mL

doi:10.1371/journal.pone.0170535.g002
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process and protein deubiquitination genome elements, according to the KEGG pathway data-

base (Table 3).

Discussion

In this study, we identified miRNAs associated with PTH level which can reference ABD in

ESRD patients. Through microarray analysis, 165 miRNAs were identified to be associated

with lower limit of normal PTH level in PD patients. Three of those miRNAs (miR-548b-5p,

miR-3680-5p, and miR-1299) had been previously reported to be related to human diseases

such as cancer [39], tuberculosis [40], and rheumatic heart disease [41]. Those three were

selected for further analysis by using qPCR.

The results of the analyses indicate that miR-3680-5p can be associated with ABD, because

the expression of miR-3680-5p is significantly lower in PD patients having a iPTH level less

than 150 pg/mL than it is in PD patients with a iPTH level greater than 150 pg/mL. The results

of the target gene analysis revealed that miR-3680-5p was annotated to USP 6, USP 32, USP 46,

and DLT; genes associated with ubiquitin-dependent proteolysis and deubiquitination.

The appropriate PTH level suggested in the 2009 KDIGO guidelines for ESRD patients was

based on bone biopsy results for CKD-MBD patients. The data reviewed for those guidelines

showed that the highest frequent form of renal osteodystrophy (ROD) in PD patients was

ABD (50%), followed by mild bone disease (20%), osteitis fibrosa (18%), mixed bone disease

(5%), and osteomalacia (5%). Only 2% of those PD patients had normal bone histology. [26].

From these results, PD should be an important risk factor for ABD etiology. Moreover, com-

pared to other forms of ROD, the prevalence of ABD has been increasing and may be the most

Fig 3. Association between iPTH level and upregulation of expression of three miRNAs in 52 PD patients.

doi:10.1371/journal.pone.0170535.g003

Table 2. Results of multivariate logistic regression analysis of clinical data and miRNAs in patients

with low (<150 pg/mL) and high (�150 pg/mL) iPTH levels.

Variables Exp (B) 95% CI P value

Hemoglobulin 0.336 0.142–0.796 0.013

miR-3680-5p 6.235 1.184–32.829 0.031

doi:10.1371/journal.pone.0170535.t002
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frequent type of bone lesion, particularly among diabetic patients. [7, 9, 42–46]. The presence

of ABD in ESRD patients may be suspected by assessing the results of biochemical tests such as

the detection of a low PTH level. For example, a PTH level less than twice the upper limit of

normal (classically, a low PTH level in dialysis population is below 150 pg/mL according to the

2003 KDOQI guideline) may indicate the presence of ABD [25, 42, 47].

ABD is characterized by markedly lowered osteoblast and osteoclast numbers, bone forma-

tion rate, and activation frequency (a marker of bone turnover). The main risk factors for

ABD are age, uremia, excessive PTH suppression from vitamin D analogues, calcium overload,

PD, and diabetes mellitus [48, 49]. Moreover, ABD is related with a decreased ability to repair

bone microdamage [50] and accumulation of such damage may cause increased fracture risk

[11, 51]. Histomorphometric analysis of a tetracycline double-labeled bone biopsy is the cur-

rent gold standard for ROD diagnosis. However, the invasive course of that procedure, along

with its high cost and overall complexity, limits the efficacy of using the bone biopsy approach,

[52] thus the requirement for developing non-invasive bone disease markers is increasing.

In this study, miR-3680-5p was associated with the lower limit of PTH (150 pg/mL) and

those results suggested that miR-3680-5p could provide a research target in the study of non-

invasive biomarkers and ABD etiology. Moreover, miR-3680-5p was associated with the USP6,

USP32, USP46, and DTL genes, which have roles in the ubiquitin (deubiquitin) proteolysis sys-

tem. ABD is characterized by bone resistance to bone-anabolic PTH functions, assumed as via

downregulation of the PTH and parathyroid hormone related protein (PTHrP) receptors on

osteoblasts [48, 53]. It has been reported that PTHrP plays a role in normal cell proliferation

and differentiation, including a critical role in skeletogenesis [54–56]. The PTHLH and PTHR1
genes, major regulators of mineral and bone metabolism, are subject to degradation and prote-

olysis by the actions of the ubiquitin-dependent pathway [48, 53]. Although the associated

mechanism has not been fully described, miR-3680-5p can have a role in downregulation of

ubiquitin-dependent pathway genes, which in turn can result in downregulation of PTH/

PTHrP degradation via ubiquitin-dependent proteolysis. Such actions affect bone remodeling

and resorption.

We could not determine the exact mechanism involved in the association between miR-

3680-5p and the PTHrP coding genes; however, we were able to observe an indirect mecha-

nism involving miR-3680-5p and the ubiquitin-dependent proteolysis pathway genes. Thus,

further research to clarify the association between miR-3680-5p and PTH/PTHrP, and the

mechanisms related to that association, is necessary. Regardless, the preliminary indications

provided by the results of this study suggest that miR-3680-5p should be a research target for

further study into the etiology of CKD-MBD. Moreover, our results provided insights into the

search for non-invasive biomarkers that may be useful in identifying high risk ABD patients.
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