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Abstract

The gut microbiome community structure and development are associated with several

health outcomes in young children. To determine the household influences of gut micro-

biome structure, we assessed microbial sharing within households in western Kenya by

sequencing 16S rRNA libraries of fecal samples from children and cattle, cloacal swabs

from chickens, and swabs of household surfaces. Among the 156 households studied, chil-

dren within the same household significantly shared their gut microbiome with each other,

although we did not find significant sharing of gut microbiome across host species or house-

hold surfaces. Higher gut microbiome diversity among children was associated with lower

wealth status and involvement in livestock feeding chores. Although more research is nec-

essary to identify further drivers of microbiota development, these results suggest that the

household should be considered as a unit. Livestock activities, health and microbiome

perturbations among an individual child may have implications for other children in the

household.
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Introduction

The various taxa comprising the gut microbiome perform metabolic, signaling and immune

functions in people and animals [1–3]. The maturation and structure of the gut microbiome

can therefore have a long-term impact on health, and gut microbiome dysbiosis has been asso-

ciated with various disease states, including malnutrition [4–10]. In order to promote health

among young children, it is necessary to understand the environmental influences of gut

microbiome development.

The maturation of the infant gut microbiome is marked by periods of abrupt change

based on life events, dietary changes, and changes in environment [11]. Even after stabilizing

following infancy, the gut microbiome of children still differs from that of adults, enriched

with species which may support development [12]. Antibiotic use can have a major impact

the constituents of the gut microbiome, which may increase a child’s susceptibility to patho-

gen colonization and invasion [13]. After reaching adulthood, the strains that exist in the gut

microbiome are considered to be stable, potentially for decades [14].

In many community settings, people live in close contact with domesticated livestock and

poultry. These animals, and their associated microbiomes, could influence the development

and structure of human microbial communities through social interactions, animal husbandry

activities, or indirectly through a shared environment [15–18]. However, studies assessing the

overlap in the microbiomes of people and other animal species are rare. In the United States, a

study by Song et. al. demonstrated that the skin microbiomes of people and their cohabiting

dogs were significantly more similar than the skin microbiomes of unrelated humans and

dogs. The study also found some evidence of gut microbiome sharing between the humans

and cohabiting dogs [19]. Similarly, a study of the infant gut microbiome showed that the

presence of pets in the household was associated with increased microbiome diversity [20].

To our knowledge, studies of microbiome overlap between humans, poultry, and cattle in low

resource settings have not been conducted.

The built environment of human dwellings, including soil and surfaces, represents an addi-

tional possible driver for microbiome development, as microbiome has been found to differ

across various environmental contexts [17]. For example, the most abundant microbes on the

hands of Tanzanian women have been found to be soil-associated bacteria, whereas the most

abundant bacteria on the hands of women in the US were found to be Staphylococcaceae and

Propionibacteraceae [16]. However, whether the built environment influences the structure of

the child gut microbiome in low resource settings is yet unknown.

Understanding the relationship between the rural household environment and microbiome

development in children could lead to further insight into of the pathogenesis of dysbiosis-

associated diseases and the design of household-level microbiome interventions to improve

both child and animal health. To investigate the role of animal and household contact on gut

microbiome of children in rural livestock-owning households, we studied the species composi-

tion of the gut microbiomes of young children, cattle, and chickens and of the microbiome of

household surfaces in western Kenya. We evaluated a) whether children and their household

animals and surfaces had similar microbiome constituents and b) what factors were associated

with child gut microbial diversity.

Materials and methods

Study site

This study was conducted through a collaboration between the Kenya Medical Research Insti-

tute (KEMRI), Centers for Disease Control (CDC)-Kenya, Washington State University and
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the University of Washington. The study took place in western Kenya among villages partici-

pating in an established human-animal surveillance platform encompassing 1,800 mixed-crop

and livestock agriculture households, with a total population of approximately 6,400 individu-

als [21]. Surveys of these households have shown that 90% own at least one species of livestock

(cows, goats, or sheep) or poultry. Below, we use the word “livestock” to describe both cattle

and chickens. The floors of living spaces and cooking areas are commonly packed soil. The

household structures varied from grass thatched huts to brick buildings but in general were

simple construction without insulation.

Ethics approval and consent procedure

The study was approved by the human subjects review and animal care committees at the Uni-

versity of Washington as well as the KEMRI human subjects review board and the KEMRI

Animal Care and Use Committee. Prior to study enrollment, community meetings were held

to inform community leaders and members of the purpose of the study. Informed, written

consent for participation in the study questionnaire and microbiome sampling, provided by

the heads of household, was obtained in each person’s native language.

Household selection

Eligible households were those with a child�5 years old, at least one cow, and at least one

chicken, as of a demographic survey conducted in June 2014. From the approximately 250

households meeting these criteria, we randomly selected 180 for sampling. If a household had

more than two children�5 years old, the children were ordered in a random list from which

the first two were approached to enroll. If consent was refused or the household head was

unreachable, the next random household was approached.

Household demographics

Teams of community interviewers and veterinary technicians were trained in questionnaire

delivery and microbiome sample collection. At each household to be sampled, a community

interviewer conducted a brief survey with the head of the household to determine the chil-

dren’s interaction with household livestock, exposure of children and livestock to antibiotics,

and livestock care practices. The survey is included in the supplemental materials. Data on

household demographics and wealth were collected from an ongoing surveillance study in the

same area [21]. Household wealth status was calculated as an asset-based wealth score using

Principal Components Analysis.

Sample collection and transport

Sampling took place between October and November 2014. The child’s caregiver was provided

with a stool collection container and was instructed to collect the child’s first stool the next

morning. The following morning veterinary technicians arrived to collect the child’s stool

sample, swabs of household surfaces (one swab of 10 cm2 of the floor of the cooking area [usu-

ally outside], and one swab of 10 cm2 of the floor of the living area [usually inside]), cattle fecal

samples, and chicken cloacal swabs. Animal samples were collected in accordance with stan-

dard animal handling techniques (see Supplementary Methods, Sample Collection for details).

All samples were labeled, sealed in individual containers, and transported on ice to the field

laboratory in Lwak, Kenya where they were refrigerated at -20˚C until the end of the day when

they were transported on ice to the laboratory in Kisian, Kenya (approximately 1 hour transit

time) where they were frozen at -80˚C.

Microbiome sharing in Kenya
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DNA extraction

DNA was extracted from all samples in Kenya using the MoBio PowerFecal1 kit according to

the manufacturer’s instructions (MoBio Laboratories Inc, Carlsbad, CA). Samples and DNA

were handled under sterile conditions in a UV-treated laminar-flow biosafety hood. Extracted

DNA was frozen at -80˚C and then shipped on dry ice to Washington State University, Pull-

man WA, USA.

Amplification and 16S-rRNA sequencing

Up to 10 ng of each sample was used as input to a two-step dual-indexing PCR targeting vari-

able regions 1, 2, and 3 of the 16S-rRNA gene [22]. Primers sequences are included in the Sup-

plemental Methods (S1 and S2 Tables). Individual libraries were pooled (10–12 libraries/pool),

purified, and size selected with Ampure beads (Beckman Coulter). Purified pools were quanti-

fied using a Quant-IT High Sensitivity fluorescence assay (Invitrogen), normalized to 4 nM

each, and 180 to 230 individually barcoded libraries were pooled for simultaneous sequencing

on a MiSeq (Illumina, San Diego, CA) utilizing the v3 chemistries and a 2 x 300 bp paired-end

cycle sequencing run.

Microbiome data processing

Sequences were subjected to on-instrument quality control and raw sequence reads were de-

multiplexed. Due to the length of the sequenced amplicon and lower reverse read sequence

quality, forward and reverse reads were unable to be joined reliably and the analysis relied on

the forward reads only [23]. We applied the sequence quality filtering approach recommended

by Bokulich et al. [24] and also removed any samples with fewer than 1,000 reads following

this filtering process. When technical replicates were present, we selected the replicate with the

higher average base quality as input for Operational Taxonomic Unit (OTU) picking. We used

de novo OTU picking for consistency with other studies and to retain reads from uncharacter-

ized taxa for downstream analysis [25] (see Supplemental Methods for details). We assigned

taxonomy to each OTU using UCLUST and aligned representative sequences for each OTU to

the SILVA database using PyNAST [26, 27]. We filtered the following classes of OTUs from

the dataset: singleton OTUs, OTUs whose representative sequences failed to align to the

SILVA database with>65% identity, OTUs that were identified as chimeric using the uchime-

ref algorithm implemented in the vsearch library [17], and OTUs that were only present in one

sample [24]. Resulting OTU tables were additionally rarefied to a constant number of reads

that preserved 80% of the samples, and subsequently OTUs present in only one sample were

removed. These rarefied tables were used only for diversity and correlate analyses (see below),

but the samples lost during rarefication due to insufficient numbers of reads were excluded

from all analyses.

Diversity indices and statistical analysis

We constructed a phylogenetic tree of all OTUs using FastTree [28]. The resulting tree was

used to calculate the unweighted UniFrac distances between all samples [29]. To compare the

taxonomic compositions of samples from different origins or hosts, we conducted a principal

coordinate analysis (PCoA) on the UniFrac distances between all samples.

To address the primary question of whether children shared more microbes with hosts in

their own households than with hosts in other households, we calculated pairwise distances

between all samples using Bray-Curtis abundance metrics through QIIME [30, 31]. The distri-

butions of OTU sharing measured within and between households were compared using the

Microbiome sharing in Kenya
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Wilcoxon rank-sum test with an α significance level of 0.05. For complete and near-complete

household sample sets (i.e., household for which at least four sample types were available), we

conducted an additional sharing analysis by calculating the total relative abundance of human

microbiome OTUs that were also present in animals or surfaces sampled in the same house-

hold. We used these to create stacked bar plots showing the fraction of each human sample

associated with OTUs that are also found in any other sample type in their household.

We explored the correlates of child gut microbiome diversity as measured by OTU count,

using linear mixed models clustered by household. We tested univariable correlations using

the predictors of child age and sex, household livestock ownership and asset-based wealth sta-

tus, and reported child livestock caretaking practices (as reported through questionnaire in

Supplemental Materials). We also evaluated correlates of the household-level OTU sharing

metrics, measured by the Bray-Curtis distance measures, using linear regression. Predictors

included household livestock ownership, household wealth status, and number of household

members. Independent variables showing association with the diversity outcome at p<0.2

were added to a multivariable model.

Sensitivity analyses

We conducted three assessments to determine whether the household OTU sharing results

were sensitive to our choice of methods. First, we applied and compared three different OTU

picking approaches: (i) 97% similarity closed reference OTU picking using QIIME 1.9.1 [31],

(ii) 97% similarity de novo OTU picking using QIIME 1.9.1 [31], and (iii) Swarm v2 OTU clus-

tering [32, 33]. Results obtained with the second OTU picking methods are described below

and details on all methods are included in the Supplemental Methods. As an additional sensi-

tivity analysis, we calculated two sharing metrics in addition to the Bray-Curtis metric: (i) the

Jaccard binary distance metric and (ii) asymmetric sharing metrics (for each pair of samples,

the fraction of OTUs in one sample that were also found in the other and the proportion of

reads assigned to such shared OTUs). Finally, to examine whether antibiotics influenced shar-

ing levels between household members and their environment, we repeated the primary shar-

ing analysis excluding those samples for which caregivers reported antibiotic use among

children, cattle, or chickens in the one-month period prior to sample collection.

Results

Study households and subject demographics

Among 180 households contacted, sampling was performed at 158, yielding 184 child stool

samples, 158 cattle stool samples, 158 chicken cloacal swab samples, and 316 household surface

samples. Table 1 shows the demographic data for households that had both questionnaire data

and microbiome data for at least one child. These households reported owning an average of

12 chickens and five cattle. Study children were predominantly (60%) female and ranged in

age from 10 months to 66 months at the time of sampling (some children were over age five

because sampling was conducted after initial selection and consent for the study). Based on

caregiver surveys, children were involved in several aspects of livestock caretaking, including

herding (67%), feeding (64%), and cleaning livestock areas (59%). According to respondents,

35% of the children had received antibiotics in the past month, while 12% of sampled cattle

and 6% of sampled chickens were reported to have received antibiotics. Chickens were

reported to commonly enter human dwellings.

Microbiome sharing in Kenya
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Microbiome sequencing and quality

Initial sequencing produced 579 samples with complete metadata with a total of 34,975,832

reads. 409 samples passed rarefication thresholds after OTU picking. This set of 409 samples

included 32,228,377 reads in total, an average of 78798 ± 100041 reads per sample, with mean

R1 and R2 base qualities of 31 ± 1.7 and 26 ± 1 respectively (Table 2). Trimming and quality fil-

tering reduced the total read count to 21,187,109.

Table 1. Characteristics of sampled households, children, cattle, and poultry, western Kenya 2014

(n = 117 households).

Characteristic Sample mean(SD) or n(%)

Household Characteristics

Household buildings, number 2.1 (0.9)

Livestock ownership, number

Cattle 5.1 (5.3)

Poultry 12.1 (8.0)

Sheep 1.9(3.4)

Goats 2.9 (3.3)

Child characteristics

Age, months 39.7 (13.3)

Sex, % female 75 (60%)

Recent antibiotic use, yes/no 46 (35%)

Livestock activities, yes/no

Feeding 83 (63%)

Milking 26 (20%)

Herding 82 (63%)

Slaughtering 23 (18%)

Caring for sick animals 1 (1%)

Taking to market 1 (1%)

Cleaning livestock areas 77 (59%)

Sampled cattle characteristics

Age, months 46.9 (16.2)

Recent antibiotic use 14 (12%)

Enters the house 22 (19%)

Sampled poultry characteristics

Recent antibiotics 7 (6%)

Enters the house 1129 (98%)

doi:10.1371/journal.pone.0171017.t001

Table 2. Sequencing data quality and de novo Operational Taxonomic Unit (OTU) count results, by sample type.

Read counts, Base Quality 97% de novo OTU counts (% unassigned)

R1 R2 Unrarefied Rarefied

Sample type (n) Mean±SD Mean±SD Mean±SD Mean±SD Total Mean±SD Total

Chicken (36) 54468±58025.2 31±2.2 26±1.3 1896±1168.1 (49±25.28%) 27370 (37%) 749±429.2 (50±25.87%) 11936 (36%)

Cooking area (69) 72895±72964.4 31±1.7 27±1.2 5314±4962 (15.5±6.79%) 135681 (20%) 1625±635.2 (14.2±6.67%) 42489 (18%)

Cow (125) 75793±71498.5 31±1.2 27±0.5 8654±4904.4 (20.9±5%) 186838 (25%) 2732±590 (19.5±4.79%) 63858 (23%)

Human (143) 89517±139183.1 31±1.1 27±0.5 5250±4394.6 (2.1±1.43%) 168876 (3%) 1400±368.6 (2.2±1.48%) 47772 (3%)

Living Space (34) 81873±64716.8 29±2.6 26±1.7 4790±2343 (12.7±5.02%) 76464 (17%) 1756±674.1 (11.1±4.59%) 29210 (15%)

Total (409) 78798±100041 31±1.7 26±1 6025±4784.5 (14.8±15.22%) 457322 (18%) 1835±835.6 (14.2±15.28%) 148783 (18%)

doi:10.1371/journal.pone.0171017.t002
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This final analytic sample set included 156 total households that had microbiome data for at

least one sample, providing data for 143 children, 125 cows, 36 chickens, 34 living spaces, and

69 cooking areas. In 100 households there was at least one child sample and one cow sample

available for comparison, while 22 households had more than one child available for compari-

son. Due to the low availability of chicken and living space data that remained after processing,

only one household included a full set of analytic data of all five sample types.

Identified OTUs

We initially identified 1,350,823 OTUs with 97% de novo clustering. This set was reduced to

580,645 OTUs after singleton removal, 479,381 OTUs after chimera filtering, and 464,847

OTUs after removal of sequences that failed to align to the database. After rarefying samples to

7,109 reads and filtering again single-sample OTUs, 2,828,844 reads, 406 samples and 151,296

OTUs remained. The average number of OTUs identified varied by sample type after rarefica-

tion, with human samples having the fewest OTUs on average (Table 2). Samples from cows

displayed the highest α diversity, with an average of 2,700 observed OTUs per sample. How-

ever, human samples had the highest proportion of OTUs that could be assigned a taxonomic

classification.

The most abundant phyla among all samples were Firmicutes and Bacteroidetes, followed

by Proteobacteria (56.4%, 27.7%, and 5.1% average abundance, respectively, Fig 1). OTUs

assigned to the family Prevotellaceae were found at an average abundance of 20.1% in human

samples. Cow samples were largely dominated by Firmicutes and Bacteroidetes, although a

smaller subset of cow samples (13 out of 123) were dominated instead by Proteobacteria and

Actinobacteria OTUs. Chicken samples featured the highest proportion of reads (38.9%)

belonging to OTUs with unassigned taxonomy, including 6 out of 31 samples with greater

than 80% of reads from OTUs of unknown taxonomy. The taxonomic groups present in the

environmental samples were highly variable, with Proteobacteria as the most abundant

(35.6%) in living space samples and Firmicutes in cooking area samples (28.1%). A PCoA plot

demonstrated that overall the community structures within each sample type were similar to

each other and relatively distinct from community structures in other sample types (Fig 2).

Microbial sharing within and between households

Using the Bray-Curtis metric to assess the similarity between samples demonstrated a general

trend by which members or household surfaces from the same household had higher OTU

sharing compared to members or household surfaces from different households, although

most comparisons were not statistically significant (Fig 3). Similarly, the gut microbiome of

children showed a trend (which again, was not statistically significant) toward sharing with the

microbiome of cows in the same household. There was also no significant overlap between

child gut microbiome and the microbiome of chickens, or surfaces within their own household

compared to those of other households. Examining the similarity of the gut microbiome of

children living in the same household (across 20 households that included two children) dem-

onstrated that sharing between the gut microbiome of children from the same household was

significantly higher than sharing between children living in different households (p = 0.0027;

Bray-Curtis distance, Wilcoxon rank-sum test; Fig 3). The surface microbiomes of the cooking

area also exhibited more overlap with living spaces in the same household than with other

households (p = 0.023; Bray-Curtis distance, Wilcoxon rank-sum test; Fig 3). These results did

not qualitatively differ when using Jaccard binary distance (S1 Fig), asymmetric proportions of

shared OTUs (S2 Fig), or when using other OTU picking methods (S3 and S4 Figs).

Microbiome sharing in Kenya
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Fig 4 illustrates the proportion of the OTUs in each child’s gut microbiome shared with

livestock or surfaces within the same household for three different households. In some house-

holds, children demonstrated notably higher proportions of microbes shared with cattle,

chickens, or surfaces of their own household compared to other households. In other house-

holds this sharing was not observed (and such sharing was not significant on average), suggest-

ing unknown variables may impact whether substantial microbe sharing occurs between

children and cattle in a given household. A figure illustrating the proportion of sharing in all

households that had data from at least one child and two additional sample types is included in

the Supplemental Results (S5 Fig).

When we repeated the primary sharing analysis among the subset of children and livestock

that did not report antibiotic use in the prior month, we found similar results (S6 Fig). How-

ever, since only ten households included two children for whom caregivers reported no antibi-

otic use, this effect was no longer statistically significant.

Correlates of microbiome diversity and sharing

In univariable analysis, child age (in months) and a caretaker report that the child had ever fed

household livestock were positively associated with higher OTU count (β = 6 OTUs, 95% CI:

1, 11 OTUs; β = 178 OTUs, 95% CI: 45, 310 OTUs, respectively). Household wealth score was

significantly negatively associated with OTU count (-47 OTUs, 95% CI: -87, -6 OTUs). In

Fig 1. Bar charts representing the relative abundance of phyla in the gut microbiomes of children,

cattle, and chickens, and in environmental microbiomes from living spaces and cooking areas in

households in western Kenya. Each column represents a single household. In households where two

children were sampled the human bar plot is divided evenly down the center. Samples with missing data are

blank while unassigned taxa are gray.

doi:10.1371/journal.pone.0171017.g001
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multivariable analysis, household wealth status and child livestock feeding remained statisti-

cally significant in their association with gut microbiome diversity (S3 Table).

Using the Bray-Curtis divergence metric as the outcome, none of the tested factors (includ-

ing number of animals owned, number of household members, household wealth, child age

child sex, reported child interactions with livestock, or livestock housing) showed univariable

associations with microbiome similarity between children and cattle. Although microbial simi-

larity was low between humans and chickens overall (Fig 3), the gut microbial communities

of boys had significantly more similarity to chickens within their household than those of girls

Fig 2. Principal coordinate analysis of unweighted UniFrac distances representing phylogenetic

clustering of gut and environmental microbiome constituents in samples from households in western

Kenya.

doi:10.1371/journal.pone.0171017.g002

Fig 3. Pairwise comparisons of the distribution of Bray-Curtis abundance distance metrics

comparing samples within and between households in western Kenya. Children within the same

household and surfaces within the same household show significantly similar microbial communities.

doi:10.1371/journal.pone.0171017.g003
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(β = 0.01, 95% CI 0.003, 0.02). A higher number of latrines available to the household showed

borderline association with lower microbiome similarity among the children in a household

(S3 Table). Total household livestock count and both children receiving antibiotics in the past

month were associated with closer microbiome similarity between two children. Due to small

numbers of comparisons, we did not perform multivariable analysis on the sharing metrics

between children. Results did not differ when using the Jaccard distance metric as the outcome

(data not shown).

Discussion

In this study, we describe the microbial constituents of the gut from young children in western

Kenya, the gut of their household livestock, and their household environment. Overall, we

found that the gut microbiome of children is more likely to be shared with other children

within the household compared to children from different households. Overall, we did not

observe significantly greater microbiome sharing between children and livestock or surfaces in

the same households than between households. Further research will be necessary to deter-

mine the characteristics of households that show higher microbial overlap between host

species.

The level of microbiome sharing observed between children in the same household was

associated with reported antibiotic use among the children. However, removing those children

who used antibiotics from the analysis did not meaningfully change the sharing effect size

between children in the same household. There are several possible reasons that this effect

was observed. First, the microbiome perturbation could lead to increased microbe sharing

in the recolonization process. Alternatively, antibiotics could eliminate particular microbes,

leaving common core constituents between individuals. Our finding that the dominant gut

Fig 4. Proportion of microbiome sharing between children and other household samples in three households in western

Kenya. Each household represented here had two children, represented by the vertical bar and box plots. The bar graphs on the

right side of each panel illustrate the proportion of microbes shared between the child and their cow, chicken, cooking area, or living

space. The box plots in each panel show the distribution of microbiome sharing between the child and samples from other

households, compared to the proportion shared with their own household sample, represented by a gold diamond. The number on

top of each box plot represents the rank of the sharing within the same household among sharing values calculated with all other

households (e.g., “1” indicates a case where the sharing with the same household was the highest compared to sharing with any

other households). The first panel shows a household in which both children had a high level of microbiome sharing with the cow in

their household compared to cows in other households. The second panel shows a household in which both children had a high

level of sharing of their gut microbiome with the surface in the cooking area of their household. The final panel shows a household in

which the children did not show sharing with any of their household samples.

doi:10.1371/journal.pone.0171017.g004

Microbiome sharing in Kenya

PLOS ONE | DOI:10.1371/journal.pone.0171017 February 2, 2017 10 / 15



microbiome phyla in children sampled were the Firmicutes and the Bacteriodetes, followed by

Proteobacteria is consistent with other studies [34–38]. In our sample, factors associated with

increased child gut microbiome diversity included lower household wealth, greater child age,

and whether the child was reported to help feed livestock. Among young children, age has con-

sistently been associated with increasing microbiome diversity [39, 40]. Our finding that

higher wealth status was associated with lower gut microbiome diversity was consistent with a

recent study in Malaysia reporting that the children in the group of the highest socio-economic

position had the lowest gut microbiome diversity [41]. Higher socioeconomic status could

result in higher levels of hygiene, leading to lower gut microbiome diversity. Ostensibly, higher

wealth index could also suggest higher access to antibiotics for children in rural areas, which

could decrease microbial diversity. However, this cohort was enrolled in a long-term surveil-

lance study that provided free access to healthcare, and reported antibiotic use was inversely

correlated with household wealth index among these children. Finally, those children who

engaged in livestock feeding may have more interactions with animal microbiomes through

direct contact with animals and manure, which could increase their microbiome diversity.

These exploratory findings should be investigated in future studies.

In the analysis reported above, we tested the sensitivity of our results based on three differ-

ent OTU picking methods. While each clustering method has strengths and weaknesses, for

microbiomes that contain high proportions of sequences not represented in databases, de novo
picking is preferred to closed-reference picking [25]. Only 28.5% of reads in this study were

mapped to the Silva database (15.6% more than were assigned using the Greengenes database).

The de novo and closed reference picking methods showed very similar results, while the

Swarm picking method led to lower OTU counts and the resulting analyses showed no statisti-

cally significant microbiome sharing between any household samples. This may be because,

for this dataset, the Swarm method created a large number of OTUs with singleton reads,

which were subsequently filtered out. For complex, diverse microbiome datasets across differ-

ent host species, such as in this case, de novo picking may be the most appropriate option [25].

Regardless of the picking method used, chicken microbiome samples showed a low proportion

of OTUs that could be assigned, indicating the need for improved reference libraries for non-

human host species.

This study was conducted in a unique population of livestock-owning households in west-

ern Kenya. Strengths of this study include the relatively large sample size and a representative

sampling frame. Nonetheless, the study also had a number of limitations. The cross-sectional

nature of the sampling limits any inference regarding the directionality of transmission of

microbiome elements between people, animals, and surfaces. Additionally, nearly 48% of the

samples (78% of living space, 77% of chicken, 55% of cooking area, 19% of cow, and 13% of

human samples) either failed PCR amplification or did not produce usable libraries during

sequencing. This low yield may be due to low DNA mass or the presence of PCR inhibitors. In

particular, the cloacal swabs from the chickens often did not produce sufficient DNA for analy-

sis. Previous studies of chicken gut microbiomes have involved harvesting of entire gut con-

tents, which provides large quantities of DNA [42, 43], while our study relied on cloacal swabs

from living animals. Additionally, although samples were immediately placed on ice, transit

time to the facility where they were frozen was approximately one hour. This may have led to

some DNA degradation, although previous studies have found that room temperature storage

for up to three days did not impact DNA quality[44]. It is possible that physical factors such as

type of household construction and duration of stay in household could affect microbiome

composition and sharing- while our survey did not include information about construction

type this should be explored in future studies. Finally, the questionnaire-based predictors for

the analysis of correlates of microbiome diversity and sharing involved some subjectivity and
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were subject to the memory of caregivers. We anticipate that this would lead to a nondifferen-

tial, nullifying impact on the observed relationships.

Conclusion

In rural villages, the gut microbiome of children appears to be shared between children within

the same household. Some children may also share microbiome components with nearby ani-

mals, although this effect does not appear to be consistent across the population. Microbiome

diversity of children varied with wealth status and livestock contact. Because the gut micro-

biome plays a critical role in child health, our findings suggest that the health of household

members should be considered linked, and that antibiotic use and livestock interactions

among a single child in a household can have implications for the microbiome of other chil-

dren in the home.
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