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ABSTRACT
Plants respond to hypoxic stress through either acclimation to the stress or avoidance of it, as they do to
most environmental stresses. The hypothesis that has general consensus among the community is that
ethylene response factors (ERFs) are central elements that control both types of responses to hypoxia.
Recent studies suggest that this may not be the case for all cells experiencing hypoxic stress. Mature
maize root cells undergoing hypoxic stress were found to undergo acclimation and avoidance
mechanisms involving ERFs, whereas meristematic root cells and cells still undergoing differentiation
acclimated to the response without the involvement of ethylene synthesis or ERFs. Phytoglobins (PGBs)
and NO were demonstrated to be components critical to the acclimation response. These findings are
discussed relative to the possibility that PGBs may be acting as molecular switches controlling cellular
stress responses and hormonal changes and responses in cells.
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Introduction

Plants respond to hypoxic stress, as they do to with most environ-
mental stresses, by altering their metabolism and growth to avoid
the stress and/or acclimate to it.1,2 Avoidance mechanisms gener-
ally involve altering growth patterns or sacrificing cells and/or tis-
sues that are not critical to the survival of the organism to gain
access to non-stress environments, or to await a more hospitable
environment. Acclimation comes into play to ensure that cells and/
or organs survive the hostile environment.

These concepts are best exemplified during freezing stress, when
plants enter a day length driven growth cessation and dormancy
period to avoid the stress 3 and further acclimate to it through a
low temperature-driven process that reduces the potential for ice
crystal formation in vital cells and organs.4 While the 2 triggering
processes, light and temperature have interacting effects, the pro-
cesses that affect growth cessation and dormancy are distinct from
those that influence survival to ice crystal formation.

One of the more studied hypoxia-avoidance mechanisms
used by some plants is the formation of aerenchyma that per-
mits oxygen movement within hypoxic roots.5 After prolonged
exposure to low oxygen levels, cortical cells within the mature
region of the root initiate program cell death (PCD), a process
that leads to the formation of aerenchyma. The death program
is precluded in the root apical meristem (RAM) harboring the
“stem” cells. Retention of a functional (RAM) is an acclimation
mechanism that allows hypoxic roots to grow and escape con-
ditions of low oxygen levels, and to produce vigorous root sys-
tems upon the re-establishment of normoxic conditions.
Decision on whether a cell dies, as is the case for aerenchyma-
forming cortical cells, or survive, as is the case for meristematic

cells, appears to be controlled by cell and tissue-specific mecha-
nisms managing ethylene synthesis and response.6

Ethylene: A common denominator in avoidance or
acclimation to hypoxic stress

There is strong evidence that processes associated with ethylene are
critical in the plant’s capability to tolerate hypoxic stress.1,2 Of the
myriad of physiologic responses resulting from low oxygen stress,
most have ethylene as a common denominator.2 Thus, ethylene
has long been recognized as a factor during hypoxic avoidance
strategies including adventitious rooting and aerenchyma forma-
tion in maize,7 hyponastic growth and petiole elongation in
Rumex,8,9 and in stem elongation in deep-water rice.10

Ground-breaking studies have demonstrated the importance of
the Sub1A and Sub1C alleles of the Sub1 locus in affecting submer-
gence survival of lowland rice,11 while the same locus has been
shown to be involved in internode elongation during submergence
of deep-water rice.12 Ethylene response factors (ERFs) are the cen-
tral elements within the Sub1 locus regulating these events, result-
ing in considerable attention to the role of these factors in the
hypoxic response. The involvement of the N-end rule pathway in
the turnover of ERFs,13,14 has resulted in proposals that N-cysteine
oxidase, a main component of the N-end rule pathway, may act as
an oxygen sensor 14 and/or a nitric oxide (NO) sensor 15 in regulat-
ing the hypoxic response. The N-end rule pathway is likely one of
several mechanisms regulating the hypoxic response,16 but it only
possesses the ability to control the ethylene response pathway by
regulating the catabolism of ERFs, presumably determined by the
availability of O2 and/or NO.
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Besides participating in avoidance responses, ethylene is consid-
ered to be involved in acclimation strategies.1,17 In examining the
response of hypoxic maize roots 6 the execution of the avoidance or
acclimation pathway was dependent on how cells managed ethyl-
ene synthesis and response, and was associated with the develop-
mental stage of the cells along the root profile. Meristematic or
early differentiating cells in proximity of the root apical meristem
suppressed pathways associated with ethylene synthesis and
response that resulted in acclimation, i.e. improved cell survival
and root growth during hypoxia. This was in contrast to fully dif-
ferentiated cells in more mature sections of the root where hypoxia
induced ethylene synthesis and response genes, accompanied by
increased levels of NO and reactive oxygen species (ROS) with evi-
dence of PCD, processes normally associated with the formation of
aerenchyma.

Do phytoblobins act as a molecular switch for
acclimation or avoidance responses?

Phytoglobins (Pgbs) are highly expressed in the root tip18,19 and
are effective scavengers of NO,20 a signal molecule integrated in
ethylene signaling. It has been established that NO modulates
ethylene production in the hypersensitive response 21 and that
Pgbs mediate that response.22 Many hypoxic responses are also
regulated by Pgbs through NO;6,23,24,25 some of these responses
are linked to ethylene. For example, suppressing either Pgb1 or
Pgb2 expression in Arabidopsis resulted in increased produc-
tion of both ethylene and NO during hypoxia 25 It was also
noted that root flooding resulted in increased shoot Pgb1
expression that correlated with ethylene-induced hyponastic
growth. The authors conclude that Pgbs may influence hypo-
nasty through both ethylene-dependent and ethylene-indepen-
dent pathways and hypothesize that this occurs through the
Pgb-scavenging of NO. Suppression of Pgb in maize suspension
cultures was found to increase ethylene levels in either nor-
moxic or hypoxic conditions, while imposing hypoxic condi-
tions actually reduced ethylene production compared with
normoxia in the suspension cultures.24 Suppressing Pgb
enhanced ACC oxidase enzyme activity as opposed to affecting
genes associated with ethylene synthesis.

The link among Pgb, NO and ethylene holds true also for accli-
mation and avoidance responses of hypoxic roots. Aerenchyma
formation, a hypoxia-avoidance strategy, occurs in fully differenti-
ated cortical cells as a consequence of reactive oxygen species
(ROS) and ethylene-induced PCD.1 In maize, ethylene-induced
aerenchyma formation requires the up regulation of respiratory
burst oxidase genes, producing ROS and culminating with PCD.26

Execution of the death program was precluded by the use of an
NADPH oxidase inhibitor. Reducing Pgb expression during hyp-
oxia resulted in elevated NO levels that induced the expression of
respiratory burst oxidase homologs (RBOHs), ethylene-associated
genes, and PCD.6 Phytoglobins, like other hemoglobins, are only
known to sequester a few gaseous ligands, like oxygen andNO, and
react in the oxygenated form in redox reactions, such as the conver-
sion of NO to nitrate reviewed in.20 The most immediate explana-
tion for the above observations would, therefore, be related to
oxygen binding and/or reaction with NO, upstream of ethylene
synthesis and response.

If conditions of low Pgb expression increase NO, ethylene
synthesis and responses, and PCD in aerenchyma-forming cor-
tical cells, elevated Pgb levels have opposite effects. This is the
case of meristematic and differentiating cells of hypoxic RAMs
where the high levels of Pgbs reduce NO, the expression of eth-
ylene synthesis and responses, and ultimately protect cells from
dying.6 Therefore, presence or absence of Pgbs is a factor deter-
mining whether root cells undergo acclimation (in meriste-
matic and differentiating cells) or avoidance (in fully
differentiated cells) during hypoxia. Meristematic and differen-
tiating cells experienced more general and larger increases in
Pgb expression during hypoxia, whereas in mature cells Pgb
expression was more localized to specific cell types.

One debatable question resulting from Mira et al.6 is whether
the effects of NO occur upstream of the ethylene synthesis and
response pathways or downstream of them. The suggestion that
Pgbs and NO act downstream of ERFs in the hypoxic stress
response 2 is difficult to reconcile with the observation that, in the
meristematic tissue of hypoxic roots, an elevation of NO by sup-
pressing Pgb increases ethylene synthesis and response genes. This
discrepancy might be the result of the different physiologic state of
the cells where these processes occur.

If NO is acting in signal transduction pathways27 and Pgbs
are involved in regulating signal transduction they must be
present in the cell nucleus. This has been shown to be the case
in rice 28 and alfalfa.29 Furthermore, the concentration of Pgb
in the alfalfa cell nucleus was found to be higher than that in
the cytoplasm. The concept of Pgb regulating signal transduc-
tion is supported by recent work from our laboratory showing
that Pgb is effective in enhancing Arabidopsis somatic embryo-
genesis only when it is targeted to the nucleus.30

Phytoglobins at the crossroads of hormonal responses

In attempting to determine how the expression of Pgbs, by regulat-
ing cellular NO levels, could affect ethylene-induced events during
hypoxic stress, it may be instructive to look at research examining
the effects of Pgb expression on hormonal pathways regulating
somatic embryogenesis. Suppression of Arabidopsis Pgb2
enhanced auxin-induced somatic embryo formation by increasing
the expression of genes related to auxin synthesis.31 This enhance-
ment was attributed to increase cellular NO levels, as a result of
reduced Pgbs, that inhibited the transcription factor MYC2, a
repressor of the auxin biosynthetic pathways.32 Further studies
indicated that the more immediate effect of NO was on genes
related to jasmonic acid synthesis, yielding elevated jasmonic acid
levels that in turn suppressedMYC2 and increased JAZ1, resulting
in stimulated auxin synthesis.33,34 ERFs integrate signals from eth-
ylene and jasmonate in plant defense 35 and there is some evidence
that MYC2 may interfere upstream of ERF1 to regulate these
responses.36 In addition, MYC2 antagonizes ethylene-promoted
apical hook formation in Arabidopsis by repressing EIN3.37

A model accounting for the cell-specific regulation of
acclimation and avoidance in hypoxic roots

Cell-specific management of ethylene synthesis and response
appears to be a determinant factor in acclimation and avoid-
ance strategies of hypoxic roots (Fig. 1). Our results suggest
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that this management occurs through Pgbs controlling NO lev-
els in specific cell types. In fully differentiated cortical cells of
hypoxic root tissue, the low expression of Pgbs allows accumu-
lation of NO, a suppressor of MYC2.31,33,34 As MYC2 represses
ethylene responses,38 its suppression promotes ethylene
responses and the up regulation of NADPH oxidase resulting

in the death of cortical cells by PCD. These processes, possibly
mediated by metacaspases which are executors of the death
program and inhibited by Pgbs (Fig. 2A), lead to the formation
of aerenchyma, an avoidance strategy. In meristematic or early
differentiating cells the ethylene-induction of PCD is repressed
due to the scavenging of NO by Pgbs that are preferentially

Figure 1. Schematic representation of Pgb-regulation of avoidance (aerenchyma formation) and acclimation (maintenance of a functional root meristem) responses in
hypoxic maize roots. The gradient of Pgb along the root profile determines the type of response. High levels of Pgbs at the root tip lower the hypoxia-induced accumula-
tion of ethylene by scavenging NO, and attenuate ethylene responses possibly through regulation of MYC2. These effects reduce ROS-induced PCD and auxin over-pro-
duction in the meristematic cells that remain functional. In mature tissue, characterized by low expression of Pgb, the accumulation of ethylene triggers PCD contributing
to the formation of aerenchyma (�). In this response NO production is also induced by ethylene. Repressed responses are faded. ACS, 1-aminocyclopropane-1-carboxylic
acid synthase; ACO, 1-aminocyclopropane-1-carboxylic acid oxidase; ERFs, ethylene response factors; RBHOs, respiratory burst oxidase homologs.

Figure 2. Relative expression of metacaspase 9 (A) and indole-3-acetamide hydroxylase (AMI) (B) in root tips (0–2mm) and mature root segments (10–20 mm) of maize
seedlings subjected to 4% oxygen treatments. Values § SE are means of 3 biologic replicates and are normalized to the WT value of 0 hours (set at 1). Root segments
were harvested from WT seedlings and seedlings over-expressing (S) or down-regulating (A) Pgb1.1 and Pgb1.2.
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expressed at the root tip. Presence of Pgbs in the meristematic
cells of hypoxic roots might also be required to prevent the
accumulation of indole-acetic acid (IAA), possibly by suppress-
ing the expression of the last IAA biosynthetic enzyme indole-
3-acetamide hydroxylase (AMI) (Fig. 2B). Over-production of
IAA in the RAM induces the differentiation and consumption
of the stem cells leading to an arrest in root growth.39 These
acclimation strategies ensure the survival of the stem cells,
which upon the re-establishment of non-stress conditions can
resume their activity and contribute to the growth of a func-
tional root. If it holds true, this model argues that execution of
acclimation and avoidance strategies is cell specific and depen-
dent on the “physiologic” state and age of the cells. While the
presence of Pgbs in young cells triggers acclimation responses,
their absence in more mature cells triggers avoidance responses.
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