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ABSTRACT

Oxalic acid is the simplest of the dicarboxylic acids. In addition to its role in biological and metabolic
processes, oxalate has been implicated in biotic and abiotic stresses. Being a strong chelator of Al, oxalate
also has pivotal role in Al resistance mechanisms. However, we demonstrated that cytoplasmic oxalate
accumulation is a critical event leading to root growth inhibition under Al stress. Transcriptome analysis
from three crop plants identified Acyl Activating Enzyme3 (AAE3) genes to be upregulated by Al stress.
These AAE3 proteins display high sequence identity to known AAE3 proteins, suggesting they are oxalyl-
CoA synthetases specifically involved in oxalate degradation. However, phylogenetic analysis revealed
divergence of AAE3 between monocots and dicots, pointing to the necessity for functional
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characterization of AAE3 proteins from other plant species with respect to Al stress.

Aluminum toxicity constraints severely crop production on
acid soils which comprise approximately 50% of world poten-
tially arable lands." However, many native plants and some
crops thrive on these acidic soils, implicating that they have
evolved sophisticated mechanisms to deal with Al toxicity. In
general, plant Al resistance mechanisms can be classified into
external exclusion mechanism or internal tolerance mecha-
nism.>* The external exclusion mechanisms are those that pre-
vent Al from entering the root apex (both apoplasm and
symplasm), and internal tolerance mechanisms refer to those
that detoxify and sequester Al once it enters the plant.>” Hav-
ing strong binding capacity to Al and being ubiquitous in plant
cells, organic acid anions, mainly citrate, malate and oxalate,
are key component of both mechanisms.>**

Before the cloning and characterization of genes encoding
transporters that facilitate malate and citrate exudation, many
studies have focused on improvement of plant Al resistance
through genetic manipulation of malate and citrate biosynthe-
sis.’ Although some reports remain uncertain,” others believe
that increasing OA content will improve Al resistance either
through increased exudation or internal detoxification.>*'*"!?
However, the information on the relationship between oxalate
content and Al resistance is still lacking.

Intuitively, increasing oxalate content in root cells will be
beneficial for Al resistance. However, we previously demon-
strated that oxalate accumulation is harmful for root growth in
response to Al stress in rice bean (Vigna umbellata)."> We fur-
ther identified a gene VUAAE3 (Vigna umbellata Acyl Activat-
ing Enzyme3) that converts oxalate to oxalyl-CoA, thereby
preventing oxalate toxicity induced by Al stress."> Although in
silico analysis revealed that AAE3 proteins seem to be

conserved among plant species, more evidence is required to
support the viewpoint that AAE3 proteins-dependent Al resis-
tance mechanism is conserved among plant species. In the
present study, we provided more compelling evidence that reg-
ulating of cytoplasmic oxalate homeostasis by AAE3 proteins
provides additional layer of Al resistance mechanisms in plants.

We have carried out transcriptome analysis of Al-respon-
sive genes from crops including rice bean, common buck-
wheat (Fagopyrum esculentum), and amaranth (Amaranthus
hypochondriacus) (unpublished data). From upregulated
genes, one of consistently identified were AAE3 genes
(Fig. 1). In a previous study, we found that VUAAE3 tran-
scripts were frequently identified in the upregulated sup-
pression subtractive hybridization libraries both under low
and high Al stress conditions.'* To date, AAE3 proteins
from rice bean, Medicago truncatula, and Arabidopsis (Ara-
bidopsis thaliana) have been characterized as oxalyl-CoA
synthetases.'>'>'® Here, amino acid sequence alignment
revealed that AAE3 proteins from common buckwheat and
amaranth display high identity with known AAE3 proteins,
all having a conserved AMP binding domain and acetyl-
CoA synthetase domain (Fig. 2). Although the biochemical
and molecular biological characterization of FeAAE3 and
AhAAE3 proteins has to be investigated, it is reasonable to
suggest that they also function as oxalyl-CoA synthetases.
Given that AAE3 protein is characterized by having activi-
ties specific to oxalate,’”'>'® the upregulation of AAE3
genes suggests that oxalate accumulates under Al stress.

It is worth to note that common buckwheat and amaranth
plants are oxalate accumulators.'” However, both plant species
have evolved AAE3-dependent regulation of cytoplasmic
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Figure 1. AAE3 gene transcription in response to Al stress in rice bean (VUAAE3),
buckwheat (FeAAE3-1 and FeAAE3-2), and amaranth (AhAAE3). The data was based
on the transcriptome analysis of roots under Al stress (25 uM, 6 h for rice bean,
20 uM, 6 h for buckwheat, and 10 uM, 6 h for amaranth). The expression level
expressed as RPKM (the Reads Per kb Million reads) value.
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oxalate content under Al stress, suggesting that cytoplasmic
oxalate content must be tightly controlled. Clearly, free oxalate
in cytosol is toxic, because it represents a strong acid, reductant,
and chelator.'® In line with our expectations, transgenic Arabi-
dopsis plants overexpressing a bacterial oxalic acid biosynthetic
enzyme gene displayed not only significant increase in oxalate
content, but also a reduction in plant stature as well as a pro-
nounced delay in bolting and seed set."”

In addition to AAE3-dependent degradation of oxalate,
oxalate can be oxidized into CO, and H,0, by oxalate oxidase
that belongs to germin protein family. However, it seems that
oxalate oxidase is only present in monocots. Thus, question
arises as to whether AAE3 proteins from monocots also play
important role in regulating cytoplasmic oxalate homeostasis,
because phylogenetic analysis clearly indicated that AAE3
proteins are evolutionally separated between dicots and
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Figure 2. Amino acid sequence alignment of AAE3 proteins from rice bean (VUAAE3), Arabidopsis (AtAAE3), Medicago truncatula (MtAAE3), Amaranthus hypochondriacus
(AhAAE3), and Fagopyrum esculentum (FeAAE3-1 and FeAAE3-2). The conserved AMP binding domain and acetyl-CoA synthetase domain are indicated.



—

CaAAE3 (NP_001311686)

SIAAE3 (XP_004234395)

L VWAAE3 (XP_002267459)

PLAAE3 (XP_002322473)

& AtAAE3 (AT3G48990)

PVAAE3 (XP_007143422)
MtAAE3 (XP_003599555)

g @ VUAAE3 (KX354978)
GmAAE3 (XP_003534000)

—— A AhAAE3

RCAAE3 (XP_002509782)

@ FeAAE3-1

@ FeAAE3-2

BAAAE3 (XP_003579506)

0sAAE3 (0s04g0683700)

HvAAE3 (BAKDO674)

SIAAE3 (XP_004960018)
{ [ SbAAE3 (KXG27467)

ImAAE3 (AEY64280)
Physcomitrella patens (XM_001755519)

PLANT SIGNALING & BEHAVIOR e1276688-3

D ots

M onocots

AAE13 (AT3G16170)

Escherichia coli (KJ543568)
AT4G05160
AT4G19010

Chlamydomonas reinhardtii (XM_001700158)

Figure 3. Evolutional relationship of AAE3 proteins. AAE3 proteins are derived from dicots: Capsicum annuum (CaAAE3), Solanum lycopersicum (SIAAE3), Vitis vinifera
(VWAAE3), Amaranthus hypochondriacus (AhAAE3), Populus trichocarpa (PtAAE3), Arabidopsis thaliana (AtAAE3, AtAAE13, At4g05160, and At4g19010), Phaseolus vulgaris
(PVAAE3), Ricinus communis (RCAAE3), Medicago truncatula (MtAAE3), Vigna umbellate (VUAAE3), Glycine max (GmAAE3), Fagopyrum esculentum (FeAAE3-1 and FeAAE3-
2); monocots: Brachypodium distachyon (BAAAE3), Oryza sativa (OsAAE3), Setaria italic (0SIAAE3), Hordeum vulgare (HVAAE3), Sorghum bicolor (SbAAE3), Zea mays
(ZmAAE3); Embrophyte (Physcomitrella patens); Bacteria (Escherichia coli); Chlorophyte (Chlamydomonas reinhardtii).

monocots (Fig. 3). In the future, it would be necessary to
characterize the role of AAE3 proteins from buckwheat and
amaranth as well as those from monocots in Al resistance.
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