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Rice OsERF71-mediated root modification affects shoot drought tolerance
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ABSTRACT
Drought is the most serious problem that impedes crop development and productivity worldwide.
Although several studies have documented the root architecture adaption for drought tolerance, little is
known about the underlying molecular mechanisms. Our latest study demonstrated that overexpression
of the OsERF71 in rice roots under drought conditions modifies root structure including larger aerenchyma
and radial root growth, and thereby, protects the rice plants from drought stresses. The OsERF71-mediated
root modifications are caused by combinatory overexpression of general stress-inducible, cell wall-
associated and lignin biosynthesis genes that contribute to drought tolerance. Here we addressed that the
OsERF71-mediated root modifications alter physiological capacity in shoots without evidence of
developmental changes for drought tolerance. Thus, the OsERF71-mediated root modifications provide
novel molecular insights into drought tolerance mechanisms.
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Plants have evolved adaptive strategies to cope with the drought
stress. Particularly, root architecture modification provides an
informative example for plant response to drought stress. Plant
roots are capable of detecting soil information such as water
contents. Upon drought perception, plants give rise to root
structural modification including length, number and radial
expansion.1-8 Alternatively or simultaneously, plant roots
release uncharacterized drought-inducible signals that move to
the aerial parts of the plants and confer drought tolerance to
the shoot.9-14 Although several studies have documented the
root adaption for drought tolerance, little is known about the
underlying molecular mechanisms not only that give rise to
root morphological modification but also by which the root
morphological adaptation affects plant capacity to drought
stresses. Our latest study in Plant Physiology investigated
drought-inducible rice OsERF71 transcription factor and
explored the molecular mechanisms for drought-related root
morphological adaptation that enhance plant capacity against
drought stresses.15

OsERF71-mediated root modification for drought
tolerance

Expression of OsERF71, a gene for an AP2/ERF transcrip-
tion factor, is drought-inducible in an ABA independent
mechanism. Overexpression of OsERF71 under the control
of two different promoters, driving expression either in
whole plant body (GOS2 promoter), or specifically in root
(RCc3 promoter), results in drought-tolerant phenotypes at

the vegetative growth stage. In addition, the transgenic rice
plants with root-specific OsERF71 expression show the
enhanced grain yield under drought stress in rice paddy
field. These data indicate that the OsERF71 overexpression
in roots is sufficient to confer drought tolerance. The
OsERF71-mediated drought tolerance is connected to a root
structure adaptation. The OsERF71 overexpression in roots
alters radial root growth including larger aerenchyma and
more cell layers between metaxylem cells. The larger aeren-
chyma are a root modification commonly found in drought
tolerant rice plants, such that overexpression of OsNAC5,
OsNAC9 and OsNAC10 activates radial root growth that
enhances tolerance to drought stress.4,6,7 Maize roots with
large cortical aerenchyma also promote drought tolerance
since it reduces the metabolic cost of soil exploration under
water stress, permitting greater root growth and water
acquisition from drying soil.16 In addition to radial root
growth, root elongation and high number of roots are
associated with root structural adaptation to drought
stresses.3,5,8 For example, rice inbred lines (IR20 £ MGL-2)
with long and thick roots exhibit enhanced drought toler-
ance.1 What is more, overexpression of TaNAC2 and HRD
(HARDY) in A. thaliana or rice promotes primary and lat-
eral root growth, increases root numbers and thereby
enhances drought tolerance.3,5 In this way, the drought-
inducible OsERF71 that over-produced in rice roots under
drought conditions, modifies root structure including larger
aerenchyma and radial root growth, and thereby, protects
the rice plants from drought stresses.
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Molecular mechanisms of the OsERF71-mediated drought
tolerance

In our latest study of Plant Physiology, genome-wide analysis
was performed to identify numerous downstream genes that
are upregulated by OsERF71 transcription factor in the trans-
genic rice roots. They are divided into three categories: general
stress-inducible genes, cell wall-associated genes, and lignin
biosynthesis genes. Cell wall-associated proteins such as
EXPANSIN, CHITINASE, and PECTINESTERASE are
thought to be important for plant adaptation to drought stress
by modifying root structure such as larger aerenchyma.17-19

Additionally, OsERF71 controls lignin biosynthesis genes in
roots by directly regulating the expression of CINNAMOYL-
CoA REDUCTASE 1 (OsCCR1), a key gene in lignin
biosynthesis. Since lignin is a key component of cell wall,
OsERF71-mediated lignification contributes to cell shape and
physiological modification together with other upregulated cell
wall-associated genes and thereby, induces radial root growth.
Furthermore, root lignification is known to be triggered by
drought stress,20-22 suggesting that the hydrophobic lignin
property prevents water transpiration from plant tissues under
drought conditions. Consequently, the OsERF71-mediated cell
wall modifications such as lignification and cell wall loosening
provide molecular insights into drought tolerance mechanisms
via root structural adaptations.

Can the OsERF71-mediated root modification enhance
shoot drought tolerance?

OsERF71 overexpression in rice roots induces drought tol-
erance in whole rice plants. To understand whether the
OsERF71-induced root modification affects shoot capacity
against drought stress, the photochemical efficiency of pho-
tosystem II that is determined by Fv/Fm measurements and
that is reduced by drought stress, was analyzed with
detached leaf discs from transgenic leaves. We treated leaf
discs with drought stress for 1 h, because NT (non-trans-
genic) leaves exhibit a rapid decrease in Fv/Fm values as
early as 1 h after the onset of the drought treatment. Under
non-drought conditions, the Fv/Fm values were approxi-
mately 0.8 in leaf discs from two-week-old transgenic and
NT rice plants (Fig. 1); however, under drought conditions,
OsERF71 overexpression lines showed 20–35% higher Fv/Fm
values than those of the NT controls (Fig. 1). These data
suggest that OsERF71 overexpression in rice root is suffi-
cient to enhance drought tolerance in rice shoots.

How does the OsERF71-mediated root modification affect
shoot drought capacity against drought stress? The OsERF71-
mediated root modification may affect developmental changes
of shoots. For example, drought treatment to roots causes leaf
growth inhibition and stomatal behavior modification together
with leaf cell-wall-hardening via osmotically generated hydrau-
lic signals and ABA.13,23-25 Inhibition of leaf growth is often a
primary plant response to moderate water stress.23,26 However,
since we found no developmental abnormality in shoots of
OsERF71 overexpression rice plants, it is not persuasive. Alter-
natively, plant shoots get drought tolerant capacity based on
physiological modification without developmental changes.

The OsERF71 overexpression rice leaves may have high water
content due to reduction of water loss in roots by OsERF71-
mediated root lignification. For example, transcription levels of
two maize lignin biosynthesis CCR1 and CCR2 genes are
increased after only 1 hr of drought stress treatment in the root
elongation zone.20 Accumulation of lignin in the root is
involved in water loss prevention and, therefore can supply
water to the aerial part of plants.27 Thus, the OsERF71-
mediated root lignification modifies physiological capacity in
shoots for drought tolerance.
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