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Abstract

Invariant NKT (iNKT) cells can be activated to stimulate a broad inflammatory response. In

murine models of sickle cell disease (SCD), interruption of iNKT cell activity prevents tissue

injury from vaso-occlusion. NKTT120 is an anti-iNKT cell monoclonal antibody that has the

potential to rapidly and specifically deplete iNKT cells and, potentially, prevent vaso-occlu-

sion. We conducted an open-label, multi-center, single-ascending-dose study of NKTT120

to determine its pharmacokinetics, pharmacodynamics and safety in steady-state patients

with SCD. Doses were escalated in a 3+3 study design over a range from 0.001 mg/kg to

1.0 mg/kg. Twenty-one adults with SCD were administered NKTT120 as part of 7 dose

cohorts. Plasma levels of NKTT120 predictably increased with higher doses. Median half-

life of NKTT120 was 263 hours. All subjects in the higher dose cohorts (0.1 mg/kg, 0.3 mg/

kg, and 1 mg/kg) demonstrated decreased iNKT cells below the lower limit of quantification

within 6 hours after infusion, the earliest time point at which they were measured. In those

subjects who received the two highest doses of NKTT120 (0.3, 1 mg/kg), iNKT cells were

not detectable in the peripheral blood for a range of 2 to 5 months. There were no serious

adverse events in the study deemed to be related to NKTT120. In adults with SCD,

NKTT120 produced rapid, specific and sustained iNKT cell depletion without any infusional

toxicity or attributed serious adverse events. The next step is a trial to determine NKTT120’s

ability to decrease rate of vaso-occlusive pain episodes.

Trial Registration: clinicaltrials.gov NCT01783691.
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Introduction

Vaso-occlusion (VO) of post-capillary venules is the predominant cause of morbidity and

mortality for patients with sickle cell disease (SCD) [1]. More than just the occlusion of sickle

erythrocytes, VO involves multi-cellular interactions between leukocytes, platelets, endothelial

cells, as well as normal and sickle-shaped erythrocytes [2]. Pro-inflammatory cytokines pro-

mote these interactions through activation of vascular endothelium and leukocytes, along with

the recruitment of additional cells to the site of VO [3]. Invariant NKT (iNKT) cells, a cell type

known to produce significant amounts of pro-inflammatory cytokines, may be of particular

importance in the pathogenesis of VO [3].

Resident in the peripheral blood as well as many organs (liver, spleen, lymph nodes, omen-

tum, lung, eye and kidney), iNKT cells are a unique subset of lymphocytes with characteristics

of innate and adaptive immunity [4]. Similar to cells of the adaptive immune system, such as

conventional T cells, iNKT cells are activated by T cell receptor (TCR) engagement of antigens

displayed on antigen presenting cells (APCs). Unlike conventional T cells, which express a

broad TCR repertoire and recognize specific pathogenic proteins, the TCR of iNKT cells is

invariant (Vα24Jα18Vβ11) and recognizes the non-specific pattern of glycolipids presented

by CD1d, an MHC class 1-like molecule expressed on antigen presenting cells [5]. Although

these glycolipids may be derived from microbes, in the pathogenesis of SCD they are likely

endogenous [6]. One mechanism is thought to involve danger-associated molecular patterns

(DAMPs), which may be generated during VO and can activate toll-like receptors on APCs to

synthesize and present glycolipids to iNKT cells [6]. Another potential mechanism of iNKT

cell activation in SCD is through interactions between secretory phospholipase A2 (sPLA2), a

lipid elevated in the plasma of patients with SCD, and phosphotidylserine (PS), a lipid abnor-

mally exposed on the outer membrane of sickle erythrocytes [7]. Elevated sPLA2 in the plasma

of patients with SCD may localize to PS on sickle erythrocytes and generate iNKT cell-activat-

ing phospholipids [8–11]. Regardless of the mechanism, once activated, iNKT cells promptly

secrete cytokines (interferon-gamma (IFN-γ), interleukin-4 (IL-4) and others) that can activate

downstream effector cells and vascular endothelium as well as proteolytic enzymes, such as

perforin and granzymes, which can produce tissue injury [12]. This rapid, non-specific activa-

tion, akin to the activation of innate immune cells, enables iNKT cells to instigate and sustain a

broad inflammatory response that is characteristic of SCD and critical to pathogenesis of VO.

Evidence for a role of iNKT cells in VO comes from mice and patients with SCD, both of

which demonstrate a higher percentage of activated iNKT cells in the tissues or peripheral

blood compared to controls [13]. In mice, an accumulation of iNKT cells has also been

observed in target organs, particularly the lung, with further increases noted after VO. Inter-

ruption of iNKT cell activity in mouse models of SCD with an anti-CD1d antibody, an anti-

iNKT cell monoclonal antibody, or an adenosine A2A receptor (A2AR) agonist prevents VO-

induced lung inflammation and injury [13–16]. Based on these preliminary data, we per-

formed a phase 1 study of the A2AR agonist, regadenoson, in 27 adults with SCD. Regadeno-

son, administered as a 24-hour infusion during VO, was shown to decrease iNKT cell activity

by 50% [17]. A phase 2 randomized-controlled trial of regadenoson to determine its efficacy

for the treatment of a VO crisis is underway [3]. There are limitations, however, to the regade-

noson approach. First, regadenoson’s short half-life necessitates an infusion to treat an acute

VO event, which is far less optimal than the prevention of one. Second, regadenoson was only

shown to decrease iNKT activity by 50%. The iNKT cell activity that remains may still contrib-

ute to VO.

NKTT120 is a humanized IgG1κ monoclonal antibody targeted to the Vα24-Jα18 gene-

rearranged invariant TCR that has the potential to rapidly and specifically deplete iNKT cells

NKTT120 depletes iNKT cells in SCD
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[18]. Prior to a phase 2/3 clinical trial of this promising agent, we conducted a study to deter-

mine its pharmacokinetics, pharmacodynamics and safety. Our objective was to identify an

appropriate dose of NKTT120 that safely depletes iNKT cells for 3–6 months. The ultimate

goal of iNKT cell depletion would be a reduction in the systemic inflammatory state that is

characteristic of SCD in order to prevent or decrease the severity of VO and, ultimately, pre-

serve organ function.

Materials and methods

This study was approved by the Human Research Protection Program at Medical College of

Wisconsin, the Human Research Protection Office at Washington University in St. Louis, the

IRB and the Office of Human Research Ethics at the University of North Carolina, and the

Institutional Review Board at Oakland Children’s Hospital. Written consent was obtained

from all subjects prior to participation and all study activities were performed according to the

principles expressed in the Declaration of Helsinki. The study was registered on clinicaltrials.

gov (NCT01783691).

Eligibility

Eligible subjects were adults, aged 18 to 60 years, with HbSS/HbSβ-thalassemia0, who were at

steady-state in the month prior to enrollment without pain events, transfusions, changes in

medications or evidence of active infection. All subjects were required to be up to date with

CDC-recommended immunizations for asplenic patients. Key exclusion criteria included

chronic transfusion therapy, >10 hospital admissions for pain in the year prior to enrollment,

asthma, pregnant or nursing, and a history of stem cell transplant. After enrollment, two iNKT

cell measurements were obtained (at -4 and -2 weeks) to ensure that subjects had detectable

iNKT cell levels before dosing. In order to be eligible, both measurements were required to be

above the lower level of quantification (LLOQ).

Study design

In this study, steady-state adult subjects with SCD were intravenously dosed with NKTT120

over ten minutes without premedication. Doses were escalated in over a range of 0.001 mg/kg

to 1.0 mg/kg (0.001, 0.003, 0.01, 0.03, 0.10, 0.3, 1.0), based on estimates from prior studies of

NKTT120 in cynomolgus monkeys, using a 3+3 design [18]. A 3+3 design examines 3 subjects

per dose cohort, sequentially. If none experience a dose-limiting toxicity (DLT), the dose is

considered safe and dose escalation may occur. If 1/3 subjects experiences DLT, 3 additional

subjects are examined, and, if more than 1 subject experiences a DLT, further dose escalation

is not pursued. The highest dose with� 1 subject experiencing a DLT was defined as the maxi-

mum tolerated dose (MTD). Doses were increased until a MTD, or a dose that depleted iNKT

cells for 3 to 6 months, was reached. The latter would then be the recommended dose level

(RDL) for the phase 2 trial. Notably, in the initial study design, there were 5 doses (0.001–0.10

mg/kg). However, since the MTD was not achieved at 0.10 mg/kg, and some subjects recov-

ered iNKT cell prior to 30 days after dosing, two additional dose cohorts were added (0.30 and

1.0 mg/kg). Subjects were monitored for 6 hours post-infusion and safety laboratory tests were

obtained at 6 hours, day +1, day +2, day +7, day +14 and then monthly. Physical examination

was performed on day +7, day +14 and then monthly. All subjects were followed for at least 2

weeks or until iNKT cells were detectable in circulation.

NKTT120 depletes iNKT cells in SCD
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Laboratory methods

Blood samples were collected for safety labs (CBC, reticulocyte count, chemistries, hepatic

function), as well as pharmacokinetic and pharmacodynamic analyses, which, in addition to

iNKT cell measurement, included an assessment of B and T cells by FACS. Pharmacokinetic

samples were stored as serum and frozen at -70˚C prior to analysis.

Pharmacokinetic assay

Pharmacokinetic analyses were performed with a validated capture assay at MPI Research

(Mattawan, MI). A rabbit polyclonal anti-NKTT120 IgG was used as both the capture and

detection antibody; the detection antibody was also labelled with biotin. Dilutions were then

performed to generate a calibration curve after which optical density was measured at 450 nm.

Data was analyzed with SOFTmax Pro GxP Version 5.3 (Molecular Devices, Inc, Sunnyvale,

California), Watson LIMS Version 7.4 (Thermo Scientific, Philadelphia, Pennsylvania) and

ExyLIMS Version 3.0 (MPI Research, Mattawan, Michigan).

FACS analyses. FACS analyses were performed at the BloodCenter of Wisconsin (Mil-

waukee, WI). Red blood cells were lysed and analyzed as two panels on a FACSCanto™, which

is capable of analyzing 6 colors. The first panel differentiated NK cells, B cells, and T cells

and identified CD4+/CD8+ positive subsets with the antibodies: CD3-PE.Cy7, CD20-APC,

CD56-PE, CD4-PerCPCy5.5, and CD8-FITC. The second panel identified iNKT cells and acti-

vated subsets with the antibodies: CD3-PE.Cy7, CD20-APC, CD4-PerCPCy5.5, CD69-APC.

Cy7, Vα24-PE, and Vβ11-FITC. Controls were also run with the antibodies: CD3-PE.Cy7,

CD20-APC, CD4-PerCPCy5.5, IgG-APC.Cy7, Va24-PE, and Vb11-FITC, and were used to

determine CD69 cutoff. A minimum of 200,000 CD3+ events were acquired. The limit of sen-

sitivity for iNKT cell detection was 0.01% of CD3+ T cells. See S1 Fig for gating strategy.

Outcome measures

Pharmacokinetics. Pharmacokinetics of NKTT120 was determined by plasma measure-

ments of NKTT120 pre- and post-dose at 15 minutes, 30 minutes, 1 hour, 3 hours, 6 hours,

day +1, day +2, day +3, day +7, day +14, and at each monthly visit.

Pharmacodynamics. iNKT cell depletion and recovery was assessed after dosing with

NKTT120 at 6 hours, day +1, day +2, day +7, day +14, and at each monthly visit. Recovery was

defined as return at or above the LLOQ of 0.01%.

Safety. Adverse events of interest were defined as: 1) any adverse event that occurred

within 2 weeks of dosing with the exception of VO pain episodes, 2) any adverse event grade 3

or higher on NCI CTCAE version 4.03, especially study-specific events: cytopenias, infections

and cytokine storm, 3) sickle cell-specific adverse events (hemolysis, VOC within 6 hours or

increased pain within 72 hours of dose). All events of interest were considered potential DLTs

and were reviewed by a scientific review committee that determined attribution of the event to

NKTT120. A DLT was an event of interest attributed to NKTT120.

Data analysis

Sample size. Sample size was determined by the 3+3 study design and the number of

dose-level cohorts (up to 5 to 6 cohorts were initially planned; when MTD was not reached,

additional cohorts were added). Between 2 and 30 subjects were expected to be dosed in the

trial, with 3 to 6 subjects per cohort. In addition, a dose-level cohort that represented the MTD

was to be expanded to 6 subjects to confirm MTD.

NKTT120 depletes iNKT cells in SCD
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Analysis of outcomes

Descriptive statistics of the pharmacokinetic and pharmacodynamic data was provided. Differ-

ences between lower and upper dose cohorts of NKTT120 was measured with Chi-Square or

Fisher’s exact tests for categorical variables and Student’s t or Mann-Whitney U tests for con-

tinuous variables that were normally or non-normally distributed, respectively. When appro-

priate, non-normally distributed variables were log transformed. Spearman’s correlation was

used to determine the relationship between baseline iNKT cell values. Mann-Whitney U test

was used to compare iNKT cell number between those with and without hydroxyurea.

Results

Subjects

A total of 21 subjects were enrolled into 7 cohorts ranging in dose levels between 0.001 mg/kg

and 1.0 mg/kg (Fig 1, Table 1). Approximately half (n = 11) of the subjects had a history of

acute chest syndrome and fewer had the co-morbid conditions of stroke, avascular necrosis,

gall bladder disease or splenic sequestration. Fourteen of the subjects (67%) were treated with

hydroxyurea and 13 subjects (62%) had reported one or more VO pain episode that required

contact with a medical facility in the 12 months prior to study start.

When the recent histories of those in the lower dose cohorts were compared to those in the

higher dose cohorts, there were significantly higher white blood cell and reticulocyte counts in

the subjects assigned the higher dose cohort (Table 1). There were also more pain episodes in

the past year in the higher dose cohorts compared to the lower dose cohorts, as well as a higher

prevalence of avascular necrosis and cumulative number of morbidities (these did not achieve

statistical significance). Although hydroxyurea use was not statistically different between those

in the lower and higher dose cohorts, its use was not equally distributed across dose cohorts.

All subjects in dose cohorts 1, 3, 4, and 6 were prescribed hydroxyurea, as opposed to 1 of 3

Fig 1. Subject flow through study.

doi:10.1371/journal.pone.0171067.g001
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subjects in dose cohort 2 and 7, and no subjects in dose cohort 5. The small numbers in each

dose cohort make it difficult to determine the effect of hydroxyurea, if any, on iNKT cell recov-

ery after dosing.

Pharmacokinetics

After a single intravenous dose of NKTT120, the maximum plasma concentration and area

under the curve increased in a dose-proportional manner (Fig 2). NKTT120 was eliminated

from serum in a biphasic manner, with a relatively short distribution phase (about 3 days) and

median terminal half-lives of 263 hours (range: 98–386 hours).

Pharmacodynamics

In the two pre-drug measures, iNKT cell levels within a subject were highly correlated (r = 0.9,

P<0.01). Pre-drug iNKT cell numbers were not affected by hydroxyurea use (median pre-drug

iNKT cell number for those who used hydroxurea was 0.05% T cells compared to 0.045% T

cells for those who did not, P = 0.3). After a dose of NKTT120, all subjects’ iNKT cell levels

decreased, although the degree and duration of the decrease varied with the dose administered

(Fig 3A). Subjects with higher baseline iNKT cell levels were less likely to deplete iNKT cells

after a given dose, especially in lower dose cohorts, and experienced re-appearance of iNKT

cells in the peripheral blood occurred more quickly (Fig 3B).

Table 1. Demographics, sickle cell disease characteristics and morbidities.

All dose cohorts (n = 21) Lower dose cohorts (n = 12) Higher dose cohorts (n = 9) P

Demographics

Age (years), median (IQR) 26 (10) 24 (14) 30 (10) NS

Gender, % female 38 50 22 NS

SCD characteristics

Hemoglobin (g/dL), mean (SD) 9.0 (1.5) 9.3 (1.4) 8.7 (1.6) NS

Recticulocyte count (106/μL), mean (SD) 0.26 (0.12) 0.20 (0.07) 0.33 (0.12) 0.005

Mean cellular volume (fL), mean (SD) 97.9 (10.5) 98.8 96.7 NS

WBC (k/uL), mean (SD) 8.4 (2.9) 6.8 (2.3) 10.5 (2.3) 0.002

LDH (U/L), mean (SD) 533.4 (313.1) 624 (376) 413 (146) NS

CRP (mg/L), mean (SD) 5.3 (4.8) 5.2 (5.2) 5.4 (4.5) NS

Hydroxyurea, % yes 67 83 44 NS

SCD morbidities

Pain episode in past year, % yes 62 33 89 NS

# pain episodes in past year, mean (SD) 1.1 (1.2) 0.83 (1.4) 1.56 (1.0) NS

ACS, % yes 52 42 67 NS

# ACS lifetime, mean (SD) 1.2 (1.6) 1.17 (1.9) 1.33 (1.2) NS

Stroke, % yes 5 8 0 NS

AVN, % yes 24 8 44 NS

Gallbladder disease, % yes 38 42 33 NS

Splenic sequestration, % yes 19 17 22 NS

# cumulative morbidities*, mean (SD) 0.9 (1.0) 0.6 (0.9) 1.2 (1.0) NS

Definitions: ACS = acute chest syndrome, AVN = avascular necrosis, CRP = c-reactive protein, IQR = interquartile range, LDH = lactate dehydrogenase,

SD = standard deviation, WBC = white blood count.

*cumulative morbidities = ACS + stroke + AVN + gallbladder disease + splenic sequestration.

doi:10.1371/journal.pone.0171067.t001
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Fig 2. Median NKTT120 serum concentrations over time by dose cohort. Shown are the higher dose

cohorts 5 (0.1 mg/kg), 6 (0.3 mg/kg) and 7 (1.0 mg/kg).

doi:10.1371/journal.pone.0171067.g002
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In each of the 4 lower dose cohorts (0.001 mg/kg to 0.03 mg/kg), 2 of 3 subjects’ iNKT cell

values dropped below LLOQ within 6 hours. Of these subjects who dropped below LLOQ,

iNKT cell recovery varied from 1 day to 2 months. All subjects in dose cohort 5 (0.1 mg/kg), 6

(0.3 mg/kg) and 7 (1 mg/kg) decreased iNKT cells below LLOQ within 6 hours (Fig 3A). One

subject in dose cohort 5, however, rose above the LLOQ by day 7. The longest time to iNKT

cell recovery above LLOQ was a subject in dose cohort 5 who required 5 months. In dose

cohort 6, 2 subjects rose above the LLOQ by month 2, with the third rising briefly to the mini-

mum detectable level at month 4, but then returned below LLOQ from months 5 through 8.

Of note, although iNKT cells returned at the LLOQ in month 4, the investigators elected to

continue with monthly iNKT cell measurements in the subject since their values were border-

line detectable and their re-appearance was later than others in the study (up to that point). In

dose cohort 7, subjects recovered at 2, 4 and 5 months after NKTT120 administration.

After recovery of iNKT cells in the peripheral blood, subjects were followed for 1 additional

month. At the end-of-study measurement, it was notable that subjects with high starting levels

of iNKT cells (>0.03%) usually did not recover to their baseline levels. This suggests that for

patients with higher starting levels of iNKT cells more complete depletion may be achieved

with subsequent doses.

No evidence was seen for the theoretical concern that NKTT120 could activate iNKT cells.

Post-dose cytokine measurements were generally low and showed no indication of iNKT cell

activation. There was also no indication of significantly increased iNKT cell activity after

recovery. Of the 7 dose cohorts, only 2 subjects from dose cohort 3 and those in dose cohort 5

showed an increase in the percent of CD69+-activated iNKT cells when end-of-study samples

were compared to pre-drug samples. These differences were not statistically significant. There

were no changes in T or B cell percentages by FACS analysis after treatment with NKTT120 at

any dose (data not shown).

Safety

Subjects were followed for at least 2 weeks after iNKT cell recovery (minimum 2 weeks, maxi-

mum 8 months). No DLTs were experienced in 21 subjects. Seventeen subjects (81%) experi-

enced a total of 69 AEs, of which 57 (83%) were grade 1 or 2 (S1 Table). The most frequently

Fig 3. Invariant NKT cell percent of T cells over time. (A) After NKTT120, days to iNKT cell recovery above the lower limit of quantification

(LLQ) generally increases across 7 dose cohorts, (B) Dose cohorts 1–4 and 5–7 by pre-drug iNKT cell levels expressed as percent of T cells.

Lower pre-drug iNKT cell level is associated with longer recovery time, especially in dose cohorts 1–4.

doi:10.1371/journal.pone.0171067.g003
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reported was VOC and fatigue. Seven subjects (33%) had treatment-related AEs, but none were

grade 3 or higher. An increased occurrence of AEs, including treatment-related AEs, was seen

in the higher dose cohorts, although this may be expected since the duration of follow-up was

significantly longer. Also, patients in the higher dose cohorts may have had more severe or

poorly-controlled disease to begin with. There were more VO events on average in the year

before study entry among the higher compared to the lower dose cohort (0.8 VO events/year in

cohorts 1–4 versus 1.6 VO events/year in cohorts 5–7) and less hydroxyurea use (44% versus

83%). Importantly, regardless of dose cohort, there were no documented infections observed

during the course of the study. Cases occurred in which antibiotics were initiated, but no subject

completed a course of antibiotics. In all cases antibiotics were stopped per the discretion of the

treating physician, likely because no organisms were isolated on microbiology testing. Finally,

the formation of auto-antibodies to NKTT120 or otherwise were a theoretical concern, but there

were no anti-NKTT120 antibodies detected and no signs autoimmune disease in any subject.

Discussion

An intravenous bolus of NKTT120 produced rapid, specific and sustained iNKT cell depletion

without any infusional toxicity or attributed SAEs. Depletion and recovery of iNKT cells was

related to the pre-drug levels in circulation and the dose of NKTT120. At higher doses (0.1,

0.3, 1 mg/kg), all subjects were depleted of iNKT cells within 6 hours, but the length of time

they remained depleted varied between subjects. It could not be determined from this study

whether iNKT cell depletion with NKTT120 decreased the rate of VO pain episodes. A ran-

domized trial, in which repeated therapeutic doses of NKTT120 are administered with the aim

of iNKT cell depletion for long periods, will be required to test NKTT120’s efficacy.

If NKTT120 is to prevent VO, iNKT cells must be reduced in the tissues as well as in the cir-

culation. Peripheral blood iNKT cells represent only a fraction of the total iNKT cell popula-

tion in humans; the remainder resides outside the circulation in the tissues where most iNKT

cell activity occurs [19,20]. Though VO initiates as a vascular event, iNKT cells amplify the cri-

sis at the tissue level. If NKTT120 does not achieve tissue depletion, the target cells will either

re-equilibrate into circulation or promote the process of VO through cytokine production

from the tissues. In the lower 4 dose cohorts, re-equilibration from tissues likely occurred as

there was rapid recovery of circulating iNKT cells. In contrast, the 3 higher doses of NKTT120

produced sustained iNKT cell depletion that lasted beyond the time when NKTT120 could be

detected in the peripheral blood. Here, the target cells were likely depleted in the tissues as well

as the circulation, in which case recovery is a function of the drug’s half-life and the rate of

regeneration for iNKT cells.

iNKT cells are continuously regenerated in the thymus in a unique developmental process

that differs from conventional T cells [21]. Unlike conventional T cells, which mature and

acquire a memory phenotype after exposure to foreign antigens, iNKT cells are constantly

regenerated in the thymus by recognition of endogenous antigens, without the requirement

for prior exposure to a foreign antigen [22]. Thus, after depletion with NKTT120, the popula-

tion of iNKT cells would be expected to completely reconstitute with the same function as

before treatment. In fact, we demonstrated the normal function of iNKT cells upon return

after depletion in non-human primate toxicology studies. iNKT cells from 6 animals from the

highest NKTT120 dose groups that had recovered iNKT cells (0.1 mg/kg and 0.3 mg/kg,

respectively) were compared to iNKT cells in samples from 2 naïve control animals following

treatment with an iNKT cell activating glycolipid, α-galactosylcerimide. iNKT cells were acti-

vated to the same degree in recovered animals and control animals, as reflected by up-regula-

tion of the early activation marker CD69 (unpublished observation).

NKTT120 depletes iNKT cells in SCD
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In contrast, if a clonally-expanded population of memory T cells is pharmacologically

depleted, they can only recover when new emigrants from the thymus, with identically rear-

ranged TCRs, are exposed to similar or identical pathologic antigen as the original insult. This

clonal loss or diminution of memory T cells, a well-known complication of pan-lymphocyte or

T cell-depleting antibodies, can leave holes in immune systems and patients susceptible to

infections. NKTT120, on the other hand, could be dosed repeatedly without permanent effects

on immunity because no loss of memory phenotype is associated with depletion of iNKT cells.

In our study, a dose of 1 mg/kg (dose cohort 7), which depleted all subjects for at least 2

months, would facilitate an every 3 month dose schedule to keep iNKT cells depleted chroni-

cally in both the peripheral blood and the tissues. And, because recovery was defined as return

of iNKT cells above the LLOQ as opposed to pre-NKTT120 levels, fewer iNKT cells will be

present when subjects are re-dosed. Therefore the impact on tissue depletion would be

expected to be greater with multiple doses than with a one-time dose.

No SAEs were attributed to NKTT120 as part of this study, but there are theoretical con-

cerns about long-term iNKT cell depletion: cancer, autoimmunity and infection [23–25]. Mice

with an absence of iNKT cells have a normal life expectancy and normal fertility. They do not

develop cancer, but autoimmune nephritis has been reported [26]. In regards to infection risk,

there is no clear evidence to suggest these mice are predisposed to infections. Studies of iNKT

cell-deficient mice, either CD1d-/- or Jα18-/-, show variable responses when infected with sev-

eral types of bacteria, as well as fungi, protozoa and viruses [27–30]. Absence of iNKT cells

sometimes worsens outcomes and sometimes improves outcomes with no clear relationship to

the nature of the pathogen [27–36]. In humans, there are no reports of a patient with a pure

deficiency of iNKT cells. The evidence to suggest an increased risk of infections due to iNKT

cell deficiency is descriptions of patients with combined deficiencies. One case of disseminated

varicella observed after administration of a live vaccine in a patient with an NKT cell deficiency

has been reported [37]. In this patient, it is not clear whether the deficiency was restricted to

iNKT (Type 1 NKT targeted by NKTT120) cells or included Type 2 NKT (not targeted by

NKTT120) cells as well. In addition, patients with a combined defect in NK and NKT cells

have been reported to have an increased susceptibility to infections with the human herpes

virus family [38]. It is unclear whether the absence of NKT cells contributes to this susceptibil-

ity, though, as patients with a pure defect in NK cells are known to be at risk for infections

with the human herpes virus family. In patients with cancer and autoimmune disease, lower

levels of iNKT cells have been reported, but whether this is a cause or effect of the condition is

not known [39–41].

There were limitations to our study. First, NKTT120 was administered to subjects once.

Longer term studies will be required to assess the risk of NKTT120 therapy. Two subjects,

however, were depleted of iNKT cells for 5 months or greater with no SAEs attributed to

NKTT120. Regardless of the study’s duration, the theoretical risks of the drug must be weighed

against the real risks of VO: the average life expectancy for an adult with SCD is less than 50

years, largely because of VO [1]. Second, the current study only determined pharmacokinetics,

pharmacodynamics and safety. It was not designed to determine the clinical efficacy of

NKTT120. There were admissions for VO pain in our study, even among subjects whose

iNKT cells were depleted. In fact, subjects in the higher dose cohorts, who were depleted for

longer, accounted for the majority of the pain events. However, compared to subjects in the

lower dose cohorts, those in the higher dose cohorts were also followed for a significantly lon-

ger period of time. Additionally, their disease was likely more poorly-controlled and their

phenotype more severe than the lower dose cohorts. Those in higher dose cohorts had less

hydroxyurea use, a higher white blood cell and reticulocyte count, a higher historical rate of

pain admissions, and a higher prevalence of avascular necrosis and cumulative number of
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morbidities compared to the those in the lower dose cohorts. Given the differences between

subjects and lack of a control group, these events provide little insight into NKTT120’s poten-

tial as therapeutic for SCD. NKTT120’s ability to decrease VO and reduce the rate of pain and

inflammation will need to be determined in future studies, with appropriate controls, when

repeated doses of NKTT120 deplete iNKT cells for a length of time sufficient to capture differ-

ences in VO rate. And regardless, no therapy, short of a cure, will likely prevent all episodes of

pain. Hydroxyurea, a highly efficacious therapy for SCD, reduces VO pain rate by 50%, a

reduction in VO which confers a significant mortality benefit [42,43]. If NKTT120 could dem-

onstrate a reduction in pain events similar to hydroxyurea, patients with SCD would benefit

tremendously.

NKTT120 has the potential to impact clinical care for patients with SCD. Through a reduc-

tion in inflammation and prevention of VO events, NKTT120 would add to the limited arma-

mentarium of treatments for patients with SCD. Hydroxyurea is currently the only therapy

approved to prevent VO, but, unfortunately, it’s ineffective in up to 50% patients, mostly

because of the need for daily doses [44]. NKTT120’s dose regimen of every 3 month infusions

in the clinic is a major advantage. Providers will be ensured of patient’s receipt of the drug and

patients will not burdened by a daily medicine. This study determined that up to a 1 mg/kg

dose of NKTT120 could be administered safely with a rapid, yet sustained, effect on iNKT cell

depletion. The next step is a randomized, placebo-controlled clinical trial to determine the

ability of repeat-dose NKTT120 to decrease the rate of VO pain, as well as determine the risks,

if any, to long-term iNKT cell depletion.
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