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One of the major successes in computational biology has been the
unification, by using the graphical model formalism, of a multitude of
algorithms for annotating and comparing biological sequences.
Graphical models that have been applied to these problems include
hidden Markov models for annotation, tree models for phylogenetics,
and pair hidden Markov models for alignment. A single algorithm, the
sum-product algorithm, solves many of the inference problems that
are associated with different statistical models. This article introduces
the polytope propagation algorithm for computing the Newton poly-
tope of an observation from a graphical model. This algorithm is a
geometric version of the sum-product algorithm and is used to
analyze the parametric behavior of maximum a posteriori inference
calculations for graphical models.

his article develops an algorithm for graphical models based

on the mathematical foundation for statistical models pro-
posed in ref. 1 and applies it to biological sequence-analysis
problems. Its relevance for computational biology can be sum-
marized in the following theses:

(i) Graphical models are a unifying statistical framework for
biological sequence analysis.
(i) Parametric inference is important for obtaining biologically
meaningful results.
(iii) The polytope propagation algorithm solves the parametric
inference problem.

1. Inference with Graphical Models for Biological
Sequence Analysis

Thesis i states that graphical models are good models for biological
sequences. This point of view is based on the emerging understand-
ing and practical success of probabilistic algorithms in computa-
tional biology and also on the observation that inference algorithms
for graphical models subsume many apparently nonstatistical meth-
ods. A noteworthy example of the latter interpretation is the
explanation of classic alignment algorithms, such as Needleman—
Wunsch and Smith-Waterman, in terms of the Viterbi algorithm
for pair hidden Markov models (HMMs) (2). Graphical models are
now used for many problems, including motif detection, gene-
finding, alignment, phylogeny reconstruction, and protein-structure
prediction. For example, most gene prediction methods are now
based on HMMs, and previously nonprobabilistic methods now
have HMM-based reimplementations.

In typical applications, biological sequences are modeled as
observed random variables Y1, ..., Y, in a graphical model. The
observed random variables may correspond to sequence elements
such as nucleotides or amino acids. Hidden random variables
X, ..., X, encode information of interest that is unknown but that
one would like to infer. For example, the information could be an
annotation, alignment, or ancestral sequence in a phylogenetic tree.
One of the strengths of graphical models is that, by virtue of being
probabilistic, they can be combined into powerful models in which
the hidden variables are more complex. For example, HMMs can
be combined with pair HMMs to align and annotate sequences
simultaneously (3). One of the drawbacks of such approaches is that
the models have more parameters, and as a result, inferences could
be less robust.

For a fixed observed sequence oy 03 . .. 0, and fixed param-
eters, two types of problems from statistical learning theory are
as follows.
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1. The calculation of marginal probabilities:

E PrOb(X1=h], e

hi, ..., hm

p(rl"'o'”:

Y1=01,...,Yn=an),and

2. The calculation of maximum a posteriori (MAP) log probabil-
ities:
O iig =

oo, min —log(Prob(X, =hy, ..., X, = h,,

i, .. hm

Yl =0 ey Yn = O-n))r
where the /; range over all the possible assignments for the hidden
random variables X;. In practice, the solution to problem 2 is of
interest because it is the one that solves the problem of finding the
genes in a genome or the “best” alignment for a pair of sequences.
A shortcoming of this approach is that the solution h = (A1, . . . , A,,)
may vary considerably with a change in parameters.

Thesis ii suggests that a parametric solution to the inference
problem can help in ascertaining the reliability, robustness, and
biological meaning of an inference result. By parametric inference,
we mean the solution of problem 2 for all model parameters
simultaneously. In this way, we can decide whether a solution
obtained for particular parameters is an artifact or if it is largely
independent of the chosen parameters. This approach has been
applied successfully to the problem of pairwise sequence alignment
in which parameter choices are known to be crucial in obtaining
good alignments (4—6). Our aim is to develop this approach for
arbitrary graphical models. In thesis iii, we claim that the polytope
propagation algorithm is efficient for solving the parametric infer-
ence problem for a small number of parameters. In certain cases,
it is not much slower than solving problem 2 for fixed parameters.
The algorithm is a geometric version of the sum—product algorithm,
which is the standard tool for inference with graphical models.
Although it is exponential in the number of parameters, it is
polynomial in the size of the graphical model.

The mathematical setting for understanding the polytope prop-
agation algorithm is fropical geometry. The connection between
tropical geometry and parametric inference in statistical models is
developed in the companion to this article (1). Here, we describe
the details of the polytope propagation algorithm (section 3) in the
following two familiar settings: the HMM for annotation (section
2) and the pair HMM for alignment (section 4). In section 5, we
discuss some practical aspects of parametric inference, such as
specializing parameters, the construction of single cones (which
eliminates the need for identifying all possible MAP explanations),
and the relevance of our findings to Bayesian computations.

2. Parametric Inference with HMMs

HMMs play a central role in sequence analysis, in which they are
used widely to annotate DNA sequences (7). A simple example is
the CpG island annotation problem (ref. 8, section 3). The com-
putational identification of CpG islands is important because they
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are associated with promoter regions of genes and are known to be
involved in gene silencing.

Unfortunately, there is no sequence characterization of CpG
islands. A generally accepted definition due to Gardiner-Garden
and Frommer (9) is that a CpG island is a region of DNA at least
200 bp in length with a G+C content of at least 50% and a ratio of
observed to expected CpG sites of at least 0.6. This arbitrary
definition has since been refined (e.g., ref. 10); however, even
analysis of the complete sequence of the human genome (11) has
failed to reveal precise criteria for what constitutes a CpG island.
HMMs can be used to predict CpG islands (ref. 8, section 3). We
have selected this application of HMMs to illustrate our approach
to parametric inference in a mathematically simple setting.

The CpG island HMM that we consider has n hidden binary
random variables X; and n observed random variables Y; that
take on the values {4, C, G, T} (see figure 1 in ref. 1). In general,
an HMM can be characterized by the following conditional
independence statements fori = 1, ..., n:

P(Xi|X1,X2, e Xi) :P(Xi|Xi—l),
, Y1) :P(KIXI‘)~

The CpG island HMM has 12 model parameters, namely, the
entries of the following transition matrices:

N N t t t t
g = < 00 01> and T = ( 04 toc toc 0T>_
S10 S11 ta tic tic tr

p(Yl|X17 e ’Xi7 Yl’ cee

Here, the hidden-state space has just two states (non-CpG = 0,
and CpG = 1) with transitions allowed between them, but in
more complicated applications such as gene finding, the state
space is used to model numerous gene components (such as
introns and exons), and the sparsity pattern of the matrix S is
crucial. In its algebraic representation (ref. 1, section 2), the
HMM is given as the image of the polynomial map as follows:

FRZSRY, (S, T) — 2,
he{0,1}n

InyoSnntnyoShony = Shy_ i th,o,

(1]

The inference problem 1 asks for an evaluation of one coordinate
polynomial f,; of the map f. This evaluation can be done in linear
time (in n) by using the forward algorithm (12), which recursively
evaluates the following formula:

1
E Shn—lhnthn—lan—l T
hp-1=0

1
fO': E th,,o-,l(

hn=0

1 1
( > UhohShyor, > nSmey | |77 |- [2]
h2=0 h1=0

Problem 2 is to identify the largest term in the expansion of f,.
Equivalently, if we write u; = —log(s;;) and v;; = —log(t;), then
problem 2 is to evaluate the following piecewise-linear function:
86 = minhnvhn(,” + (minh”?luhn?lh” + Vi + -

n=1%n-1

+ (miny, vy, + e, + (Min, uy 5, + vye)) - o). [3]

This formula can be evaluated efficiently by recursively com-
puting the parenthesized expressions. This evaluation is known
as the Viterbi algorithm in the HMM literature. The Viterbi and
forward algorithms are instances of the more general sum-—
product algorithm (13).

We are proposing, in this article, the computation of the collec-
tion of cones in R'? on which the piecewise-linear function g, is
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Fig.1. TheSchlegel diagram of the Newton polytope of an observation in the
CpG island HMM.

linear. This computation may be feasible because the number of
cones grows polynomially in n. Each cone is indexed by a binary
sequence h € {0, 1}, which represents the CpG islands found for
any system of parameters (i, v;) in that cone. A binary sequence
that arises in this manner is an explanation for o in the sense
described in section 4 of ref. 1. Our results in ref. 1 imply that the
number of explanations scales polynomially with 7.

Theorem 1. For any given DNA sequence o of length n, the number of
bit strings h € {0, 1} (which are explanations for the sequence o in
the CpG island HMM) is bounded above by a constant times n>>.

Proof: There are a total of 2-4 + 4 = 12 parameters, which is
the dimension of the ambient space. However, note that, for a
fixed observed sequence, the number of times that the obser-
vation A4 is made is fixed, and a similar case is true for C, G, and
T. Furthermore, the total number of transitions in the hidden
states must equal n. Together, these constraints remove five
degrees of freedom. Thus, we can apply theorem 7 from ref. 1
withd = 12 — 5 = 7. We conclude that the total number of
vertices of the Newton polytope of f, is O(n(7%/8) = O(n>2%).

We explain the biological meaning of our parametric analysis
with a very small example. Let us consider the following special
case of the CpG island HMM. First, assume that#;4 = t;,7and that
tic = ti (i.e., the output probability depends only on whether the
nucleotide is a purine or pyrimidine). Furthermore, assume that
to4 = tog, which means that the probability of emitting a purine
or a pyrimidine in the non-CpG island state is equal (i.e., the base
composition is uniform in non-CpG islands).

Suppose that the observed sequence is 0 = AATAGCGG. We
ask for all the possible explanations for o (that is, for all possible
MAP CpG island annotations for all parameters). A priori, the
number of explanations is bounded by 28 = 256, which is the total
number of binary strings of length 8. However, of the 256 binary
strings, only 25 are explanations. Fig. 1 is a geometric representation
of the solution to this problem: the Newton polytope of f,, is a
four-dimensional polytope with 25 vertices. Fig. 1 is a Schlegel
diagram of this polytope. It was created with POLYMAKE software.
The 25 vertices in Fig. 1 correspond to the 25 annotations that are
the explanations for o as the parameters vary. Two annotations are
connected by an edge if and only if their parameter cones share a
wall. From this geometric representation, we can determine all
parameters that result in the same MAP prediction.

3. Polytope Propagation
The evaluation of g, for fixed parameters by using the formu-
lation in Eq. 3 is known as the Viterbi algorithm in the HMM
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Fig. 2. Graphical representation of the polytope propagation algorithm for
an HMM. For a particular pair of parameters (shown as a vector in the circle),
there is one optimal Viterbi path (shown as large vertices on the polytopes).

literature. We begin by reinterpreting this algorithm as a convex
optimization problem.
Definition 2. Given a polynomial,

n
foe, .o,xy) = z Cx XS xg
i=1

the Newton polytope of f is defined as follows to be the convex
hull of the lattice points in R¢ corresponding to the monomials

in f

NP(f) = conv{(al’l, a2,1? L) ad,l)? L) (al,n’ a2,n7 ceey ad,n)}‘

Recall that for a fixed observation there are natural polyno-
mials associated with a graphical model, which we have been
denoting by f,. In the CpG island example from section 2, these
polynomials are the coordinates f,; of the polynomial map fin Eq.
1. Each coordinate polynomial f, is the sum of 2” monomials,
where n = |o|. The crucial observation is that even though the
number of monomials grows exponentially with n, the number of
vertices of the Newton polytope NP(f,) is much smaller. The
Newton polytope is important for us because its vertices repre-
sent the solutions to the inference problem 2.

Proposition 3. The MAP log probabilities 8, in problem 2 can be
determined by minimizing a linear functional over the Newton
polytope of fo.

Proof: This assertion is nothing but a restatement of the fact
that when passing to logarithms, monomials in the parameters
become linear functions in the logarithms of the parameters.

Theorem 4 (Polytope Propagation). Let f, be the polynomial asso-
ciated to a fixed observation o from a graphical model. The list of
all vertices of the Newton polytope of f - can be computed efficiently
by recursive convex hull and Minkowski sum computations on
unions of polytopes.

Proof: Observe that if fi, /> are polynomials, then NP(fif2) =
NP(f1) + NP(f>), where the + denotes the Minkowski sum of the
two polytopes. Similarly, NP(f; + f>) = conv(NP(f1) U NP(f>)) if fi
and f, are polynomials with positive coefficients. The recursive
description of f,; given in Eq. 2 can be used to evaluate the Newton
polytope efficiently. The necessary geometric primitives are pre-
cisely Minkowski sum and convex hull of unions of convex poly-
topes. These primitives run in polynomial time because the dimen-
sion of the polytopes is fixed. This is the case in our situation
because we consider graphical models with a fixed number of
parameters. Hence, we can run the sum—product algorithm effi-
ciently in the semiring known as the polytope algebra. The size of the
output scales polynomially (ref. 1, theorem 7).

Fig. 2 shows an example of the polytope propagation algorithm

16140 | www.pnas.org/cgi/doi/10.1073/pnas.0406011101

for a HMM with all random variables binary and with the
following transition and output matrices:

SZ(SOO 1) and Tz(soo 1).
1 11 1 sqy

Here, we specialized to only two parameters in order to simplify
the diagram. When we run polytope propagation for long
enough DNA sequences o in the CpG island HMM of section 2
with all 12 free parameters, we get a diagram just like Fig. 2, but
with each polygon replaced by a seven-dimensional polytope.

It is useful to note that, for HMMs, the Minkowski sum
operations are simply shifts of the polytopes, and therefore, the
only nontrivial geometric operations that are required are the
convex hulls of unions of polytopes. The polytope in Fig. 1 was
computed by using polytope propagation. This polytope has
dimension 4 (rather than 7) because the sequence o = AAT-
AGCGG is so short. We emphasize that the small size of our
examples is only for clarity; there is no practical or theoretical
barrier to computing much larger instances.

For general graphical models, the running time of the Minkowski
sum and convex hull computations depends on the number of
parameters, and the number of vertices in each computation. These
are clearly bounded by the total number of vertices of NP(f,,), which
are bounded above as follows (ref. 1, theorem 7):

No. of vertices (NP(f,)) = constant-E4@~D/@+D
= constant-E4 "1,

Here, E is the number of edges in the graphical model (often
linear in the number of vertices of the model). The dimension d
of the Newton polytope NP(f,) is fixed because it is bounded
above by the number of model parameters. The total running
time of the polytope propagation algorithm can then be esti-
mated by multiplying the running time for the geometric oper-
ations of Minkowski sum and convex hull with the running time
of the sum—-product algorithm. It follows that, for directed acyclic
graphical models, the running time scales polynomially in E.
We have shown (ref. 1, section 4) that the vertices of NP(f,)
correspond to explanations for the observation o. In parametric
inference, we are interested in identifying the parameter regions
that lead to the same explanations. Because parameters can be
identified with linear functionals, it is the case that the set of
parameters that lead to the same explanation (i.e., a vertex v) are
the linear functionals that minimize on v. The set of these linear
functionals is the normal cone of NP(f,) at v. The collection of all
normal cones at the various vertices v forms the normal fan of the
polytope. By using Proposition 3, we obtain the following:

Proposition 5. The normal fan of the Newton polytope of f, solves the
parametric inference problem for an observation o in a graphical
model. It is computed by using the polytope propagation algorithm.

4. Parametric Sequence Alignment

The sequence alignment problem is concerned with finding the best
alignment between two sequences that have evolved from a com-
mon ancestor by means of a series of mutations, insertions, and
deletions. Formally, given two sequences o = ajos *++ o7 and o2 =
ola5+++ o2, over the alphabet {0, 1,..., [ — 1}, an alignment is a
string over the alphabet {M, I, D} such that #M + #D = n and
#M + #I = m. Here, #M, #I, and #D denote the number of
characters M, I, and D in the word, respectively. An alignment
records the “edit steps” from the sequence ¢ to the sequence o2,
where edit operations consist of changing characters, preserving
them, or inserting/deleting them. An [/ in the alignment string
corresponds to an insertion in the first sequence, a D is a deletion
in the first sequence, and an M is either a character change or lack
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Fig. 3. A pair HMM for sequence alignment.
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thereof. We write 4, for the set of all alignments. For a givenh €
Amn, We denote the jth character in & by /;, we use h to indicate
#M + #I in the prefix hih, . . . h;, and we use A(j) to indicate #M +
#D in the prefix /i . . . h;. The cardinality of the set 4, of all
alignments can be computed as the coefficient of x™y" in the
generating function 1/(1 — x — y — xy). These coefficients are
known as Delannoy numbers in combinatorics (ref. 14, section 6.3).

Bayesian multinets were introduced in ref. 15 and are extensions
of graphical models by the introduction of class nodes and a set of
local networks corresponding to values of the class nodes. In other
words, the value of a random variable can change the structure of
the graph underlying the graphical model. The pair HMM (see Fig.
3) is an instance of a Bayesian multinet. In this model, the hidden
states (unshaded nodes forming the chain) take on one of the values
M, I, or D. Depending on the value at a hidden node, either one or
two characters are generated; this feature is encoded by plates
(squares around the observed states) and class nodes (unshaded
nodes in the plates). The class nodes take on the value 0 or 1
corresponding to whether or not a character is generated. There-
fore, pair HMMs are probabilistic models of alignments, in which
the structure of the model depends on the assignments to the
hidden states.

Our next result gives the precise description of the pair HMM
for sequence alignment in the language of algebraic statistics;
namely, we represent this model by means of a polynomial map
f. Let ¢! and o2 be the output strings from a pair HMM (of
lengths n and m, respectively). Then,

|72

_ 1 1
Joro2 = E 7, (T 0%<1>)'H S, aetn(Thtiy Oy, [4]

hEApm i=2

where sp, 5, is the transition probability from state /;— to h;,
and #,(ay;), 07y are the output probabilities for a given state /; and
the corresponding output characters on the strings o' and o2.

Proposition 6. The pair HMM for sequence alignment is the image
of a polynomial map f: RO+ — R"™. The coordinates of f are
polynomials of degree n + m + 1in Eq. 4.

We need to explain why the number of parametersis 9 + 2/ +
[2. First, there are the following nine parameters:

Smm - Smr - Smp
S=\|sSm Su Sm|,
Spm Spr - Spp

which play the same role as in section 2 (namely, they represent
transition probabilities in the Markov chain). There are /> param-
eters ty(a, b) =: tyap for the probability that letter a in o is matched
with letter b in 0. The insertion parameters #(a, b) depend only on
the letter b, and the deletion parameters ¢p(a, b) depend only on the
letter a, so there are only 2/ of these parameters. In the following
example, which explains the algebraic representation of Proposition
6, we use ¢y, and #p, to denote these parameters.

Pachter and Sturmfels

Table 1. Alignments for a pair of sequences of lengths 2 and 3

Alignment Gap representation Monomial
DD (-if,kIm-) tusitusntimsiptoispotoj
1IDID (i, kl-m-) tisntusiotoisoitimsipto;
1IDDI (ije,kl+m) tisutusiotoisoptojspitim
IDIID (ij,k-Im-) tisiptoisoitisitimsipto;
IDIDI (ivje,kel-m) tisiptpisoitusiptojsoitim
IDDII (ife,kIm) tisiptpisoptojsprtusitim
DIIID (i=+j,kIm-) toispitiksutusitimsipto;
DIIDI (ie+j,"kl-m) toispitiksutusitojspitim
DIDII (i, *k+Im) toispitisiotojsortusitim
DDl (i, +klm) toisoptojsortiksitisitim
MIID (i~j, klm-) tmiksmitisitimsipto;
MIDI (i, kl-m) tmiksmitisiptojsoitim
MDII (if, kIm) tmiksmotojsortusitim
IMID (i, klm-) tusmtmismitimsioto;
IMDI i+, kl-m) tisimtmilsmotojSortim
1IMD (~ij, klm-) tusutusimtmimsmoto;
1IDM (+ij, kl-m) tisutusiotoisomtvim
IDMI i+, k-Im) tiSiptoisomtmjismitim
IDIM (i, klm) tisiptoisoitisimtvim
DMII (i, +klm) toisomtmjkSmitisitim
DIMI (i, *klm) toispitikSimtmjismitim
DIIM (i, +klm) toisortisitusimtmim
MMI (ij+,  klm) tmikSmmtmjismitim
MIM (i, klm) tmiksmitisimtvim

IMM Cij, klm) tisimtmismmtmjm

Consider two sequences o' = ij and o2 = klm of length n =
2 and m = 3 over any alphabet. The number of alignments is
#(Anm) = 25, and they are given in Table 1. The polynomial
fo1,02 is the sum of the 25 monomials (of degrees 9, 7, and 5) in
the right column of Table 1. For example, if we consider strings
over the binary alphabet {0, 1}, then there are 17 parameters (9
s and 8 ¢ parameters), and the pair HMM for alignment is the
image of a map f: R'7 — R32. The coordinate of f that is indexed
by (i, ], k, I, m) € {0, 1}° equals the 25-term polynomial gotten
by summing the right column of Table 1.

The parametric inference problem for sequence alignment is
solved by computing the Newton polytopes NP(f,, »,) with the
polytope propagation algorithm. In the terminology introduced
in section 4 of ref. 1, an observation ¢ in the pair HMM is the
pair of sequences (o7, 02), and the possible explanations are the
optimal alignments of these sequences with respect to the various
choices of parameters. In summary, the vertices of the Newton
polytope NP(f,, »,) correspond to the optimal alignments. If the
observed sequences oy, o, are not fixed, then we are in the
situation described in proposition 6 of ref. 1. Each parameter
choice defines a function from pairs of sequences to alignments:

{0,...,1—1"x{0,...,1 = 1}"— 4, ., (01, 32) — h.

The number of such functions grows double-exponentially in n
and m, but only a tiny fraction of them are inference functions,
which means that they correspond to the vertices of the Newton
polytope of the map f. It is an interesting combinatorial problem
to characterize the inference functions for sequence alignment.
An important observation is that our formulation in problem
2 is equivalent to combinatorial “scoring schemes” or “gener-
alized edit distances,” which can be used to assign weights to
alignments (2). For example, the simplest scoring scheme con-
sists of the following two parameters: a mismatch score mis and
an insertion/deletion (indel) score gap (4, 6, 16). The weight of
an alignment is the sum of the scores for all positions in the
alignment, where a match is assigned a score of 1. This scheme
is equivalent to specializing the logarithmic parameters U =
—log(S) and V' = —log(T) of the pair HMM as follows:
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u; =0, vy =1ifi=j, vy;=misifi#j, and

o [5]
vy =vp; =gap, foralli,j.
This specialization of the parameters corresponds to intersecting
the normal fan of the Newton polytope with a two-dimensional
affine subspace (whose coordinates are called mis and gap).

Efficient software for parametrically aligning the sequences with
two free parameters exists (XPARAL,; ref. 5). Consider the example
of the following two sequences: 0! = AGGACCGATTACAGT-
TCAA and 0> = TTCCTAGGTTAAACCTCATGCA. XPARAL
will return four cones; however, a computation of the Newton
polytope reveals seven vertices (three of which correspond to
positive mis or gap values). The polytope propagation algorithm has
the same running time as XPARAL: for two sequences of length n and
m, the method requires O(nm) two-dimensional convex hull com-
putations. The number of points in each computation is bounded
by the total number of points in the final convex hull (or equiva-
lently, the number, K, of explanations). Therefore, each convex hull
computation requires at most O(Klog(K)) operations, thus giving
an O(nmKlog(K)) algorithm for solving the parametric alignment
problem. However, this running time can be improved by observing
that the convex hull computations that need to be carried out have
a very special form; namely, in each step of the algorithm, we need
to compute the convex hull of two superimposed convex polygons.
This procedure is a primitive of the divide-and-conquer approach
to convex hull computation, and there is a well known O(K)
algorithm for solving it (ref. 17, section 3.3.5). Therefore, for two
parameters, our recursive approach to solving the parametric
problem yields an O(Kmn) algorithm, matching the running time of
XPARAL and the conjecture of Waterman et al. (6).

To demonstrate the practicality of our approach for higher-
dimensional problems, we implemented a four-parameter recur-
sive parametric alignment solver. The more general alignment
model includes different transition/transversion parameters (in-
stead of just one mismatch parameter) and separate parameters
for opening gaps and extending gaps. A transition is mutation
from one purine (4 or G) to another, or from one pyrimidine (C
or T) to another, and a transversion is a mutation from a purine
to a pyrimidine or vice versa. More precisely, if we let P, = {4,
G} and Py, = {C, T}, the model is as follows:

Uy = Uy = Upy = 0
Upr = Uyp = gapopen
Uy = upp = gapextend

v = 1ifi =j

Vi = transt if i # j, and
i,jEP,ori,jEP,

Vi = transv if i # j, and
i €P, jE P, orvice versa

v =vp; =0foralli,j.

For the two sequences o' and o? in the example above, the
number of vertices of the four-dimensional Newton polytope is
224 (compared with 7 for the two-parameter case).

5. Practical Aspects of Parametric Inference

We begin by pointing out that parametric inference is useful for
Bayesian computations. Consider the problem in which we have
a prior distribution 7(s) on our parameters s = (sy, ..., Sg) and
in which we would like to compute the posterior probability of
a MAP explanation h:

16142 | www.pnas.org/cgi/doi/10.1073/pnas.0406011101

Prob(X = h|Y = o)

=JPmMX=mY=msb”.J@ﬂﬂm.[ﬂ

s

This problem is important because it can give a quantitative
assessment of the validity of h in a setting in which we have prior,
but not certain, information abouAt the parameters, and also
because we may want to sample h according to its posterior
distribution (for an example of how this can be applied in
computational biology, see ref. 18). Unfortunately, these inte-
grals may be difficult to compute. We propose the following
simple Monte Carlo algorithm for computing a numerical ap-
proximation to the integral [6].

Proposition 7. Select N parameter vectors sV, . .., s") according
to the distribution w(s), where N is much larger than the number
of vertices of the Newton polytope NP(f;). Let K be the number of
sO such that —log[s®] lies in the normal cone of NP(f,) indexed
by the explanation h. Then, K/N approximates Eq. 6.

Proof: The expression Prob(X = ﬁ|Y = 0,81, ...,84) Is zero
or one depending on whether the vector —log(s) =
(—log(s1), ..., —log(sq)) lies in the normal cone of NP(f,)
indexed by h. This membership test can be done without ever
running the sum-product algorithm if we precompute an in-
equality representation of the normal cones.

The bound on the number of vertices of the Newton polytope
in section 4 of ref. 1 provides a valuable tool for estimating the
quality of this Monte Carlo approximation. We believe that the
tropical geometry developed in ref. 1 will also be useful for more
refined analytical approaches to Bayesian integrals. The study of
Newton polytopes can also complement the algebraic geometry
approach to model selection proposed in ref. 19.

Another application of parametric inference is to problems in
which the number of parameters may be very large, but in which we
want to fix a large subset of parameters, thereby reducing the
dimensions of the polytopes. Gene-finding models, for example,
may have up to thousands of parameters and input sequences can
be millions of base pairs long however, we are usually only inter-
ested in studying the dependence of inference on a select few.
Although specializing parameters reduces the dimension of the
parameter space, the explanations correspond to vertices of a
regular subdivision of the Newton polytope, rather than just to the
vertices of the polytope itself. This identification is explained below
(see ref. 1 for more background).

Consider a graphical model with parameters sy, ..., sq of
which the parameters s, ..., s, are free but 5,41 = S+1, ...,
sa = Saq, where the S; are fixed nonnegative numbers. Then, the
coordinate polynomials f,; of our model specialize to polynomials
in r unknowns whose coefficients ¢, are nonnegative numbers:

fa'(sb"'asr) :fa(sla" 7Sd)

= D e s

aEN"

c 5 Sp Sr+17 e

The support of this polynomial is the finite set A4, = {a € N": ¢, >
0}. The convex hull of 4, in R" is the Newton polytope of the
polynomial f,, = f,(s1, . . . , s,). For example, in the case of the HMM
with output parameters specialized, the Newton polytope of f,, is the
polytope associated with a Markov chain. Kuo (20) shows that the
size of these polytopes does not depend on the length of the chain.

Let h be any explanation for o in the original model and let
(U1, ... Uy Ups1, - . ., uy,) be the vertex of the Newton polytope
of f, corresponding to that explanation. We abbreviate a, =
(u1, ..., uy) and S, = Sy -+ Sy’ The assignment h — ay
defines a map from the set of explanations of ¢ to the support
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As. The convex hull of the image coincides with the Newton
polytope of f,. We define the following:

w, = min{—log(S}): his an explanation for o with ay, = a}.
[7]

If the specialization is sufficiently generic, then this maximum is
attained uniquely, and for simplicity, we will assume that this is
the case. If a point a € 4, is not the image of any explanation
h, then we set w, = o. The assignment a — w, is a real valued
function on the support of our polynomial f,, and it defines a
regular polyhedral subdivision A,, of the Newton polytope NP(f,,).
Namely, A,, is the polyhedral complex consisting of all lower
faces of the polytope gotten by taking the convex hull of the
points (a, w,) in R'*1 See ref. 21 for details on regular
triangulations and regular polyhedral subdivisions.

Theorem 8. The explanations for the observation o in the special-
ized model are in bijection with the vertices of the regular
polyhedral subdivision A,, of the Newton polytope of the special-
ized polynomial f,,.

Proof: The point (a, w,) is a vertex of A,, if and only if the
following open polyhedron is nonempty:

P,={veR:av+w,<a'v+w, foralla" € A\{a}}.

If v is a point in P,, then we sets; = exp(—v;) fori = 1,...,r, and
we consider the explanation h which attains the minimum in Eq. 7.
All parameters have been specialized, and h is the solution to
problem 2. This argument is reversible: any explanation for o in the
specialized model arises from one of the nonempty polyhedra P,,.
Note that the collection of polyhedra P, defines a polyhedral
subdivision of R’, which is geometrically dual to the subdivision A,,
of the Newton polytope of f,.

In practical applications of parametric inference, it may be of
interest to compute only one normal cone of the Newton
polytope (for example, the cone containing some fixed param-
eters). We conclude this section by observing that the polytope
propagation algorithm is suitable for this computation as well.

Proposition 9. Let v be a vertex of a d-dimensional Newton polytope
of an HMM. Then, the normal cone containing v can be computed
by using a polytope propagation algorithm in dimension d — 1.
Proof: We run the standard polytope propagation algorithm
described in section 4, but at each step, we record only the
minimizing vertex in the direction of the log parameters, together
with its neighboring vertices in the edge graph of the Newton
polytope. It follows by induction that given this information at the
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nth step, we can use it to find the minimizing vertices and related
neighbors in the (n + 1)st step.

6. Summary

We envision a number of biological applications for the polytope
propagation algorithm, including the following:

 Full parametric inference using the normal fan of the Newton
polytope of an observation when the graphical model under
consideration has only few model parameters.

» Use of the edge graph of the polytope to identify stable parts
of alignments and annotations.

* Construction of the normal cone containing a specific param-
eter vector when computation of the full Newton polytope is
infeasible.

* Computation of the posterior probability (in the sense of
Bayesian statistics) of an alignment or annotation. The regions
for the relevant integrations are the normal cones of the
Newton polytope.

As we have shown, the computation of Newton polytopes for
(interesting) graphical models is certainly feasible for a few free
parameters, and we expect that further analysis of the computa-
tional geometry should yield efficient algorithms in higher dimen-
sions. For example, the key operation, computation of convex hulls
of unions of convex polytopes, is likely to be considerably easier
than general convex hull computations even in high dimensions.
Fukuda et al. (22) give polynomial time algorithms for computing
convex hulls of unions of convex polytopes that are in general
position.

If computation of the Newton polytope is impractical, it is still
possible to identify the cone containing a specific parameter, and
this cone can be used to measure quantitatively the robustness of
the inference. Parameters near a boundary are unlikely to lead to
biologically meaningful results. Furthermore, the edge graph can be
used to identify common regions in the explanations corresponding
to adjacent vertices. In the case of alignment, biologists might see
a collection of alignments rather than just one optimal one, with
common subalignments highlighted. This output is different from
returning the k best alignments because suboptimal alignments may
not be vertices of the Newton polytope. The solution that we
propose explicitly identifies all suboptimal alignments that can
result from similar parameter choices.
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