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Abstract

Background

Onchocerciasis is targeted for elimination in Africa through annual or biannual ivermectin

mass drug administration (MDA). An immunodiagnostic test, based on the detection of

human IgG4 antibodies in the blood to the Onchocerca volvulus-specific antigen Ov16, is

one of the recommended tools for determining whether transmission is interrupted and

mass treatment can stop. For different transmission settings, the relationship between post-

MDA Ov16 antibody prevalence in children (measured 1 year after the last round of MDA)

and the duration and coverage of MDA, the mf prevalence in the population, and the proba-

bility that onchocerciasis is eventually eliminated is explored through mathematical

modelling.

Methodology

The ONCHOSIM model was extended with new output on the Ov16 antibody serostatus of

individuals. Seroconversion was assumed to be triggered by the first worm establishing in

the host, with seroconversion occurring either before maturation, after maturation or only

after the start of mf production. We are mainly interested in seroconversion rates in children,

and for now ignore the possibility of seroreversion to simplify the model.

Principal findings

Yearly repeated MDA leads to a strong reduction in the parasite acquisition rate in humans.

This reduces the seroconversion rate in newborns and young children, while those who sero-

converted before the start of control remain antibody positive. Both the microfiladermia preva-

lence in the population aged 5 years and above and the Ov16 antibody prevalence in children

under 10 declined with increasing duration of MDA. The association between either of these

indicators and the model-predicted probability of elimination was not influenced much by the
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assumed treatment coverage levels, but was found to depend on baseline endemicity levels,

assumptions regarding the trigger of seroconversion, and diagnostic test characteristics (sen-

sitivity and specificity).

Conclusions

Better understanding of the dynamics of Ov16 antibody responses is required for accurate

interpretation of seroprevalence data and more precise estimation of endpoint for MDA. Our

study demonstrates that this endpoint will be dependent on baseline endemicity levels, which

should be taken into account in guidelines for defining when to stop MDA.

Author Summary

Onchocerciasis is targeted for elimination in Africa through annual or biannual ivermec-

tin mass drug administration. The elimination target places high demands on monitoring

and evaluation systems, for timely detection of ongoing transmission and possible recru-

descence. Guidelines recommend using serological evaluation by Ov16, to determine the

presence of IgG4 antibodies to the antigen Ov16 in children of less than 10 years in order

to detect exposure to the O. volvulus parasite. In this paper, we use the mathematical

model ONCHOSIM to explore how the post-MDA Ov16 antibody prevalence in children

(measured 1 year after the last round of MDA) is related to local transmission conditions,

observed trends in infection during mass drug administration the duration and coverage

of mass treatment, test characteristics, mf prevalence and likelihood of interruption of

transmission. The level of seroprevalence that is indicative of successful elimination was

found to depend on local transmission conditions. This should be considered in survey

methodology and criteria for defining whether mass drug administration can safely be

interrupted. Remaining uncertainties about the dynamics of seroconversion and serore-

version further complicate the interpretation of seroprevalence data and the definition of

thresholds.

Introduction

Onchocerciasis–or ’river blindness’–is a parasitic disease caused by the filarial worm Oncho-
cerca volvulus. In 1995, about 37 million people were infected, facing or affected by visual

impairment, blindness, skin lesions, and severe itching [1]. The prevalence of infection in

Africa has declined gradually over the last decades, thanks to large-scale control programmes.

The Onchocerciasis Control Programme in West Africa was operational from 1974–2002 and

has largely eliminated the disease as public health problem from 11 West-African countries

through vector control and/or mass ivermectin treatment. The African Programme for

Onchocerciasis Control (APOC) started in 1995 with the implementation of ivermectin mass

treatment in the remaining 19 endemic countries. APOC scaled up gradually to cover nearly

all meso- and hyperendemic areas in need of treatment [2]. Following reports of elimination

of onchocerciasis in some West African foci [3, 4], APOC shifted its focus from control to

elimination [5]. While much progress had been made when APOC closed in 2015 [6], contin-

ued effort is needed to reach the goal of elimination.
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The call for elimination places high demands on monitoring and evaluation systems, for

timely detection of ongoing transmission and possible recrudescence. Traditionally, active

infection has been detected microscopically by counting parasite microfilariae (mf) in skin

snips (small superficial skin biopsies). Population survey results are typically summarized in

terms of microfiladermia prevalence (mf prevalence) and intensity of the infection (commu-

nity microfilarial load, CMFL [7]). Disadvantages of this diagnostic test are its invasiveness

and low sensitivity in areas where infection prevalence and intensity are low [8–11]. Current

guidelines strongly recommend to use entomological evaluation by O-150 polymerase chain

reaction (pool screen) testing in blackflies and Ov16 serology testing in children less than 10

years of age for assessing whether mass drug administration can safely be stopped or for verify-

ing that elimination has indeed been interrupted after a post-treatment surveillance period

[12]. Skin snip microscopy can still be used as an additional tool, but should not be used as

sole indicator.

Ov16 is a recombinant Onchocerca volvulus antigen to which IgG4 antibodies are produced

that can be detected using immunological methodologies [9, 13]. Early chimpanzee studies

suggested that IgG antibodies can be detected in the blood 3–12 months before microfilariae

appeared [14], but later studies suggest that may not be the case for IgG4 antibodies [15]. Cur-

rent diagnostics are based on IgG4 detection, which is thought to be more specific [16]. A pre-

viously developed rapid-format card test for detection of anti-Ov16 IgG4 [9] is no longer

available, but an anti-Ov16 ELISA test has been used routinely in the Americas and some Afri-

can countries as surveillance tool [17–19]. A new rapid diagnostic test (RDT) for detection of

IgG4 against Ov16 has recently been developed as a practical, convenient, and standardized

alternative for use in the field [20]. The WHO guidelines acknowledge that the evidence of the

usefulness of Ov16 antibody tests for assessing interruption of transmission is still limited [12].

The diagnostic accuracy of Ov16 antibody tests has mostly been assessed in populations with

high onchocerciasis prevalence rather than under low-prevalence conditions prevailing at the

end-stage of control programmes. The guidelines for now advise against using the RDT, which

first needs to be validated more extensively. It is suggested that the guidelines should be revised

by 2020 on the basis of new evidence [12].

For the improvement of guidelines for the use of an Ov16 antibody test in defining when to

stop MDA, it is important to understand how the post-MDA Ov16 antibody prevalence in

children depends on the many factors influencing elimination prospects of onchocerciasis

(including local transmission conditions, baseline endemicity, treatment duration and treat-

ment coverage) and how it is associated with other infection indicators, notably the mf preva-

lence. This can be explored with mathematical models, which provide useful tools for

systematically assessing trends in infection indicators during mass treatment, under a range of

different conditions and treatment scenarios [21]. Mathematical models of onchocerciasis

transmission have been used extensively in the past to study trends in mf prevalence and esti-

mate the required duration of mass treatment to bring mf prevalence below a certain threshold

or achieve elimination [22–27]. Hitherto, trends in Ov16 antibody prevalence have not been

studied by mathematical modelling.

We extended the previously-developed and frequently-used simulation model ONCHO-

SIM, to include information on the Ov16 antibody serostatus of simulated individuals. In

this paper, we describe the model extension and explore how the Ov16 antibody prevalence

in children is related to local transmission conditions, the duration and coverage of mass

treatment, test characteristics, mf prevalence and the probability that the infection is even-

tually eliminated.

Modelling Ov16 Seroprevalence as Indicator of Onchocerciasis Elimination
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Methods

The ONCHOSIM model

ONCHOSIM is an established epidemiological mathematical model for simulating transmis-

sion and control of onchocerciasis in a dynamic population [28], developed by Erasmus MC

in collaboration with the Onchocerciasis Control Programme in West Africa (OCP). It has

been used extensively to support decision making in onchocerciasis control programmes in

Africa [29–31, 23, 32–35, 22, 27].

ONCHOSIM is an individual-based model, describing the transmission of onchocerciasis

between individuals in a dynamic human population and the life course of and mf production by

individual worms within the human hosts. The software tracks changes in infection intensity

(number of worms, density of mf in the skin) within human individuals over time. Together, the

individuals form a dynamic human population that changes in size and composition over time

due to birth and death of individuals. Optionally, the user can specify a maximum population

size: a specified, randomly-selected proportion of the population is assumed to out-migrate when

the population size exceeds this maximum. Transmission of infection by flies is simulated deter-

ministically, accounting for differences between individuals in the exposure to fly bites (related to

age and sex and a personal index representing other factors influencing exposure); due to this

exposure heterogeneity, the rate of acquisition of new infections and resulting infection intensity

vary between human individuals, as does their contribution to the infection pool in flies.

The model can simulate the impact of mass treatment with ivermectin and vector control

on transmission and infection indicators. Epidemiological surveys are simulated to obtain

information on the infection status of individuals in the population at specified moments in

time (model output). Standard output includes the expected mean mf count in 2 skin snips per

individual, summarized at population level in terms of mf prevalence and the community

microfilarial load (CMFL) [7]. The model accounts for imperfect sensitivity of the skin snip

microscopy method [36, 37] by assuming variation in actual mf counts given an underlying

simulated mf density in the skin and the possibility of false-negative mf counts. All individuals

in the population are assumed to participate in the surveys.

A detailed formal description of the ONCHOSIM model with JAVA program code is pro-

vided elsewhere for version 2.58Ap9 of the model (see additional files 1 and 2 in [27]). For the

current study, ONCHOSIM version 2.74 was used, which incorporates extra output concern-

ing the Ov16 serostatus of individuals based on their history of infection, as described below.

S1 Appendix provides a complete overview of the probability distributions, functional rela-

tionships and parameter values used in this study.

Modelling Ov16 positivity

The model was extended to generate extra output concerning Ov16 serostatus of individuals

based on their history of infection. Seropositivity is described as a binary output, similar to the

IgG4-based Ov16 antibody RDT: individuals are considered to be either seropositive or sero-

negative, and degrees of antibody levels are not considered. It is not exactly known what trig-

gers seroconversion and how long it takes after the trigger for an individual to become

seropositive. Therefore, we consider three alternative hypotheses in this study.

Hypothesis 1: Ov16 seroconversion occurs when a single L3 larva successfully settles in the

human body to eventually develop into an adult male or female worm. Seroconversion occurs

before maturation of the worm. The ONCHOSIM model assumes that 0.31% of inoculated L3

larvae will survive to develop into an adult worm successfully; unsuccessful inoculations do

not trigger seroconversion. The ONCHOSIM model assumes a maturation period of 1 year for
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worms, implying that antibodies are detectable at least 1 year before mf are present, or longer

in the absence of a mature male-female worm pair. An early chimpanzee study suggested that

seroconversion occurs before the mf are detectable in the skin [14], although this was based on

detection of total IgG and this may not necessarily be the case for IgG4 antibodies [15]. Anti-

body positivity in combination with mf negativity may also occur due to false-negative mf tests

at low mf densities or after clearance of infection (before or in the absence of seroreversion).

Hypothesis 2: Ov16 seroconversion occurs when the first male or female worm in the

human body has matured; considering the assumed 1-year maturation period of worms, the

seroconversion occurs one year later than under hypothesis 1. We assume that seroconversion

is independent of the presence of mf. Seroconversion will precede the occurrence of mf in the

skin, if seroconversion is triggered by a single worm or single-sex infection, but it can also

coincide with the appearance of mf when a male-female worm-pair is present. Antibody posi-

tivity in combination with mf negativity may also occur due to false-negative mf tests at low

mf densities or after clearance of infection (before or in the absence of seroreversion).

Hypothesis 3: Ov16 seroconversion occurs at the first onset of mf production. Seroconver-

sion therefore requires the presence of at least one male and one female worm, and may occur

considerably later than under hypothesis 2. This hypothesis is supported by recent chimpanzee

studies, that show that–after the inoculations of several hundreds of L3 –IgG4 seroconversion

occurs around the same time as the first occurrence of mf in the skin [15]. Antibody positivity

in combination with mf negativity only occurs due to false-negative mf tests at low mf densities

or after clearance of infection (before or in the absence of seroreversion).

The model provides output on the proportion of people by age group that has met the

criteria for seroconversion (according to the selected hypothesis). This is translated into an

expected seroprevalence, adjusting for the assumed sensitivity and specificity of the test. In the

model, test sensitivity is defined as the proportion of Ov16 antibody test positives among indi-

viduals who have met the criteria for positivity (true positive rate). Field data typically show

that 10–30% of mf positives, who by definition have met the criteria for seroconversion in our

model, do not have detectable antigen level [13, 9, 20]. This might be due to the following

mechanisms, between which our model does not distinguish: 1) some individuals are unre-

sponsive and never mount a detectable antibody response against Ov16 antigen in spite of

meeting the criteria for seroconversion; 2) a proportion of people who actually do have Ov16

antibodies are incidentally missed by the test, e.g. if the human antibody levels are low or the

test platform does not detect all Ov16 antibodies due to the non-native nature of the antigen

presented in the test. The relative importance of these two mechanisms cannot easily be esti-

mated from available data, and for now we do not explicitly distinguish them. Specificity is

defined as the proportion of Ov16 antibody test negatives among individuals who have not

met the trigger for seroconversion (true negative rate). Sensitivity and specificity are assumed

to be independent of an individual’s age, infection status, or history of infection.

In this paper, we are mainly interested in seroconversion and seroprevalence in children

and the impact of interventions on the seroconversion rate. To keep the model simple, we

ignore for now the possibility of seroreversion (with the test turning negative after prolonged

lack of boosting). We assume that antibodies remain lifelong detectable so that there is no

seroconversion, even though antibody concentrations may decline after clearance of infection

[15] and in the absence of boosting by new infections,.

Simulated scenarios

Core model parameters were quantified as described previously, unless a different value is

specified below [23]. A brief summary is provided here. The model typically represents the
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dynamic population of an onchocerciasis-endemic community. The simulated community

population is dynamic, but population growth is restricted: whenever the simulated population

size exceeds a specified maximum (here set at 440 people, reflecting a typical medium-size vil-

lage or subcommunity of a larger village), 10% of the population is assumed to out-migrate

(randomly selected, permanently removed from the population). Otherwise, the model repre-

sents a closed transmission system.

Perennial transmission with a period of moderate transmission (monthly biting rates 25%-

42% lower than the yearly average) and a period with high transmission (monthly biting rates

17%-45% higher than the yearly average) is assumed. The overall annual biting rate was varied

between scenarios, to simulate settings with different transmission conditions (ABR 9,409;

10,150; 14,098; 18,078; or 22,212). These values were derived by calibrating the ABR to obtain

on average the following pre-defined model-predicted baseline CMFL levels: of 5, 10, 30, 55, or

80 mf/skin snip. Thereby our scenarios capture a realistic range of meso, hyper and holo-

endemic endemicity levels. This allows us to study how the relationship between post-MDA

Ov16 antibody prevalence in children (measured 1 year after the last round of MDA) and prob-

ability of elimination depends on transmission conditions. For each transmission setting, the

impact of annual ivermectin mass treatment, while varying the duration of annual mass treat-

ment (1, . . . 25 rounds) and treatment coverage (60%, 70% or 80% of the total population) was

simulated. This leads to a total of 375 scenarios considered in the baseline analysis (varying with

respect to annual biting rate, duration of annual mass treatment, and treatment coverage).

The probability that simulated individuals participate in mass treatment with ivermectin is

governed by age (children under five years of age are not treated; typically around 15% of the

population in Africa), sex (the participation rate is somewhat lower in women of reproductive

age in view of ineligibility of pregnant and lactating women), and an individual compliance

factor (the higher the factor, the higher the probability that an individual participates in any

given treatment round). We further assume that 5% of individuals would never participate in

treatment (systematic non-compliance, e.g. because of chronic illness or refusal). Under these

assumptions the maximum achievable coverage is about 80%. How the overall coverage is cal-

culated is presented in Stolk et al [27] (see additional file 1, section 3.4).

Treatments are given just before the start of the high transmission season. We assumed that

treatment kills all mf instantaneously; it does not kill adult worms, but treatment does lead to a

complete, but temporary, interruption in the production of mf by all female adult worms. Pro-

duction recovers gradually over time in all worms, reaching maximum production capacity

after 11 months on average. The adult female worms’ capacity to produce mf after recovery is

irreversibly reduced by 34.9% on average per treatment. Effects of multiple treatments are

assumed to be multiplicative. Both the duration of the recovery period and the irreversible

reduction in mf production vary stochastically between worms and treatments. Five percent of

treatments are assumed ineffective (e.g. because of malabsorption).

In our baseline scenarios we assumed a sensitivity of 80% and specificity of 99% of the anti-

body detection test. These values were varied in a sensitivity analysis (sensitivity: 70%, 80%,

90%, 100%; specificity 95%, 97%, 99%, 100%) based on published data of the sensitivity and

specificity of the Ov16 IgG4 or IgG biomarker against microfilaria status and test positivity in

unexposed individuals [16, 13, 14, 9].

Simulation output and analysis

ONCHOSIM is a stochastic model, and therefore repeated simulations with the same input

values will lead to slightly different results. We did 1,000 repeated runs per scenario. Because

of chance effects in the warming-up period of a simulation, the introduction of infection does

Modelling Ov16 Seroprevalence as Indicator of Onchocerciasis Elimination
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not always lead to a stable endemic situation. Especially when biting rates are low, the infection

may by chance go extinct. Therefore, runs with a pre-control mf prevalence in the general pop-

ulation of less than 20% were considered as failed, and these were excluded from further analy-

ses (failure only occurred in scenarios with pre-control CMFL of 5 and 10 mf/ss, in 124 and 3

out of 1,000 runs, respectively).

We simulated epidemiological surveys to obtain output on the simulated mf prevalence,

CMFL, and Ov16 antibody prevalence for each of the three hypotheses. The first survey was

scheduled at t = 0, just before the first treatment; surveys were repeated annually (always just

preceding a next treatment round if applicable) until 50 years after the last treatment. The mf

prevalence was assessed for the entire population aged 5 years and above, considering that in

real life children under 5 are often excluded from surveys or underrepresented. The CMFL

was calculated as the geometric mean of the individual mf counts + 1 in adults aged 20 years

and above. The Ov16 antibody prevalence was measured in children aged 0–9, as recom-

mended by the World Health Organization [12], unless stated otherwise; for one analysis we

considered a wider range (0–19 years) to investigate how this would change the results. The

simulated mf prevalence, CMFL, and Ov16 antibody prevalence were calculated under the

assumption that all individuals in the specified age group participate in the epidemiological

surveys and diagnostic tests are always performed successfully. The model does account for

measurement variation in diagnostic test results (stochastic variation in mf counts with a pos-

sibility of false-negative mf counts; possibility of false-positive or false-negative results in anti-

body tests due to imperfect sensitivity and specificity).

Outcomes of individual runs were averaged by scenario (after exclusion of failed runs).

The mf prevalence in the last survey (i.e. 50 years after the last treatment) was used to define

whether the simulation had resulted in elimination or not. Elimination was said to occur if mf

prevalence measured 50 years after the last treatment round was equal to zero. The probability

of elimination was calculated per scenario as the percentage of non-failed runs resulting in

elimination.

Results

Fig 1 shows the average model-predicted trends in mf prevalence over time during a 25-year

programme of annual ivermectin mass treatment, for transmission settings with moderate

and high transmission (ABR 10,150 and 18,078; average pre-control CMFL 10 and 55 mf/skin

snip, respectively) and for different levels of treatment coverage. The first round of mass drug

administration (MDA) is at t = 0. The figure is based on yearly measurements, always done

just before a treatment and exactly one year after the previous treatment. Thus, the figure does

not show the immediate drop in mf prevalence directly after treatment and the subsequent

increase over time until the next treatment (see other ONCHOSIM-based publications for

example of such patterns, e.g. [22, 23]). Multiple annual treatment rounds result in a gradual

decline in mf prevalence. A higher coverage causes a faster decline in mf prevalence. The time

to reach near-zero mf prevalence levels is longer for the scenarios with higher baseline CMFL

levels (due to higher worm burden and more intense transmission) and lower coverage. For

clarity, we only show the mean predicted trend in Fig 1 and in other figures below. A stochastic

variant of Fig 1 is presented in S2 Appendix.

Average trends in mf prevalence for the scenarios with 70% treatment coverage are shown

again in Fig 2, which in addition shows the model-predicted trends in Ov16 antibody preva-

lence in children aged 0-9 for each of the three different hypotheses about the seroconversion

trigger. The decline in mf prevalence results in a lower force-of-infection and declining proba-

bility of acquisition of infection in young children. This is reflected by the decline in Ov16

Modelling Ov16 Seroprevalence as Indicator of Onchocerciasis Elimination
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antibody prevalence in children. The Ov16 antibody prevalence never reaches zero, because

the assumed specificity of the test was 99% (assumed sensitivity was 80%). The level of

Ov16-antibodies depends on the assumed trigger: the predicted Ov16 antibody prevalence lev-

els are considerably lower for hypothesis 3 (seroconversion triggered by the start of mf produc-

tion) than for hypothesis 1 or 2 (seroconversion is triggered by the first male or female worm

establishing in the human body, directly at entry or after its maturation (hypothesis 2). The dif-

ference between hypothesis 1 and 2 is small. A stochastic variant of Fig 2 is presented in S2

Appendix.

Fig 3 shows how age patterns of mf prevalence and Ov16 antibody prevalence change after

prolonged mass treatment. The shape of the age-mf prevalence curves remains unchanged

(showing an increase in mf prevalence with age until it stabilizes at its maximum achieved

around the age of 30), but the maximum level is reduced to lower levels with increasing dura-

tion of mass treatment. The curve of Ov16 antibody prevalence by age shifts to the right with

increasing duration of mass treatment. The maximum Ov16 antibody prevalence remains the

Fig 1. Model-predicted trends in mf prevalence for the population aged 5 years and above during 25

years of annual ivermectin mass treatment, with the first treatment provided at time = 0. Average of 1,000

simulations (minus failed runs) per scenario. Results are shown for transmission settings with moderate and

high transmission (ABR 10,150 and 18,078; average pre-control CMFL 10 and 55 mf/skin snip, respectively)

and for different treatment coverage levels. The curves connect yearly model-predicted mf prevalence levels,

always measured just before a treatment and exactly one year after the previous treatment. For clarity, we do

not show trends between these yearly measurements (immediate drop in mf prevalence followed by a gradual

increase until the next treatment). See S2 Appendix for a stochastic variant of the figure. The last measurement

shown is 1 year after the last treatment.

doi:10.1371/journal.pntd.0005314.g001
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same after prolonged ivermectin mass treatment, but eventually this level is only seen in the

highest age groups. These patterns result from the assumption that all those who seroconverted

before the start of control remain antibody positive (no seroreversion), while the seroconver-

sion rate for newborns and those previously uninfected progressively declines because the

force-of-infection is reduced due to mass treatment. Uncertainty in these model assumptions

is further discussed below.

In Fig 4A, the probability of elimination is shown in relation to the duration of treatment,

baseline CMFL and treatment coverage level. The elimination probability gives the probability

of eventually finding zero mf prevalence 50 years after the indicated number of MDA rounds,

if MDA is discontinued after the indicated number of rounds. The same data are presented in

Fig 4B and 4C, but with the probability of elimination plotted against the mf prevalence (in the

population aged 5 years and above) and Ov16 antibody prevalence (in 0–9 year olds) (hypothe-

sis 2), respectively, as measured one year after each treatment duration. See Fig 2 for the

Fig 2. Model-predicted trend in mf-prevalence in the population aged 5 years and above and Ov16 antibody

prevalence in children aged 0–9 years in relation to the duration of annual mass drug administration,

assuming a fixed coverage of 70%. Average of 1,000 simulations (minus failed runs) per scenario. Results are

shown for transmission settings with moderate and high transmission (ABR 10,150 and 18,078; average pre-control

CMFL 10 and 55 mf/skin snip, respectively) and for different treatment coverage levels. The Ov16 antibody prevalence

was estimated assuming that the Ov16 antibody test has a sensitivity of 80%, and specificity of 99%. Results are

shown for each of three hypotheses regarding the seroconversion trigger, with the Ov16 antibody test becoming

positive as soon as the first male or female worm establishes in the human body, before it matures (hypothesis 1);

idem, but after maturation (hypothesis 2); or after the start of mf production (hypothesis 3).

doi:10.1371/journal.pntd.0005314.g002
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association between these infection indicators and the duration of MDA. The association

between the mf or Ov16 antibody prevalence one year after treatment and the probability of

elimination is not influenced much by the achieved coverage levels, but does depend on base-

line endemicity levels, which is a proxy for the local transmission intensity potential.

The impact of baseline endemicity or local transmission intensity potential is brought out

more clearly in Fig 5. As shown in Fig 2, about 15 rounds of MDA are required to bring the

mean Ov16 antibody prevalence in the age group 0–9 (according to hypothesis 2) down to 5%

in a high transmission setting with ABR 18,078 and average CMFL at baseline 55 mf/snip as

example. This duration and resulting mean Ov16 antibody prevalence are associated with

about 40% probability of elimination. In sites with moderate transmission (with ABR 10,150

and average CMFL at baseline 10 mf/snip), the same mean Ov16 antibody prevalence is

reached after 8 rounds and this corresponds to 95% probability of elimination. An Ov16 anti-

body prevalence of< = 2% is associated with high probability of elimination in most situa-

tions, except perhaps in the areas with very high pre-control endemicity of 80 mf/ss. Similar

patterns are seen for Ov16 antibody prevalence under hypothesis 1 or the mf prevalence. The

association is different if Ov16 seroconversion is assumed to be triggered by the start of mf

production (hypothesis 3). A low Ov16 antibody prevalence among 0–9 year olds is not very

Fig 3. Model-predicted age patterns of mf and Ov16 antibody prevalence in relation to the number of mass

treatment rounds provided, assuming that treatment coverage is 70%. Average of 1,000 simulations (minus failed

runs) per scenario. Results are shown for transmission settings with moderate and high transmission (ABR 10,150 and

18,078; average pre-control CMFL 10 and 55 mf/skin snip, respectively) and for different treatment coverage levels.

The Ov16 antibody prevalence was estimated according to hypothesis 2, assuming that the Ov16 antibody test has a

sensitivity of 80% and specificity of 99%, and that seroreversion does not occur.

doi:10.1371/journal.pntd.0005314.g003
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informative for assessing the elimination probability under hypothesis 3. At lower values, the

slope of the curve is very steep, making it difficult to distinguish situations with 10% or 90%

probability of elimination based on this indicator alone.

Fig 6 illustrates how patterns would change if Ov16 antibody prevalence would be mea-

sured in a wider age group (0–19 years). If antibodies were measured in all those aged<20, the

curves relating probability of elimination to Ov16 antibody prevalence becomes less steep and

the antibody prevalence threshold below which 95% probability elimination is achieved

becomes higher.

The observed Ov16 antibody prevalence depends on the sensitivity and specificity of the

Ov16 antibody test (Fig 7). A less-sensitive test will under-estimate seroprevalence, and the

probability of elimination for a given measured seroprevalence declines with declining test

sensitivity. A less-specific test will over-estimate seroprevalence and the probability of elimina-

tion for a given measured seroprevalence increases with declining test specificity.

Nota bene, caution is required in the interpretation of Fig 4B and 4C, and similarly of Figs

5–7. These figures show the averages of 1,000 simulations per scenario (minus the number of

failed runs). Transmission conditions and treatment history are fixed per scenario, but the

resulting post-MDA mf prevalence and Ov16 antibody prevalence vary between runs, as is

Fig 4. Probability of elimination in relation to the duration of mass treatment and the one-year post-treatment mf prevalence or Ov16 antibody

seroprevalence. A) The probability of elimination in relation to treatment duration, assuming that treatment would be discontinued after the indicated

treatment duration. B) Probability of elimination in relation to the post-MDA mf prevalence in the population aged 5 years and above, measured one year

after 1, 2, 3, . . . 25 treatment rounds, assuming that no further treatments take place. The lines connect outcomes for different durations of MDA, for the

indicated coverage levels (60%, 70%, or 80%). C), similar to B, with probability of elimination shown in relation to the post-MDA Ov16 antibody prevalence

in children aged 0–9, measured one year after the 1, 2, 3, . . . 25 treatment rounds. The Ov16 antibody prevalence was estimated according to hypothesis

2, assuming that the Ov16 antibody test has a sensitivity of 80%, and specificity of 99%. Note that the values on the X-axis in B and C is sorted from highest

to lowest, for comparability with A. Results are shown for transmission settings with moderate and high transmission (ABR 10,150 and 18,078; average

pre-control CMFL 10 and 55 mf/skin snip, respectively). See Fig 2 for the information on the mean mf and Ov16 antibody prevalence in relation to the

duration of MDA.

doi:10.1371/journal.pntd.0005314.g004
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shown in the figures in S2 Appendix. The presented elimination probabilities are conditional

on the underlying variation in prevalence between runs, and runs resulting in elimination may

on average have lower post-MDA prevalence than the runs resulting in recrudescence. These

results are applicable to groups of communities with similar transmission conditions and his-

tory of control. The results should thus not be interpreted as the probability of elimination for

a specific site with a given mf or Ov16 antibody prevalence at a particular timepoint.

Fig 5. Probability of elimination in relation to the average post-MDA mf prevalence or Ov16 antibody prevalence by pre-control

CMFL. The mf prevalence was assessed in the population aged 5 years and above and Ov16 antibody prevalence in children aged 0–9

(hypothesis 1–3), one year after 1, 2, 3, . . . 25 treatment rounds with a treatment coverage of 70%. The probability of elimination was

assessed after each duration, assuming that treatment would be discontinued thereafter. The separate lines connect outcomes on different

treatment durations for a given transmission setting and baseline CMFL. The Ov16 antibody prevalence was estimated assuming that the

Ov16 antibody test has a sensitivity of 80%, and specificity of 99%. Note that the horizontal axis is ordered from highest to lowest.

doi:10.1371/journal.pntd.0005314.g005
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In this section, we have presented selected findings to highlight the main patterns in our

results, concentrating on two settings with either moderate or high transmission intensity and

hypothesis 2 only. A complete overview of simulation results for all five transmission settings

and the three hypothesized triggers of seroconversion is provided in S3 Appendix.

Fig 6. Probability of elimination in relation to the average post-MDA mf prevalence or Ov16 antibody

prevalence, by pre-control CMFL and age group tested for Ov16. The mf prevalence was assessed in the

population aged 5 years and above and Ov16 antibody prevalence in children aged 0–9 (hypothesis 2), one

year after 1, 2, 3, . . . 25 treatment rounds with a treatment coverage of 70%. The probability of elimination was

assessed after each duration, assuming that treatment would be discontinued thereafter. The separate lines

connect outcomes on different treatment durations for a given transmission setting. The Ov16 antibody

prevalence was estimated assuming that the Ov16 antibody test has a sensitivity of 80%, and specificity of

99%. Note that the horizontal axis is ordered from highest to lowest.

doi:10.1371/journal.pntd.0005314.g006
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Discussion

The ONCHOSIM simulation model was used to explore for different transmission settings how

the Ov16 antibody prevalence in children 1 year after the last MDA round is related to the dura-

tion and coverage of MDA, the mf prevalence in the population, and the probability that oncho-

cerciasis is eventually eliminated. The post-MDA mf prevalence in the population aged 5 years

and above and the Ov16 antibody prevalence in children aged 0–9 years decline with increasing

duration and treatment coverage. The association between these infection indicators and the

model-predicted probability of elimination was not influenced much by duration and coverage

of MDA, but depended strongly on local transmission conditions (for which baseline endemic-

ity is a good proxy). For Ov16, this association further depended on the assumed trigger of sero-

conversion and diagnostic test characteristics (sensitivity and specificity).

Age range for seroprevalence assessment

WHO-guidelines for deciding when to stop MDA and verification of elimination after a 3–5 year

post-treatment surveillance period, recommend the assessment of Ov16 antibody prevalence in

Fig 7. Probability of elimination in relation to the Ov16 antibody prevalence as measured one year after the last treatment, in relation to test

characteristics, for scenarios with treatment coverage of 65%. In the figures on the left, sensitivity is varied while specificity is fixed at 99%. In the

figures on the right, the sensitivity is fixed at 80%, while specificity is varied. Note that the horizontal axis is ordered from highest to lowest. The lines connect

outcomes for different treatment durations with otherwise the same assumptions. The Ov16 antibody prevalence was estimated according to hypothesis 2 in

0–9 year old children.

doi:10.1371/journal.pntd.0005314.g007
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children aged 0–9 in combination with entomological evaluation by O-150 polymerase chain

reaction (pool screen) testing in blackflies [12]. Low rates or absent seroconversion in children

born after the start of MDA indicates that the force-of-infection has been low during their life-

span. It is important to realize, though, that the post-MDA Ov16 antibody prevalence can also

vary within the 0–9 age range, depending on local transmission conditions and the history of

MDA (see Fig 3). For accurate interpretation of observed antibody prevalence levels in children,

it is therefore critical to know the age distribution among children examined. Somewhat higher

seroprevalence levels are expected if infants and toddlers are excluded or underrepresented in the

sample, and vice versa. Note that exclusion of the youngest children from the sample will not nec-

essarily cause an important loss of information, since—even in the presence of some ongoing

transmission—this age group will mostly be antibody-negative. In any case, age-standardization

of sample results may be warranted.

Additional information might be obtained by looking at a wider age range (Fig 6) or by

considering the full age-profile (Fig 3). It has previously been shown that broadening the sam-

pled age range may enable discrimination of smaller changes in force of infection in communi-

ties approaching elimination [38]. The results in Fig 3 and Fig 6 were derived under the

assumption that there is no seroreversion, so that older individuals remain positive and the

maximum seroprevalence in the oldest age groups remains unchanged. Under this assump-

tion, the age-span over which Ov16 antibody prevalence is (close to) zero is indicative of the

period over which transmission has been low. Yet, the interpretation of seroprevalence data in

older age groups is complicated by uncertainty about the possibility and dynamics of serore-

version. The prevalence in all older age groups would be lower than predicted in this study,

with the relative difference increasing with increasing duration of MDA. While seroreversion

may still be indicative of strongly reduced transmission, it becomes more difficult to estimate

the period over which transmission was low.

Critical threshold for stopping MDA

The ONCHOSIM simulations reveal that local transmission conditions influence the predicted

association between the post-MDA mf or Ov16 antibody prevalence levels and probability of

elimination. More specifically, mf prevalence and Ov16 antibody prevalence need to be

brought down to lower levels in high-transmission settings (with high baseline endemicity)

than in low-transmission settings (with low baseline endemicity). This pattern is theoretically

expected [39] and in line with predictions in previous onchocerciasis modelling papers [27,

40] and with findings for lymphatic filariasis [41–43].

Readers may be tempted to deduce endpoints for MDA from the results presented in

Figs 4–7, but caution is required. Our study was not designed to estimate a critical thresh-

old for the seroprevalence, below which MDA can be interrupted. As explained in the

Results section, these figures should not be interpreted as the elimination probability of

elimination for a specific community with a given mf or Ov16 antibody prevalence. This

requires a different type of analysis that will be presented elsewhere. A more appropriate

interpretation is that these figures give the expected elimination probabilities for groups of

communities with similar transmission conditions and history of control. This is still not

directly applicable to real-life treatment areas, because real-life treatment areas are usually

not homogeneous with respect to transmission conditions. Between-community variation

in transmission conditions results in strong variation in the expected residual mf preva-

lence or Ov16 antibody prevalence levels after a given duration of MDA. This distorts the

association between the mean residual prevalence and elimination prospects, and compli-

cates the interpretation of mean prevalence levels.
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The current guidelines for defining when to stop MDA propose to sample children under

10 for antibody testing by a multistage stratified sampling method scheme applied to the local

lower administrative unit level, thereby estimating the mean Ov16 antibody prevalence in a

MDA implementation unit [12]. These mean prevalence estimates are subject to the interpreta-

tion problems identified above. Low prevalence levels are expected in communities that are rela-

tively far from the breeding sites, while the prevalence may still be above the critical threshold

in the communities with highest transmission, i.e. those communities that are closest to the

most active fly breeding sites. From an overall mean prevalence, it is difficult to deduce with cer-

tainty whether transmission is also interrupted in the high transmission core communities,

unless the critical threshold is set at a very low level. It would be more efficient to first assess

whether prevalence is brought below the critical threshold in the high-transmission communi-

ties closest to the breeding sites; if so, one can proceed with a region-wide assessment to verify

that the same is achieved in other communities. Knowledge regarding baseline endemicity level

and local transmission conditions in the high-transmission core communities should be consid-

ered in defining the critical threshold level to be used in a MDA implementation unit.

Diagnostic test characteristics

For the purposes of the simulations presented here, a baseline sensitivity of 80% and specificity

of 99% were used. An indication of the sensitivity of Ov16 antibody detection test was obtained

from Lipner et al, who reported that 76%-81% of mf positives were also Ov16 positive [13]. We

implicitly assumed that the sensitivity is independent of age and mf intensity, once an individ-

ual has experienced the trigger.

Fig 7 shows how sensitive the association between Ov16 antibody prevalence in children

and elimination prospects is to diagnostic test characteristics. It is therefore critical to get bet-

ter information on these characteristics. It is also important to realize that these test character-

istics can differ between different types of test. In all diagnostic tests, but especially in the case

of serological tests there is typically a trade-off between sensitivity and specificity defined by

the receiver-operating characteristic (ROC) curve of the test. Test characteristics will depend

on the platform (ELISA or RDT) and the somewhat arbitrarily-determined threshold concen-

tration of Ov16 IgG4 used to distinguish positive and negative cases. This implies that the asso-

ciation between measured seroprevalence levels and elimination prospects, and hence the

endpoint for MDA, may vary from platform to platform (ELISA versus RDT) and within plat-

forms even from assay condition to assay condition. Further standardization of Ov16 antibody

testing (e.g. by means of a RDT) is recommended to interpret the measured Ov16 antibody

prevalence.

Uncertainty

In the text above, we have identified several uncertain factors that can influence our predictions

and endpoints for MDA, including uncertainties regarding the trigger and dynamics of the

IgG4 immune responsiveness against Ov16 antigen and diagnostic test characteristics. We con-

sidered three different hypotheses with respect to the trigger of seroconversion. Our modelling

shows that Ov16 antibody prevalence is relatively non-informative for predicting elimination if

seroconversion is associated with mf production (hypothesis 3). The disparity between hypothe-

sis 1 and 2 on the one hand and hypothesis 3 on the other in the association between antibody

prevalence levels in children and elimination probability is large (see Fig 4), which would lead

to very different estimates of the critical threshold for the antibody prevalence in children. We

further assumed that: seroconversion occurs immediately after experiencing the trigger, a fixed

proportion of individuals will never become seropositive even after experiencing the trigger, no
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seroreversion occurs, and diagnostic test characteristics are independent of an individual’s age

and worm load. The reality may be more complex, which could influence the association

between post-MDA prevalence levels and likelihood of elimination and the predictive value of

antibody tests. Our conclusions in qualitative terms may not be influenced much by the identi-

fied uncertainties, but any quantitative predictions should be interpreted with care until better

information is available regarding the trigger and dynamics of antibody responsiveness.

Better understanding is to come from empirical data. For example, pre-control empirical

data on Ov16 serostatus and mf status by age may help to elucidate the trigger and dynamics

of seroconversion. We analyzed such data from two villages in Côte d’Ivoire that were highly

endemic for onchocerciasis and had no history of control (Mafia: study population n = 134, mf

prevalence 83%; CMFL 8.6 mf/snip; Zakpaberi: study population n = 367, mf prevalence 65%,

CMFL 7.4 mf/snip) [13] (individual level data were kindly provided by the authors). These

data showed that in children mf and Ov16 antibody prevalence levels are about the same (out

of 20 children <10, 11 (55%) and 10 (50%) were mf and antibody positive in Mafia, respec-

tively; similarly, out of 124 children <10, 48 (39%) and 56 (45%) were mf and antibody posi-

tive in Zakpaberi). In adults, the mf prevalence was almost always higher than the Ov16

antibody prevalence. Firm conclusions regarding the trigger of seroconversion and antibody

test sensitivity (as defined in the model) could not be drawn: the model could reproduce age

patterns of mf and Ov16 seropositivity with each of the three hypothesized triggers, although

we had to assume a lower sensitivity of the serological test if seroconversion was triggered by

the establishment of the first worms (hypothesis 1 or 2) than if it was triggered by mf produc-

tion (hypothesis 3). Additional pre-control data may become available from recent (pre-con-

trol) mapping studies, with information on both mf counts and Ov16 antibody test results.

Better information on diagnostic test characteristics (sensitivity, specificity and positive and

negative predictive values) is to come from diagnostic test comparison studies. Post-MDA

data from epidemiological evaluation studies (e.g. [44–47, 38]) can also be useful, although the

informativeness of such data depends on the quality of information on local transmission

dynamics and the history of control.

Conclusions

This work provides valuable insight into the factors that influence post-MDA seroprevalence

levels and age patterns of Ov16 seropositivity. The post-treatment antibody prevalence in chil-

dren was found to be a good indicator of probability of elimination, although the association is

dependent on local transmission conditions and assumptions regarding uncertain factors such

as the trigger and dynamics of IgG4 responsiveness and diagnostic test characteristics. These

uncertainties hinder the estimation of a critical threshold that can be taken as endpoint for

MDA programmes and better information should come from empirical data. Yet, our study

clearly demonstrates that this threshold will be dependent on baseline endemicity levels, which

should be taken into account in guidelines for defining when to stop MDA.
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