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Abstract

A broad spectrum of autoimmunity is now well described in patients with primary 

immunodeficiencies (PIDs). Management of autoimmune disease in the background of PID is 

particularly challenging given the seemingly discordant goals of immune support and immune 

suppression. Our growing ability to define the molecular underpinnings of immune dysregulation 

has facilitated novel targeted therapeutics. This review focuses on mechanism-based treatment 

strategies for the most common autoimmune and inflammatory complications of PID including 

autoimmune cytopenias, rheumatologic disease, and gastrointestinal disease. We aim to provide 

guidance regarding the rational use of these agents in the complex PID patient population.
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Autoimmune and inflammatory diseases can complicate the course of primary 

immunodeficiency (PID) and the complex care of these patients (1). The clinical spectrum is 

broad and frequently includes autoimmune cytopenias, rheumatologic disease, and 

gastrointestinal (GI) disease (2, 3). The pathogenesis of immune dysregulation leading to 

autoimmunity in PIDs was recently comprehensively reviewed (4). In light of mechanistic 

understanding, it is timely to review management strategies.

Balancing immunosuppressive therapy in patients with susceptibility to infection is a clinical 

challenge. Treatment success hinges upon correcting the underlying immune dysregulation 

while minimizing nonspecific immune suppression. Herein we will review management of 

PID-associated autoimmunity by therapeutic mechanism: targeting B cell, T cell, or innate 

immune pathology or using hematopoietic stem cell transplantation (HSCT) to reconstitute 

the immune system.

1. Treatment of autoimmune cytopenias in primary immunodeficiencies

While autoimmune cytopenias, including autoimmune hemolytic anemia (AIHA), immune 

thrombocytopenic purpura (ITP), and autoimmune neutropenia (AN), occur in the general 

population, they are particularly common in patients with PID. As an example, PID was 

uncovered in 13% of children with AIHA (5) and up to 50% of children with multi-lineage 

cytopenias (Evans syndrome) (6). Autoimmune cytopenias have been described in both 

innate and adaptive immune deficiencies (3, 7) and may be the first sign of immune 

dysregulation that precedes the classical presentation of PID with recurrent or opportunistic 

infections (8, 9). Clinical warning signs that may prompt the clinician to consider PID at an 

earlier stage include: multi-lineage cytopenias, AIHA with no response to first-line therapy, 

persistent/chronic ITP, and AN in a patient > two years of age and/or persistent for > 24 

months (10-14).

Corticosteroids are the mainstay of treatment for AIHA with a high response rate around 

80% in the general population (15). For ITP, corticosteroids or high-dose intravenous 

immunoglobulin (IVIG) are considered first-line (16). In the fraction of patients who relapse 

following these therapies, splenectomy has been the traditional second-line approach. With 

the advance of biologics, anti-CD20 antibody (rituximab) is now considered an effective 

second-line approach although randomized clinical trials are lacking. In general, clinical 

approach in treatment-resistant cases is one of therapeutic trial and error in the absence of a 

guiding underlying immunophenotype or biomarkers to direct care. By contrast, second-line 

treatment strategies for PID-associated autoimmune cytopenias are increasingly being 

targeted to the underlying mechanism of immunopathology.
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1.1 Targeting B cell pathology

Several studies address the approach to autoimmune cytopenias in the background of 

common variable immunodeficiency (CVID), a heterogeneous condition defined by 

decreased serum immunoglobulins (low IgG with low IgM and/or IgA), frequent infections, 

and poor antigen-specific antibody titers (17). Classical CVID is considered to be a primary 

disorder of B cells. However, improved genetic discovery and immunophenotyping has led 

to reclassification of a growing CVID subset as de facto combined immunodeficiency (CID) 

(18).

The link between CVID and autoimmunity was first established in the 1990s (19) and has 

been greatly expanded since that time (Table I) (20, 21). Initial treatment regimens for 

autoimmune cytopenias included combinations of corticosteroids, high-dose IVIG, and anti-

Rho(D) in the case of ITP. These guidelines were extrapolated from the standard of care in 

the general population. Initial response rates to corticosteroids were reasonable, 85% for ITP 

(22) and 81% for AIHA (23); however, prolonged use was often required, which increased 

risk for infection as a secondary complication. Before the era of biologics, nearly half of 

these autoimmune cytopenia cases ultimately required second-line splenectomy (response 

rates of 60-80%), which was in contrast to the majority of first-line treatment responders 

seen in the general population (8, 22, 23). Other agents such as vinca-alkaloids, danazol, 

cyclophosphamide, azathioprine, and cyclosporine did not show long-term success and are 

now rarely used.

In 2004, rituximab was introduced as second-line therapy for CVID-associated AIHA (24). 

In a subsequent multicenter study of 33 CVID patients with refractory autoimmune 

cytopenias, which included steroid-dependence (56%), immunomodulatory therapy (44%), 

and prior splenectomy (21%), rituximab was demonstrated to have a durable response rate of 

59% (25). The authors proposed that rituximab be considered standard second-line therapy, 

prior to splenectomy and/or other immunomodulatory therapy, in CVID-associated 

autoimmune cytopenias. Although 24% of patients developed severe bacterial infections 

after rituximab treatment, half of these cases were off of immunoglobulin replacement 

therapy and/or had undergone splenectomy (25). While concerning, the rate of severe 

bacterial infections was not significantly different than that observed in CVID patients with 

ITP treated by the more traditional approach of corticosteroids with or without high-dose 

IVIG (22). Therefore, risk for infection with rituximab use needs to be considered primarily 

in CVID patients not receiving immunoglobulin replacement therapy.

Response to B cell depletion therapy in most cases of CVID-associated autoimmune 

cytopenias localized the immunopathology to the B cell compartment and suggested that 

other therapies targeting this compartment may also be efficacious. It should be emphasized 

that rituximab depletes only maturing B cells and does not target long-lived plasma cells that 

can sustain autoantibody production in lymphoid niches for some time (months) after 

treatment. Alternative B cell-directed therapy may include bortezomib, a proteasome 

inhibitor that is approved for the treatment of multiple myeloma and preferentially causes 

apoptosis of antibody-producing plasma cells through activation of the unfolded protein 

response (UPR) (26). Bortezomib has shown promising results in peri-transplant cases of 
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PID-associated refractory autoimmune cytopenias specifically (four of five patients with PID 

responded to treatment and only two patients required transition to alternative therapy (27)). 

Additional B cell-directed therapies currently in clinical trial include an anti-CD22 antibody 

(epratuzumab) and an anti-APRIL antibody. Both show promise in severe refractory 

autoimmune diseases including cytopenias (28-31), but have yet to be trialed in PID 

specifically. Finally, the terminal complement inhibitor eculizumab (anti-C5) has been 

utilized to rescue a patient from fatal complications related to treatment-refractory AIHA 

(32). Since it acts distal to the B cell in autoantibody mediated diseases, it could in theory be 

applied in combination with B cell depleting therapies to more completely control disease. 

The mechanism of action for these biologics is reviewed in Figure 1.

1.2 Targeting T cell pathology

PID patients with prominent T cell dysfunction may not fully benefit from the removal of 

autoreactive B cells. In autoimmune lymphoproliferative syndrome (ALPS), the 

accumulation of pathognomonic TCRαβ+CD4−CD8− (double negative, DN) T cells occurs 

secondary to defective apoptosis. While autoimmune cytopenias are a key feature of the 

disease (Table I), rituximab is a therapy of last resort given the associated finding of 

profound and prolonged hypogammaglobulinemia up to 4 years post-treatment (33). 

Similarly, splenectomy is less preferred as it may result in unfavorable outcomes with 

recurrent cytopenias and high rates of sepsis (41%) in ALPS patients (34).

The conventional first-line therapy for ALPS-associated autoimmune cytopenias has been 

corticosteroids, but second-line therapies including mycophenolate mofetil (MMF, a prodrug 

of mycophenolic acid that inhibits inosine monophosphate dehydrogenase and suppresses T 

and B cells) and sirolimus (an mTOR inhibitor) that more effectively target DN T cells are 

increasingly being used as primary therapy (35, 36). Sirolimus was first trialed in four 

corticosteroid-refractory ALPS patients in 2009 and resulted in marked improvements in 

both autoimmune cytopenias and associated systemic inflammatory features (arthritis, 

colitis, lymphadenopathy, and splenomegaly) (10). In a subsequent trial of 30 patients with 

refractory autoimmune cytopenias across multiple PIDs (CVID and ALPS), sirolimus 

resulted in a complete and durable remission in the majority of patients (37). Treatment 

response in ALPS has been shown to coincide with a specific reduction in DN T cells, which 

are particularly dependent on an intact mTOR pathway (37-40).

Autoimmune cytopenias have been associated with partial DiGeorge syndrome (pDGS), 

occasionally preceding diagnosis of the underlying genetic defect (Table I) (41-43). Breaks 

in both central T cell tolerance (e.g., thymic aplasia/dysplasia) and peripheral T cell 

tolerance (e.g., T cell proliferation to low-affinity self antigens) have been proposed to 

induce autoimmunity (44). To date, large studies do not exist as to the optimal therapeutic 

approach. Steroids and azathioprine have been anecdotally used to treat ITP with benefit 

(42). Progression despite rituximab has been reported in two cases of severe autoimmune 

cytopenias associated with pDGS, one requiring HSCT for definitive treatment (45), the 

other requiring plasmaphoresis in combination with splenectomy for stabilization (46).

Autoimmune cytopenias can also occur in the setting of regulatory T cell (Treg) dysfunction. 

CTLA4 haploinsufficiency is a novel autosomal-dominant immunodeficiency where 
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decreased CTLA4 cell surface expression results in impaired Treg suppressor function. It 

has been associated with a broad clinical spectrum of autoimmunity including high rates of 

ITP and AIHA (Table I). Here, direct complementation of the underlying immunoregulatory 

defect with CTLA4-Ig (abatacept) has been anecdotally reported to treat pancytopenia and 

associated life-threatening autoimmunity otherwise refractory to corticosteroids, tacrolimus, 

azathioprine, cyclophosphamide, and sirolimus (47). LRBA deficiency is an associated 

autosomal-recessive PID where Treg impairment occurs secondary to aberrant recycling of 

CTLA4 to the cell surface (48). It is strongly associated with systemic autoimmunity 

including cytopenias (Table I). Major treatment modalities have included corticosteroids 

(39%), IVIG (39%), MMF (22%), abatacept (15%), tacrolimus/sirolimus (11%), and HSCT 

(11%) (49). Interestingly, inhibition of lysosomal degradation via chloroquine/

hydroxychloroquine rescued CTLA4 expression in LRBA deficient cells in vitro (48) and 

improved lymphoproliferative lung pathology in a patient with LRBA mutation in vivo (50), 

however, improvement in autoimmune cytopenias specifically has yet to be described.

Finally, patients with STAT1-GOF mutations develop chronic mucocutaneous candidiasis 

and autoimmunity including cytopenias in the background of prominent T cell dysregulation 

(Table I). Specifically, naïve CD4+ T cells are uniquely biased towards IFN-γ production 

irrespective of polarizing conditions and expansion of follicular helper T cells relative to 

Tregs has been shown (51). T cell targeting with cyclosporine has been anecdotally used to 

treat AIHA in STAT1-GOF with benefit (52). More recently, a janus kinase (JAK) 1/2 

inhibitor (ruxolitinib) was used to treat two distinct cases of STAT1-GOF with associated 

autoimmunity including autoimmune cytopenias (51) and refractory alopecia areata (53). 

Ruxolitinib was shown to reduce hyper-responsiveness to IFN-γ, restore Th17 and Treg 

counts, induce long-lasting control of autoimmunity (up to 6 months post-treatment (53)), 

and had the unexpected benefit of reducing occurrence of mucocutaneous candidiasis in both 

cases.

1.3 Immune Reconstitution

Patients with severe immunodeficiency may require progression to HSCT for definitive 

treatment. Wiskott-Aldrich syndrome (WAS) is a well-described PID where autoimmune 

cytopenias occur beyond abnormal platelet number, size, and function (54). AIHA is severe, 

early-onset, and poorly responsive to corticosteroids, and ITP mainly occurs post-

splenectomy (Table I). The presence of autoimmunity increases disease severity and 

contributes to the indication for HSCT. Unfortunately, even after HSCT and/or gene therapy 

autoimmune cytopenias may resurface and become refractory (55-58), as demonstrated by 

the 55% of WAS patients who developed autoimmune cytopenias in the post-transplant 

period (59). Thrombopoietin receptor agonists such as romiplostim and eltrombopag are 

emerging therapies for ITP, mainly by promoting platelet production. Since these agents are 

not immunosuppressive, they could be particularly useful in the treatment of ITP on a 

background of PID going forward (60-62).

Finally, autoimmunity is increasingly recognized among patients with CIDs secondary to 

classical severe combined immunodeficiency (SCID)-related gene defects. Patients with 

recombination activating gene (RAG) mutations can have broad clinical heterogeneity 
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ranging from early-onset severe infections (SCID phenotype) to delayed-onset autoimmune 

and inflammatory complications such as cytopenias, vasculitis and granulomas (CID-AI/G 

phenotype) (63). Specific RAG mutation, RAG activity, and ultimately the resultant B and T 

cell repertoire correlate well with these distinct phenotypes (64). Several checkpoints of B 

and T cell tolerance are impaired in RAG deficiency, which results in impaired removal of 

autoreactive cells (abnormal thymic selection, dysfunctional Tregs, impaired B cell receptor 

editing in the bone marrow, and elevated B cell activating factor (BAFF) expression) 

(65-67). However the relative contribution of these mechanisms in driving autoimmunity is 

still unclear. Treatment outcomes data in our RAG deficient cohort suggest that second-line 

therapy with biologics is not standardized and often ineffective. Progression to HSCT for 

definitive treatment was ultimately required in 20% of CID-AI/G patients with autoimmune 

cytopenias (68).

Autoimmune cytopenias have been anecdotally reported in other CIDs (PIK3CD (PI3K-D), 

TPP2, and DOCK8) as well as in hypomorphic SCID variants (DCLRE1 (ARTEMIS), 

ADA, PNP, RMRP, and ORAI1) (62) (Table II). The largest review to date details 14 

hypomorphic ARTEMIS cases, where 6 of 14 patients (45%) had autoimmune cytopenias 

(69). For the other PIDs in this group, autoimmune cytopenias are more sporadically 

reported, and treatment strategies have not been discussed in depth.

2. Treatment of rheumatologic disease in primary immunodeficiencies

PIDs are now known to be associated with a spectrum of rheumatologic disease including 

inflammatory arthritis, vasculitis, systemic lupus erythematosus (SLE), and SLE-like 

disorders (Table I). It is not uncommon that rheumatologic disease is treated prior to the 

discovery of an underlying PID, which can result in substantial infectious complications. 

Indeed, delay in immunophenotyping and definitive treatment has resulted in increased 

morbidity and/or fatal outcomes in cases recently reported (70-72). Therefore, clinicians 

must consider risk for infection when approaching therapeutic options for rheumatologic 

disease in PID. Here, we discuss PID-associated rheumatologic diseases with 

polyautoimmunity. There are a significant number of important PIDs that cause primarily 

rheumatologic disease, for example complement deficiencies and monogenic disorders of 

dysregulated IL-1 production, that have been reviewed elsewhere (73-75).

2.1 Targeting B cell pathology

CVID has been associated with rheumatologic complications including inflammatory 

arthritis, vasculitis, and SLE (Table I). The majority of patients will require therapy beyond 

IVIG. Case reports have demonstrated successful use of rituximab to treat both CVID-

associated SLE (76) and ANCA-positive vasculitis (77). These data localize pathology to the 

B cell compartment and suggest that other B cell targeting strategies may be efficacious. 

Belimumab is a novel therapeutic uniquely targeting BAFF that just gained FDA approval 

for the treatment of SLE (78). Rationale for its use originated in the notion that autoreactive 

B cells have less BAFF-R on their surface and reside in an anergic state when BAFF levels 

are normal (79). In inflammatory conditions, BAFF levels may elevate and contribute to the 

survival of autoreactive cells (80). While promising, belimumab has yet to be trialed in 
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CVID specifically and may need special consideration in patients with BAFF receptor 

deficiencies (TACI and BAFF-R). Other potential mechanisms of targeting B cell pathology 

that may prove efficacious in CVID-associated rheumatologic disease have already been 

reviewed (Figure 1).

2.2 Targeting T cell pathology

The predominance of rheumatologic complications seen in patients with Treg dysfunction 

including CTLA4haploinsufficiency, LRBA deficiency, and STAT3-GOF (Table I) 

converges on the hypothesis that FOXP3+CD25+CD4+ Tregs play a critical role in host 

defense against the development of rheumatologic diseases including inflammatory arthritis 

(81). Consistent with this hypothesis, CTLA4-Ig therapy (abatacept) is FDA approved for 

the treatment of rheumatoid arthritis (RA) and juvenile idiopathic arthritis (JIA) in the 

general population. More recently, abatacept has shown benefit in PID. In LRBA deficiency, 

two children with inflammatory arthritis and uveitis (clinically consistent with JIA) 

demonstrated robust response to abatacept therapy (48, 82). Inflammatory arthritis can also 

complicate the course of CTLA4 haploinsufficiency (83), and it has yet to be determined 

whether abatacept will be additionally beneficial in these cases. Finally, inflammatory 

arthritis has been reported in several patients with STAT3-GOF (84, 85). Immunophenotype 

is notable for decreased Treg numbers and functional expression of FOXP3 and CD25, 

potentially mediated by increased STAT3-dependent SOCS3 expression driving decreased 

STAT5 phosphorylation (84, 85). As Treg inhibition in STAT3-GOF is indirect, clinicians 

hypothesized that use of an anti-IL6R antibody (tocilizumab) might be beneficial via 

blocking upstream IL-6-induced STAT3 activation. To date, one patient with STAT3-GOF 

complicated by arthritis and scleroderma-like skin changes refractory to treatment with 

TNF-α inhibitors, anti-IL-1 therapy, and rituximab demonstrated sustained response to 

tocilizumab over a one year follow-up period (84).

Inflammatory arthritis is also a known complication of x-linked agammaglobulinemia 

(XLA), a PID where autoreactive B cells are effectively absent due to maturation arrest at 

the pre-B cell stage. While infectious joint inflammation resolving on immunoglobulin 

replacement therapy is frequently seen in XLA (86), aseptic arthritis has also been described 

including presentations of RA (87), JIA (88, 89), and enthesitis-related arthritis (ERA) (90). 

Infiltrating CD8+ T cells can be seen on joint cytology (87). Underlying mechanisms of T 

cell-driven autoimmunity (90) and/or innate immune hyperactivation (91, 92) have been 

proposed. In these cases, IVIG alone can be insufficient management (87, 90), progression 

despite methotrexate has been described (87), nonsteroidal anti-inflammatories (NSAIDs) 

may provide some benefit (89, 90), and there is no systematic guidance for the use of T cell 

or innate immune targeted strategies to date.

2.3 Targeting innate immune pathology

In contrast to the PIDs previously presented, patients with chronic granulomatous disease 

(CGD) develop systemic autoimmunity in the background of a primary innate immune 

deficiency. Here decreased NADPH oxidase results in defective phagocytosis. Profound 

aseptic hyper-inflammatory responses are seen in CGD, characterized by loss of anti-

inflammatory mediators (93), impaired clearance of apoptotic cells (94), and downstream 
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CD4+ T cell skewing that can drive autoimmune arthritis in the mouse model (95). In 

patients, CGD has been associated with cutaneous discoid lupus erythematosus (DLE), 

chorioretinitis, inflammatory arthritis, vasculitis, and SLE as well as DLE in female carriers 

of x-linked disease (Table I) (96-99). A single case series on treatment of rheumatologic 

manifestations in CGD recently demonstrated clinical stabilization with systemic 

corticosteroids (one case of DLE), methotrexate (one case of antiphospholipid syndrome 

(APLS)), and etanercept (one case of JIA) (96). While these anecdotal data are promising, 

anti-TNF-α therapies have been associated with invasive fungal disease even in 

immunocompetent hosts and should be used cautiously in these and other PID patients with 

significant susceptibility to infection.

2.4 Immune Reconstitution

HSCT has the potential to be curative for PID with autoimmunity in terms of reconstitution 

of the immune system and reduced susceptibility to infection. However, autoimmune disease 

can sometimes persist or even broaden post-transplant. 70% of WAS patients have 

associated autoimmunity that can include inflammatory arthritis and vasculitis (Table I). 

Although arthritis and vasculitis generally improve following HSCT or gene therapy, there 

are several cases where autoimmunity has persisted or even newly arisen (56-58). RAG 

deficiency has also been associated with rheumatologic and autoimmune diseases including 

vitiligo, myasthenia gravis (MG), and vasculitis (Table II) (63). Progression of vasculitis in 

RAG deficiency despite treatment with corticosteroids, IVIG, and rituximab has been 

described (70). In contrast, HSCT in RAG deficiency has been case reported to be curative/

preventative for polyautoimmunity (70, 100). As fewer post-transplant auto-inflammatory 

complications were observed in patients with RAG deficiency compared to patients with 

impaired ARTEMIS (101), benefit of HSCT may be PID-specific. However, additional 

clinical evidence is required to determine whether HSCT is truly curative for rheumatologic 

disease in PID. Optimal timing for transplantation, regimen for conditioning, and goal for 

donor chimerism have yet to be determined.

3. Treatment of GI disease in primary immunodeficiencies

PIDs have been associated with a broad clinical spectrum of autoimmune GI disorders 

including gastritis (pernicious anemia), celiac disease, autoimmune enteropathy (AIE), and 

inflammatory bowel disease (IBD) (Table I) (102). In the background of frequent infections 

(e.g., Giardia, Campylobacter, Salmonella, rotavirus, enterovirus, norovirus) diagnosis of 

nonspecific GI symptoms such as nausea, vomiting, diarrhea, and weight loss becomes 

particularly challenging. However, elucidating the underlying pathophysiology is critical 

given the associated finding of increased mortality in the PID subgroup with GI 

complications specifically (20).

3.1 Targeting T cell pathology

Gastritis, AIE, and IBD have all been described in CVID (103). Small intestinal biopsy 

frequently demonstrates villous atrophy that resembles sprue apart from the absence of 

plasma cells (104, 105). Lymphocytic infiltrates and occasional granulomas can occur both 

in the small intestine and the colon, consisting predominantly of CD 8+ T cells (104-106). 
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Unfortunately, GI inflammatory disease in CVID has been notoriously difficult to treat. 

Despite benefit from combination rituximab/azathioprine therapy to manage granulomatous 

lung pathology (107), a similar response has not been seen in the inflamed GI tract (108). 

TNF-α inhibitors (109, 110) as well as the anti-α4β7 integrin monoclonal vedolizumab, 

which may inhibit Treg trafficking to the GI mucosa (103), have been anecdotally reported 

as successful. We have a case of severe CVID-associated AIE with negative genetic testing 

for CTLA4 and LRBA mutations currently improving after 4 months of treatment with 

abatacept (weight gain, decreased stool output, decreased infiltrating T cells on biopsy) 

(Walter, JE and Farmer, JR; unpublished data). Therefore, GI inflammatory disease may be a 

unique complication of CVID where B cell targeting is insufficient and directed T cell 

targeting is required to effectively manage this often life-threatening complication.

Mounting data are converging on the importance of Tregs in host defense against auto-

inflammation in the GI tract. Immune dysregulation polyendocrinopathy enteropathy X-

linked syndrome (IPEX) is a profound disorder of FOXP3+CD25+CD4+ Tregs caused by 

mutations in FOXP3. The pathognomonic clinical features of IPEX are severe and early-

onset dermatitis, type I diabetes mellitus, and failure to thrive secondary to refractory 

diarrhea starting in infancy (111, 112). A demonstrated break in peripheral B cell tolerance 

leading to the production of auto-antibodies to the brush border proteins villin and AIE-75 

has been described (113, 114). However, the role of anti-villin and anti-AIE-75 in disease 

pathogenesis is entirely unclear. AIE on biopsy is characterized by villous atrophy with 

infiltrating lymphocytes and eosinophils. Histopathologic patterns of “graft-versus-host 

disease-like,” “celiac disease-like,” and “depletion of the intestinal goblet cells” have all 

been described (115). Most single targeted immunosuppressive agents have been 

disappointing in the management of the profound autoimmunity and failure to thrive. 

However, T cell targeted therapeutics including tacrolimus, cyclosporine, and sirolimus have 

shown benefit in reducing the burden of IPEX-related autoimmune disease in the pre-

transplant period (116-118).

Beyond intrinsic Treg defects secondary to abnormal FOXP3, CD25 or STAT5b; 

interestingly, AIE and IBD are shared complications of other Treg disorders including 

CTLA4 haploinsufficiency (83, 119), LBRA deficiency (120), STAT1-GOF (121) STAT3-

GOF (84), mutated RAG1 (122) or DOCK8 (123), and ITCH deficiency (124, 125). 

Furthermore, autoimmune GI disease can be robustly induced (27-54% symptomatic with 

watery diarrhea) upon treatment with anti-CTLA4 biologics (126). These data again 

converge on the hypothesis that Tregs are critical in gut homeostasis (127). To this end, 

infiltrating T cells have been demonstrated on intestinal biopsy in CTLA4 haploinsufficiency 

(83), and lack of response to traditional therapeutics including TNF-α inhibitors has been 

demonstrated in LBRA deficiency (120). By contrast, sirolimus has been reliably efficacious 

in CTLA-4 haploinsufficient patients, and immune reconstitution with abatacept has been 

shown to markedly reduce AIE (47).

3.2 Targeting innate immune pathology

Profound autoimmune GI disease can also occur in the setting of innate immune deficiency. 

Classic is CGD, where multi-organ granulomatous inflammatory pathology occurs, most 
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prominently affecting the GI tract in up to 73-88% of patients (Table I) (128, 129). Biopsy 

demonstrates skip lesions most frequently affecting the ano-rectum and consisting of crypt 

abscesses, large pigment-containing macrophages, and noncaseating granulomas, which can 

be indistinguishable from Crohn's disease (128-131). Despite the predisposition towards 

infection, no causative pathogens were identified in up to 93% of CGD-associated 

inflammatory GI disease cases (128), suggesting an underlying mechanism of aseptic 

autoimmunity. Treatment outcomes to date demonstrate limited benefit from corticosteroids 

(63-86% relapse rate) and/or NSAIDs (50-100% relapse rate) (128). Immunomodulation 

with methotrexate, azathioprine, cyclosporine, and thalidomide have been case reported as 

successful (128, 129, 132, 133). Finally, despite efficacy in colitis management, TNF-α 
inhibitors should be avoided given the high rate of complicating deadly infections (two 

deaths out of five infliximab-treated CGD patients (134)).

3.3 Immune Reconstitution

In CGD, HSCT has been shown to be curative both in terms of the recurrent infections and 

the multi-organ granulomatous pathology (135). However, using full myeloablative 

conditioning, patients with peri-transplant comorbidities including colitis had increased 

mortality (135), bringing up controversy as to the optimal timing and conditioning for 

transplant. More recently, reduced-intensity conditioning using high-dose fludarabine, 

serotherapy, and low-dose busulfan in high-risk CGD was shown to be both safe and 

effective (89% event-free survival at 21 month follow-up (136)). As this study included 33% 

of patients with active peri-transplant colitis, the data suggest that this reduced-intensity 

conditioning HSCT can be considered in severe CGD cases complicated by IBD.

Finally, while directed immunosuppression in IPEX can help to reduce the burden of multi-

organ inflammatory pathology, HSCT is the only definitive treatment. Improved outcomes 

are seen with earlier age and fewer comorbidities at time of transplant and with the use of 

reduced-toxicity conditioning regimens (137-143). Even in the case of partial donor 

chimerism, clinical disease remission has been reported, coinciding with the presence of full 

donor Tregs (139, 141). The selective advantage of wild-type Tregs is consistent with the 

underlying pathophysiology of IPEX and may dictate Treg-sparing therapies for graft-

versus-host disease in the post-transplant period (112).

Summary—Autoimmune and inflammatory diseases can greatly complicate the care of 

PID patients. Treatment strategies in PID should be targeted not only to the clinical spectrum 

of autoimmunity (cytopenias, rheumatologic disease, and/or GI disease) but to the 

underlying molecular cause of immune dysregulation (B cell, T cell, and/or innate immune 

pathology). As we advance our understanding of mechanisms that mediate autoimmunity in 

PID, we inherently improve the care of our PID patients and broaden our basic 

understanding of autoimmune and inflammatory disease.
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DN double negative

UPR unfolded protein response

JAK janus kinase

MMF mycophenolate mofetil

NSAID nonsteroidal anti-inflammatory
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Figure 1. 
Mechanisms of targeting B cell pathology in the treatment of autoimmune and inflammatory 

diseases associated with PID.
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Table I

Primary immunodeficiencies associated with autoimmune disease.

PID Immunologic Defect AI 
Cytopenias 
Prevalence 

(%)

Rheum Disease 
Prevalence (%)

GI Disease 
Prevalence (%)

Other Noninfectious Manifestations Refs.

CVID Polygenic
low IgG (low IgA or 
IgM), low vaccine 
titers, low sm B 

cells, high 
CD19hi21lo B cells

ITP 
(5.6-14.2)

AIHA 
(2.7-7)

AN (<1-2.7)
Evans (4.2)

RA (3.2)
vasculitis & SLE 

(<1-2.7)

diarrhea (14-23)
malabsorption/AIE 

(6-9)
IBD (4.2)

Lymphoproliferative pathology 
(LAD, HSM, GLILD, NRH, 

leukemia, lymphoma)
Other autoimmunity (hepatitis, 
alopecia, thyroiditis, vitiligo)

(20, 21, 144-146)

XLA BTK
Low/absent 

circulating B cells, 
loss of germinal 
centers, pan low 

immunoglobulins, 
impaired innate 

immune signaling, 
decreased Tfh cells

ITP (2.7*)
AIHA (9.8*)

RA/JIA (1.8*-16) diarrhea (8*-29)
IBD (3.6*-3.8)

Neutropenia in the setting of 
overwhelming infection

(86, 147-150)

ALPS TNFRSF6 (FAS), 
TNFSF6 (FASL), 

CASP10
high DN T cells, 
IL-10, IL-18, vit 

B12, FAS; decreased 
FAS-mediated 

apoptosis

ITP (26-39)
AIHA 
(29-36)

AN (8-37)
Evans 

(10-23)

uveitis (1-10)
vasculitis (4)
arthritis (case 

reported)

IBD (case reported) Lymphoproliferative pathology 
(LAD, HSM, lymphoma)

Other autoimmunity (hepatitis, PBC, 
GBS, GN)

(34, 151-155)

pDGS 22q11.2
impaired thymic 

development, 
decreased T cell 

number & function, 
variably decreased 
IgG/A/M & sm B 

cells

ITP 
(3.1-6.3)
AIHA 

(0.5-3.1)
Evans 

(0.5-3.1)

vasculitis (3.1)
arthritis (2.5-3.1)

IBD (0.5) Craniofacial anomalies, hypoplastic 
thymus, conotruncal cardiac 

anomalies, hypocalcemia
Other autoimmunity (thyroiditis)

(44, 156-158)

CTLA4 CTLA4 
(haploinsuficiency)
impaired FOXP3+ 

Tregs, activated 
effector & decreased 

naïve T cells, low 
IgG, low B cells, 

high CD21lo B cells

ITP (35)
AIHA (28)

arthritis (14) Diarrhea/AIE (78) Lymphoproliferative pathology 
(LAD, HSM, GLILD)

Other autoimmunity (thyroiditis)

(47, 83, 119)

LRBA LRBA
decreased/impaired 

FOXP3+ Tregs, 
activated T effector 

cells, low IgG, low B 
cells (sm B cells and 

plasmablasts)

ITP (29-52)
AIHA 
(39-57)
AN (24)

arthritis (26)
uveitis (10)

Diarrhea/AIE (61-62) Growth retardation, eczema
Lymphoproliferative pathology 

(LAD, HSM, GLILD, lymphoma)
Other autoimmunity (T1DM, 
thyroiditis, hepatitis, alopecia)

(48, 49, 159)

IPEX FOXP3
impaired FOXP3+ 

Tregs, high IgE, high 
eosinophils, low Th1 
cytokines, high Th2 

cytokines

AIHA or 
ITP or AN 

(31)

arthritis (1) Diarrhea/AIE (92) FTT, severe dermatitis
Lymphoproliferative pathology 

(LAD, HSM)
Other autoimmunity (early-onset 

T1DM, thyroiditis, hepatitis)

(160)

STAT3-GOF STAT3
decreased/impaired 

FOXP3+ Tregs, 
increased DN T 

cells, variably low 
IgG

ITP (62)
AIHA (69)

AN (46)
Evans (46)

arthritis (15-20) AIE (38-60) Short stature, eczema
Lymphoproliferative pathology 

(LAD, HSM, GLILD, lymphoma)
Other autoimmunity (T1DM, 

thyroiditis, alopecia, scleroderma, 
hepatitis)

(84, 85)
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PID Immunologic Defect AI 
Cytopenias 
Prevalence 

(%)

Rheum Disease 
Prevalence (%)

GI Disease 
Prevalence (%)

Other Noninfectious Manifestations Refs.

STAT1-GOF STAT1
augmented Th1, 

decreased/impaired 
Th17, low memory B 
cells, low IgG2/IgG4

AIHA or 
ITP (4)

SLE (2) AIE (4) Aneurysms, eczema, carcinomas
Other autoimunity (thyroiditis, 

T1DM, alopecia, vitiligo, psoriasis, 
hepatitis)

(161, 162)

WAS WAS
decreased T cell 

number & function, 
low IgG/A/M, high 

IgE, low vaccine 
titers

ITP (32)
AIHA 
(14-36)

Evans (20)

vasculitis (13)
arthritis (10)

IBD (3) Microthrombocytes with low count & 
poor function, eczema, mucosal 

bleeding, lymphoma, renal disease

(163)

CGD CYBB (x), CYBA, 
NCF1, NCF2, NCF4

dysfunctional 
NADPH oxidase, 

impaired 
phagocytosis, aseptic 
hyper-inflammation

ITP (1.4) DLE (2.7)
chorioretinitis 

(2.2)
SLE, APLS, 
vasculitis, & 
arthritis (<1)

IBD (17-88) Lymphoproliferative pathology with 
severe multi-organ granulomatous 
disease (GI tract, lungs, kidneys, 

eyes)

(96, 99, 128, 
164)

Abbreviations: patient self-reported (*), primary immunodeficiency (PID), autoimmune (AI), rheumatologic (rheum), gastrointestinal (GI), 
common variable immunodeficiency (CVID), autoimmune lymphoproliferative syndrome (ALPS), partial DiGeorge syndrome (pDGS), cytotoxic 
T-lymphocyte antigen 4 (CTLA4), LPS-responsive vesicle trafficking, beach and anchor containing protein (LRBA), immune dysregulation 
polyendocrinopathy enteropathy X-linked syndrome (IPEX), signal transducer and activator of transcription (STAT), gain-of-function (GOF), 
Wiskott-Aldrich syndrome (WAS), chronic granulomatous disease (CGD), regulatory T cell (Treg), helper T cell (Th), follicular helper T cell (Tfh), 
double negative (DN), switched memory (sm), autoimmune hemolytic anemia (AIHA), immune thrombocytopenic purpura (ITP), autoimmune 
neutropenia (AN), rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), systemic lupus erythematosus (SLE), discoid lupus erythematosus 
(DLE), anti-phospholipid syndrome (APLS), myasthenia gravis (MG), glomerulonephritis (GN), primary biliary cirrhosis (PBC), type I diabetes 
mellitus (T1DM), Guillain-Barre syndrome (GBS), autoimmune enteropathy (AIE), inflammatory bowel disease (IBD), lymphadenopathy (LAD), 
hepatosplenomegaly (HSM), granulomatous and lymphocytic interstitial lung disease (GLILD), nodular regenerative hyperplasia (NRH), failure to 
thrive (FTT)
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Table II

Combined immunodeficiencies associated with autoimmune cytopenias.

Gene Function Autoimmune Cytopenias Treatment Strategies Associated Autoimmunity References

RAG1, RAG2 dsDNA cleavage during V(D)J 
recombination

AIHA, ITP, AN steroids, IVIG, 
rituximab, HSCT

vasculitis, GBS, MG, 
psoriasis, vitiligo

(63, 70, 165)

DCLRE1 (ARTEMIS) non-homologous end joining, 
opening the hairpins

AIHA, ITP, AN n.a. (69, 166)

ADA deamination of adenosine and 
2′-deoxyadenosine

AIHA, ITP PEG-ADA, HSCT AI thyroiditis, T1DM (167)

PNP conversion of inosine and 
guanosine to hypoxanthine

AIHA, ITP steroids, rituximab, 
azathioprine, 

cyclosporine, HSCT

(168)

RMRP RNA component of the 
mitochondrial RNA processing 

(RMRP) endoribonuclease 
complex

AIHA, ITP post-HSCT steroids, IVIG, 
rituximab, HSCT

granulomas (169)

TRAC loss of TCR (transmembrane & 
intra-cytoplasmic domains)

AIHA treatment is not 
discussed, s/p HSCT

vitiligo, alopecia areata, 
pityriasis rubra pilaris

(170)

IL-7R signaling through the IL-7 
receptor ensures the 

development of mature B cells 
& T cells

AIHA, ITP treatment is not 
discussed, s/p HSCT

(171)

CD3ɣ TCR signal transduction AIHA, ITP steroids AI hepatitis & thyroiditis, 
minimal change disease

(172)

ZAP70 CD3ζ binding, T cell 
activation

ITP IVIG arthritis, nephritis in the 
mouse model

(173)

LCK/p56 TCR signaling, associated with 
CD4 and CD8, upon activation 
mediates phosphorylation of 

CD3 and ZAP70

ITP steroids, HSCT retinal vasculitis, sterile 
septal and lobular 

neutrophillic panniculitis, 
sterile arthritis

(174)

MST1/STK4 interacts with Foxo1 that 
controls IL-7Ra expression in 

naive T cells and T cell 
homeostasis

AIHA, ITP, AN steroids, IVIG, 
rituximab, 

cyclosporine, 
azathioprine

(175-177)

ORAI1 (CRACM1) store operated calcium entry, 
interaction with STIM1, T cell 

activation

ITP, AN n.a. (178)

STIM1 ER-resident calcium sensor, 
activates ORAI1 to promote 
store operated calcium entry

AIHA, ITP steroids (179)

MAGT1 magnesium-specific transporter 
and immune regulator

unspecified cytopenias n.a. (180)

PIK3CD (PI3K-D) Akt-mTOR pathway activation, 
generation of short lived 

effector CD8+ cells

AIHA, ITP n.a. (181, 182)

TPP2 cell proliferation and survival, 
anti-apoptotic

AIHA, ITP steroids, IVIG, 
cyclosporine, MMF, 
rituximab, sirolimus, 

HSCT

(183)

DOCK8 intracellular signal transduction AIHA n.a. thyroiditis (184-187)

MHCII antigen presentation unspecified cytopenias n.a. (7, 188)

Abbreviations: not annotated (n.a.), autoimmune (AI), autoimmune hemolytic anemia (AIHA), immune thrombocytopenic purpura (ITP), 
autoimmune neutropenia (AN), intravenous immunoglobulin (IVIG), hematopoietic stem cell transplantation (HSCT), T cell receptor (TCR), 
endoplasmic reticulum (ER), myasthenia gravis (MG), type I diabetes mellitus (T1DM), Guillain-Barre syndrome (GBS), mycophenolate mofetil 
(MMF)
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