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ABSTRACT CRISPR/Cas9 gene drive (CGD) promises to be a highly adaptable approach for spreading genetically engineered alleles
throughout a species, even if those alleles impair reproductive success. CGD has been shown to be effective in laboratory crosses of
insects, yet it remains unclear to what extent potential resistance mechanisms will affect the dynamics of this process in large natural
populations. Here we develop a comprehensive population genetic framework for modeling CGD dynamics, which incorporates
potential resistance mechanisms as well as random genetic drift. Using this framework, we calculate the probability that resistance
against CGD evolves from standing genetic variation, de novo mutation of wild-type alleles, or cleavage repair by nonhomologous end
joining (NHEJ)—a likely by-product of CGD itself. We show that resistance to standard CGD approaches should evolve almost inevitably
in most natural populations, unless repair of CGD-induced cleavage via NHEJ can be effectively suppressed, or resistance costs are on
par with those of the driver. The key factor determining the probability that resistance evolves is the overall rate at which resistance
alleles arise at the population level by mutation or NHEJ. By contrast, the conversion efficiency of the driver, its fitness cost, and its
introduction frequency have only minor impact. Our results shed light on strategies that could facilitate the engineering of drivers with
lower resistance potential, and motivate the possibility to embrace resistance as a possible mechanism for controlling a CGD approach.
This study highlights the need for careful modeling of the population dynamics of CGD prior to the actual release of a driver construct
into the wild.
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THE prospect of driving genetically modified alleles to
fixation in a population has enticed scientists for .40

years (Curtis 1968; Foster et al. 1972). Potential applications
are broad and ambitious, including the eradication of vector-
borne diseases such as malaria, dengue, and Zika (Burt 2003;
Esvelt et al. 2014; Champer et al. 2016). For example, mos-
quitoes could be genetically altered such that they can no
longer transmit Plasmodium parasites. If these altered alleles
could then be spread in a wild population, we could effec-
tively eradicate malaria in humans. Similarly, a gene drive
could be used to reverse insecticide resistance in an agricul-
tural pest, or to spread a deleterious allele in an invasive
species to drive it toward extinction.

While various strategies for implementing a gene drive
have been discussed since the 1970s, all previously proposed
mechanisms have faced significant obstacles. Ongoing efforts
to transfer the Medea system from flour beetles to other in-
sects have, thus far, fallen short (Chen et al. 2007; Akbari
et al. 2014). Underdominance systems have also been devel-
oped (Altrock et al. 2010; Akbari et al. 2013; Reeves et al.
2014), but these are slow-spreading systems that require
multiple releases of large numbers of male transgenic insects.
The use ofWolbachia-mediated strategies have perhaps been
most successful (Lambrechts et al. 2015).

The recently proposed CRISPR/Cas9 gene drive (CGD)
system now promises a highly adaptable approach for driving
genetically engineered alleles into a population, even when
those alleles carry substantial fitness costs (Gantz and Bier
2015; Gantz et al. 2015). CGD falls into the category of hom-
ing endonuclease gene drives, first proposed by Burt (2003),
which consists of a genetic construct (driver allele) encoding
an endonuclease that can cleave a genomic target site and
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then insert itself into that site. CGD uses a Cas9 endonuclease
for cleavage that can be engineered to target virtually any
20-bp-long nucleotide sequence in a genome, using a target-
specific guide RNA (gRNA). The driver construct is flanked by
two homology arms to facilitate its incorporation at the cleav-
age site during homology-directed repair. In addition, arbi-
trary payload sequences can be included in the construct that
will be transmitted alongside the driver. By converting het-
erozygotes for the driver allele into homozygotes (Figure
1A), a CGD construct can “cheat” the rules of Mendelian in-
heritance, allowing for rapid spread of the driver in the pop-
ulation (Burt 2003; Unckless et al. 2015).

As a proof of principle, Gantz and Bier (2015) showed that
CGD was highly effective at converting heterozygotes for a
driver allele into homozygotes in a laboratory cross of Dro-
sophila melanogaster. In their experiment, insects homozy-
gous for a CGD construct that disrupts the X-linked yellow
gene were crossed to wild-type insects, resulting in 254 of
261 daughters with the disrupted yellow phenotype (Gantz
and Bier 2015). Since this phenotype is recessive, CGD must
have disrupted the wild-type allele in these females. In
another study, a similar construct conferring resistance to
Plasmodium falciparum was successfully introduced into a
laboratory population of Anopheles mosquitoes (Gantz et al.
2015). A third study recently generated a CGD targeting
a mosquito fertility gene for population suppression
(Hammond et al. 2016). Several theoretical studies have fur-
ther shown that gene drives can, in principle, spread very
rapidly in a population, even when the driver allele carries
a substantial fitness cost (Burt 2003; Sinkins and Gould
2006; Deredec et al. 2008; Gould 2008; North et al. 2013;
Burt 2014; Unckless et al. 2015; Drury et al. 2016).

Despite these initial results, it is still unclear whether CGD
can actually lead to fixation of the driver allele in a large
natural population because of several factors that might in-
fluence its population dynamics. Arguably the most critical
problem is the evolution of resistance against the drive (Burt
2003; Deredec et al. 2008, 2011; Esvelt et al. 2014; Bull
2016; Noble et al. 2016b). Such resistance could arise, for
instance, through alleles at the target locus that cannot be
converted by CGD because they are not recognized by the
driver’s gRNA. In fact, a single nucleotide mutation in the
3-bp-long PAM motif of the target sequence will typically
suffice to create such a resistance allele. Most indels within
the target will likely create a resistance allele as well. Impor-
tantly, the driver itself is expected to produce its own resis-
tance alleles when cleavage is repaired by end joining
mechanisms such as nonhomologous end joining (NHEJ) or
microhomology-mediated end joining, rather than homolo-
gous recombination, and such resistance alleles have already
been observed in several experiments (Gantz and Bier 2015;
Gantz et al. 2015; Hammond et al. 2016; Wang et al. 2016).

If resistance alleles are less deleterious than the driver
allele—as will likely be the case for many types of resistance
alleles—natural selection will favor these alleles over the
driver. As a result, they will rise in frequency and should

eventually replace the driver. Thus, even though a driver
may initially spread to high frequency in the population, its
ultimate fate will depend on whether resistance alleles have
emerged during this process. While several strategies have
been proposed for reducing resistance potential; including
the use of multiple gRNAs, the targeting of essential genes,
daisy chains, or poison-antidote systems (Esvelt et al. 2014;
Champer et al. 2016; Noble et al. 2016a); it remains to be
seen how well these approaches can actually work in
practice.

It is clear that any informed decision about the potential
consequences and risks of releasing a CGD construct into a
wild population requires that we first understand the dynam-
ics of this process on the population level, including potential
resistancemechanisms.Here,webuildonprevious theoretical
results to devise a comprehensive population geneticmodel of
CGD, which allows us to quantitatively study the population
dynamics of such systems, calculate the probability that re-
sistance evolves, and predict how resistance alleles will in-
terfere with the spread of a driver construct.

Results

Population genetic model of CGD

Our model for studying the population dynamics of CGD is
based on the original drive systemproposed byGantz andBier
(2015), which hearkens back to Burt (2003). We consider a
single locus with three types of alleles: wild type (0); driver
(d); and resistance (r), where we define a resistance allele to
be any allele that cannot drive and also cannot be converted
into a functioning driver by the CGD machinery (complete
resistance). The driver cleaves the wild-type allele in hetero-
zygous driver/wild-type embryos at rate c: In a fraction d of
cases, cleavage repair creates a resistance allele when NHEJ
introduces an indel at the target site. In reality, such resis-
tance alleles can be created by any repair mechanism that
changes the target sequence without incorporating the func-
tional drive machinery (e.g., microhomology-mediated end
joining or the incorporation of a loss-of-function driver con-
struct) (Champer et al. 2016), but we refer to this entire class
as NHEJ for simplicity. Resistance alleles can also arise by de
novo mutation in wild-type alleles at rate m; specifying an
effective rate that includes all possible mutations creating
resistance. We set the fitness of wild-type homozygotes to
v00 ¼ 1; whereas all other genotypes can carry arbitrary fit-
ness cost, vij ¼ 12 sij # 1: The driver is initially introduced
into the population in generation t ¼ 0 at frequency xdð0Þ:
We model a large, panmictic population with variance effec-
tive population size Ne and census population size N:

Note that there could generally also exist other types of
alleles at the locus. For example, resistancealleles that ariseby
de novo mutation could be distinguishable from those that
arise by NHEJ, or resistance alleles that were already present
as natural variation in the population. Depending on the spe-
cific drive scenario, these different resistance alleles could
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carry different costs. For simplicity, we combine all resistance
alleles into a single class with the same fitness costs in our
model.

We will typically perform our numerical analyses using a
“standard” model, for which we vary individual parameters
independently, while keeping the other parameters con-
stant. This will allow us to dissect how each individual pa-
rameter affects the general behavior of the model. Our
standard model assumes a scenario in which cleavage is
efficient, c ¼ 0:9; as one would likely aim to design a driver
this way. We further assume that resistance alleles carry no
cost, sr0 ¼ srr ¼ 0; which we will relax later. Driver alleles,
by contrast, carry a substantial cost that is codominant,
sd0 ¼ 0:1 ¼ sdd=2: In those analyses where both the driver
and the resistance allele carry a cost, we will assume that
these costs are codominant to each other, sdr ¼ sd0 þ sr0:We
further set d ¼ 1026 and m ¼ 1028: Both are likely conser-
vative choices with respect to the actual rates at which
resistance alleles arise in many systems of interest, such
as insects. In fact, NHEJ rates are probably several orders
of magnitude higher in most systems, in which case the
evolution of resistance from NHEJ will be practically as-
sured (as we will show below). We still choose a very low
value of d for our standard model both to be able to study
systems in which NHEJ has been intentionally suppressed
and because it is the parameter space where resistance is
not inevitable. We finally set N ¼ Ne ¼ 106 for simplicity,
and introduce driver alleles into the population at fre-
quency xdð0Þ ¼ 1025: Table 1 provides a summary of the
different parameters and their default values in our stan-
dard model.

Deterministic frequency dynamics

In our model, we can express the expectation values of allele
frequencies xdðtÞ; xrðtÞ; and x0ðtÞ as functions of their frequen-
cies in the previous generation; the fitness costs of the different
genotypes; and the rates c; m; and d: We initially assume that
d � 1 and m � 1; such that the generation of new resistance
alleles does not noticeably affect wild-type and driver allele
frequencies (wewill relax this assumption below). Given allele
frequencies xd; xr; and x0 in generation t; the expected values
of these frequencies in generation t þ 1 are then

E½x9d� ¼
xdx0½ð12 cÞvd0 þ 2cvdd� þ xdxrvdr þ x2dvdd

vðtÞ ; (1)

E½x9r� ¼ xrx0vr0 þ xrxdvdr þ x2r vrr

vðtÞ ; (2)

E½x 90� ¼ 12 E½x 9d�2 E½x 9r�: (3)

The contributions to the numerator in Equation 1 are as follows:
The first term specifies the contributions of driver/wild-type
heterozygotes that either successfully converted into driver
homozygotes and thus now have fitness vdd [fraction
cð12 dÞ � c of driver/wild-type heterozygotes], or failed to
convert and thus remain heterozygotes with fitness vd0 [frac-
tion 12 cð12 dÞ � 12 c of driver/wild-type heterozygotes].
The second and third terms specify the contributions from
driver/resistance heterozygotes ðfitness vdrÞ and driver homo-
zygotes ðfitness vddÞ; respectively. In Equation 2, the first term
in the numerator specifies the contribution from resistance/
wild-type heterozygotes, the second term the contributions
from resistance/driver heterozygotes, and the third term the

Figure 1 (A) CGD mechanism and creation of resistance alleles by NHEJ: In heterozygotes, Cas9 from the driver construct cleaves the wild-type
chromosome at the target site. (i) Cleavage repair by homology-directed repair using the sister chromatid as a template will convert heterozygotes for
the driver allele into homozygotes. (ii) Break-repair by NHEJ, on the other hand, can create a resistance allele, e.g., by introducing an indel (green) at the
target site. (B) Driver dynamics and resistance allele creation rates in our standard model: driver frequency initially grows exponentially in our standard
model and the driver fixes after �30 generations (assuming resistance does not evolve). As the driver increases in frequency, so does seðtÞ: The
establishment probability of a newly arisen resistance allele, pðtÞ; increases with seðtÞ; but is already quite high in generation zero, because resistance
alleles present at that time only have to survive a few generations of drift before their relative selective advantage becomes noticeable. The rate of
resistance allele creation by de novo mutation, umðtÞ; is proportional to the frequency of wild types and thus decreases as the driver becomes more
frequent. The rate of resistance allele creation by NHEJ, udðtÞ; is proportional to the frequency of driver/wild-type heterozygotes and is thus maximal for
intermediate driver frequencies. (C) Probability that resistance establishes from the SGV as a function of the initial copy number, n0; of resistance alleles
present when the driver is introduced. The three curves show our standard model (black), a scenario in which the driver cleaves at only 50% efficiency
(blue), and one where driver cost is 10 times smaller (red).
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contribution from resistance homozygotes. Equation 3 follows
from the condition that allele frequencies have to sum to one.
The mean population fitness in generation t is given by

vðtÞ ¼ 2xdx0½ð12 cÞvd0 þ cvdd� þ 2xrx0vr0 þ 2xrxdvdr

þ
X
i

x2i vii:

(4)

These equations fully describe the dynamics of allele frequen-
cies from a given set of starting frequencies in a deterministic
scenario, which will be appropriate when allele frequencies
are sufficiently large that genetic drift can be ignored. Addi-
tionally, these equations can be incorporated into a Wright–
Fisher framework that explicitly takes drift into account.

We and others have previously shown that these dynamics
can already produce rich behavior in the absence of resistance
(Burt 2003; Deredec et al. 2008; Unckless et al. 2015). Pos-
sible outcomes can include the fixation of the driver, loss of
the driver, and both stable or unstable equilibria, depending
on the cleavage rate, c; the fitness costs of the driver allele, sdd
and sd0; and the initial frequency xdðt ¼ 0Þ at which the
driver is introduced into the population. Briefly, in scenarios
with high cleavage rate and small fitness costs, the driver will
usually fix even when introduced at low frequency, whereas
for low cleavage rates and high fitness costs the driver may
not be able to invade at all. Intermediate scenarios can give
rise to equilibria that are usually unstable, but can be stable if
cleavage rates are small and fitness costs are low and reces-
sive. For the remainder of this study, we will focus only on
cases where, in the absence of resistance, the driver allele can
go to fixation.

Origin of resistance alleles

We distinguish three mechanisms by which resistance alleles
can originate: (i) standing genetic variation (SGV), (ii) de
novo mutation of wild-type alleles after the driver is intro-
duced (specified by m), and (iii) cleavage repair by NHEJ
(specified by d). Initially we consider each of these mecha-
nisms independently, assuming the others do not occur. To
quantify the expected supply of resistance alleles from SGV,
we assume mutation-selection-drift balance prior to the in-
troduction of the driver, which is determined by the fitness

costs of resistance alleles in the absence of the driver and the
population-level mutation rate toward resistance alleles,
u ¼ 4Nem (Hermisson and Pennings 2005). Once the driver
is introduced, de novo mutation of wild-type alleles will cre-
ate resistance alleles at rate

umðtÞ ¼ 2Nm
h
ð12xdÞ2 þ xdð12 xdÞð12 cÞ

i
: (5)

This rate is proportional to thenumber ofwild-type alleles and
thusdecreases as thedriver spreads.NHEJduringbreak repair
will create resistance alleles at rate

udðtÞ ¼ 2Ndcxdð12 xdÞ; (6)

which is proportional to the number of wild-type/driver
heterozygotes and thus is highest when the driver is at in-
termediate frequency.

Establishment of resistance alleles

The overall likelihood that resistance evolves will depend on
the supply of resistance alleles by the individual mechanisms,
and the probability that a new resistance allele is not lost to
drift when it is still rare (its so-called establishment probabil-
ity). Before we discuss the individual contributions of resis-
tance from SGV, de novo mutation, and NHEJ, we will first
calculate these establishment probabilities in our model.

As long as resistance alleles are still rare, they should be
presentmostly in heterozygotes, andwe can therefore neglect
resistance homozygotes at this stage. If a resistance allele is
present at frequency xrðtÞ � 1 in generation t; its expected
frequency in the next generation will be

E½x9r� � xrð12 xdÞvr0 þ xrxdvdr

vðtÞ ; (7)

which can be rearranged into

E½x9r� � xr½1þ seðtÞ� with seðtÞ ¼ ð12 xdÞvr0þxdvdr

vðtÞ 2 1:

(8)

This “effective” selection coefficient seðtÞ specifies the
expected change in frequency of the resistance allele in gen-
eration t: Note that seðtÞ is time dependent because it is a

Table 1 Description of all model parameters

Parameter Standard model Description

xdðt ¼ 0Þ 1025 Introduction frequency of driver allele
c 0.9 Cleavage rate in driver/wild-type heterozygotes
d 1026 Fraction of cleavage events resulting in resistance allele by NHEJ
m 1028 Rate at which wild-type alleles mutate into resistance alleles
sd0 0.1 Fitness cost of driver/wild-type heterozygotes
sdr 0.1 Fitness cost of driver/resistance heterozygotes
sr0 0.0 Fitness cost of resistance/wild-type heterozygotes
sdd 0.2 Fitness cost of driver homozygotes
srr 0.0 Fitness cost of resistance homozygotes
Ne 106 Variance effective population size
N 106 Census population size
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function of the driver frequency (Figure 1B). If resistance
alleles carry a cost themselves, then seðtÞ could initially be
negative and turn positive only after the driver has reached a
certain frequency in the population.

To calculate seðtÞ in a given generation t;we need to know
the frequency xdðtÞ of the driver allele in that generation.
Since we assume that resistance alleles are still at very low
frequency, such that xdðtÞ � 12 x0ðtÞ; the dynamics from
Equations 1–4 simplifies to

x9d ¼ xdð12 xdÞ½ð12 cÞvd0 þ 2cvdd� þ x2dvdd

vðtÞ with

vðtÞ ¼ 2xdð12 xdÞ½ð12 cÞvd0þ cvdd� þ x2dvddþð12xdÞ2:
(9)

Assuming a deterministic model for the driver frequency, we
can then calculate xdðtÞ recursively from its starting frequency
xdð0Þ:

We define establishment probability pðtÞ as the probability
that a resistance allele present in a single copy in generation t
successfully survives in the population (i.e., is not lost by drift
while it is still rare). Uecker andHermisson (2011) showed how
the establishment probability of a new mutation can be calcu-
lated when its selection coefficient is time dependent. Their
theory can be directly applied to our scenario if we consider a
resistance allele to be a new mutation with time-dependent
selection coefficient seðtÞ: Defining gðt; t9Þ ¼Pt921

i¼t seðiÞ
and fðt; t9Þ ¼Pt921

i¼t e2gðt;iÞ½12 e2seðiÞ�=seðiÞ;we obtain (Appen-
dix A)

pðtÞ �

2
1þ ðN=NeÞ

�
fðt; tfixÞ þ e2gðt;tfixÞ�seðtfixÞ�; t, tfix

2
1þ ðN=NeÞ3 1=seðtfixÞ

; t$ tfix:

8>>><
>>>:

(10)

Bothof these expressions breakdownwhen seðtfixÞ ¼ 0;which
could be the case if the fitness cost of the driver is completely
dominant, such that resistance alleles would not provide any
fitness advantage in driver/resistance heterozygotes. We will
discuss this particular scenario below. For now, we assume
that seðtfixÞ. 0: Note that as the driver spreads, the supply
rates of resistance alleles from de novo mutation and NHEJ,
the selective advantage of being resistant, and the probability
that resistance escapes stochastic loss are all dynamic quan-
tities (Figure 1B).

Given an estimate for pðtÞ; we can directly calculate the
probability that a resistance allele will successfully establish in
the population when it is initially present in n0 copies at time t

Prðestablishjn0; tÞ � 12 ½12pðtÞ�n0 : (11)

Figure 1C shows how Prðestablishjn0Þ scales for our standard
model with the initial copy number of resistance alleles pre-
sent in the SGV at the time the driver is introduced.

Resistance from the standing genetic variation

The probability that resistance evolves from alleles present as
SGVwill depend on the expected frequencies of such alleles in
the population in generation t ¼ 0 and their establishment
probabilities provided by Equation 11. We can use existing
theory for the well-studied problem of evolutionary rescue
from SGV (Hermisson and Pennings 2005; Orr and Unckless
2008) for calculating this probability. In particular, we will
use the analytical framework of Hermisson and Pennings
(2005) and consider the introduction of the driver to be the
environmental shift, which then renders a previously neutral
or deleterious resistance allele as beneficial as mean popula-
tion fitness declines when the driver spreads. We assume that
prior to introduction of the driver, resistance alleles arise at
ratem per generation per haploid wild-type genome, and that
they are evolving under mutation-selection-drift balance,
specified by fitness costs sr0 and srr: We define u ¼ 4Nem to
be twice the population-level mutation rate toward resis-
tance alleles. After introduction of the driver, the fitness ef-
fects of resistance alleles are given by seðtÞ; as defined in
Equation 8.

Let PSGV denote the probability that resistance successfully
evolves from any resistance allele present in the SGV at the
time the driver is introduced, assuming that SGV is the only
possible source of resistance alleles (which we can assure in
our model by setting m and d to zero once the driver is in-
troduced). For this case, we obtain

PSGV ¼ 12 exp

"
2u  ln

�
1þ 2Nepð0Þ

s þ 1

�#
with

s ¼
�

4Nesr0 0, sr0 , srrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nesrr

p
0 ¼ sr0 , srr

:

(12)

The derivation follows Hermisson and Pennings (2005) and
involves integrating establishment probabilities over the
expected frequency distribution of resistance mutations
under mutation-selection-drift balance. Our result for
the codominant case ð0 , sr0 , srrÞ follows directly from
Equation 8 in Hermisson and Pennings (2005), where we
can identify h9sd (the heterozygous fitness cost of resistance
alleles) with sr0 in our model. The factor 2hsb in this equation
is the establishment probability of a mutation present in a
single copy in generation zero, which corresponds to pð0Þ
in our model. The result for recessive resistance costs
ð0 ¼ sr0 , srrÞ follows from the discussion provided after
equation A11 in Hermisson and Pennings (2005), where they
show that the factor 2h9ad/

ffiffiffiffiffiffi
ad

p
in their equation 8 needs to

be replaced by
ffiffiffiffiffiffiffiffiffiffi
2Nes

p
in the recessive case. The factor s in this

expression specifies the homozygous fitness cost of the mu-
tation, which corresponds to srr in our model.

Figure 2 shows PSGV as a function of u in our standard
model, while simultaneously varying the cleavage rate (Fig-
ure 2A), the fitness cost of the driver allele (Figure 2B), or the
fitness cost of resistance (Figure 2, C and D). Interestingly, as
the cleavage rate ðcÞ increases, so does the probability of
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resistance from SGV. This is because higher c leads to a faster
spread of the driver, and resistance alleles present in the SGV
will thus experience their net fitness advantage sooner; in-
creasing their chances of surviving drift. Generally, as long as
resistance alleles provide a net fitness advantage over the
driver, evolution of resistance from the SGV is practically
assured whenever u$ 0:1; whereas it remains unlikely for
u � 0:1: This is consistent with the general result that the
probability of adaptation to an environmental shift using al-
leles from the SGV should depend only weakly on the selec-
tive advantage of these alleles in the new environment, but
should be mostly determined by how many such alleles were
present when the environment changed, which is a function
of u and the selective disadvantage of these alleles prior to the
change (Hermisson and Pennings 2005).

If resistance alleles carry a fitness cost themselves, this
lowers the probability that resistance evolves from the SGV.
However, this effect is much more pronounced when fitness
costs are codominant thanwhen they are recessive, consistent
with the fact that even a deleterious allele can still reach a
noticeable frequency in the SGV as long as its costs are only
recessive. In our model, even for substantial recessive costs
ðsrr ¼ 0:1Þ; we still find PSGV to be practically indistinguish-
able from the cost-free scenario.

Resistance from de novo mutation

Any given resistance allele that arises from de novomutation
as a single copy in generation twill successfully establish with
probability pðtÞ; assuming that resistance does not arise from
any other mechanism. Thus, the overall probability that at
least one allele that arose by de novo mutation during the
time interval [1,t] establishes in the population is given by

Pr
	
tm , t


 ¼ 12
Yt
i¼1

e2umðiÞpðiÞ: (13)

The factor e2umðiÞpðiÞ here specifies the probability that no re-
sistance allele from generation i successfully establishes in
the population.

Note that umðtÞ is defined in terms of the census population
size N because the overall supply of resistance mutations
depends on how many wild-type genomes are present in
the population overall, not the effective population size. If
the effective population size differs from the census size, this
will not affect um; but will change the establishment proba-
bility of a new resistance allele initially present in just a single
copy in the population, specified by Equation A1. However,
this change is often well approximated by p/ðNe=NÞp;
where Ne technically refers to the so-called “fixation” effec-
tive population size (Otto andWhitlock 1997). In that case,N
simply cancels out in the products umðiÞpðiÞ: We always set
N ¼ Ne in our standard model for simplicity.

Resistance alleles from a de novomutation can only arise as
long as the driver has not yetfixed in the population. Afterward
there will no longer be wild-type alleles present that could
mutate into resistance alleles: thus, umðt$ tfixÞ ¼ 0: The overall

probability that resistance establishes from a de novomutation
arising after introduction of the driver is therefore

Pm ¼ Pr
	
tm , tfix



: (14)

Figure 3, A–C, shows how Pm depends on the parameters in
our standard model. Again, we find that the key parameter
determining the likelihood of resistance is u ¼ 4Nem: How-
ever, in contrast to resistance from SGV, both the cleavage
rate of the drive ðcÞ and the cost of the driver allele ðsd0Þ can
noticeably affect Pm as well. Specifically, higher cleavage rates
decrease Pm (the opposite effect they had on PSGV). This is
because higher cleavage rates speed up the spread of the
driver, providing less time for resistance alleles to emerge
by de novo mutation before the driver becomes fixed. Higher
fitness costs of the driver, on the other hand, increase Pm by
increasing the establishment probability of resistance alleles,
as resistance alleles will have a higher net fitness advantage
over the driver. When resistance alleles carry (codominant)
fitness costs themselves, this has only a marginal effect on Pm;
as long as they still provide a net fitness advantage. Since we
assume that resistance homozygotes are irrelevant for the
establishment probability of a new resistance allele, recessive
costs have no noticeable effect on Pm in our model.

When comparing PSGV with Pm for the same set of model
parameters, we find that PSGV is generally higher than Pm:
Hence, resistance ismore likely to evolve from resistance alleles
already present when the driver is introduced, than from de
novomutation after its introduction. The only exception would
be a scenario of a very inefficient drive (small c), in which case
it would take a long time until the driver becomes prevalent in
the population, reducingpð0Þwhile at the same time providing
more time for de novo resistance alleles to emerge.

Resistance from NHEJ

Similar to de novo mutation, any given resistance allele that
arises in generation 0, t, tfix by NHEJ will successfully es-
tablish with probability pðtÞ; assuming that resistance does
not arise from any other mechanism. The overall probability
that at least one such allele that arose during the time interval
[1,t] establishes in the population is then given by

Prðtd, tÞ ¼ 12
Yt
i¼1

e2udðiÞpðiÞ: (15)

This equation is analogous to Equation 13 for the de novo
mutation scenario, except for umðtÞ being exchanged by
udðtÞ: Given that udðtÞ will be zero once the driver has fixed,
we can again use this result to calculate the overall probabil-
ity that at least one resistance allele from this mechanism
establishes in the population:

Pd ¼ Prðtd , tfixÞ: (16)

Figure 3, D–F, shows how Pd depends on the parameters in
our standard model. To ensure that there is no resistance
from the SGV or de novo mutation, we set m ¼ 0: We then
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variedNed by varyingNe while keeping d ¼ 1026 constant. As
we discussed above, this is likely to be a very low estimate for
the rate at which cleavage repair generates resistance alleles
through NHEJ in many systems, which may be difficult to
achieve in practice. Higher rates will always increase Pd;mak-
ing this estimate conservative with regard to the probability
that resistance evolves by this mechanism.

Given the similarity between the NHEJ and de novo mu-
tation scenarios, it is not very surprising that the key param-
eter determining the likelihood of resistance in the NHEJ
scenario is the product Ned; similar to the parameter
u ¼ 4Nem in the de novo scenario. Whenever Ned becomes
on the order of one or larger in our model, evolution of re-
sistance from NHEJ becomes likely.

In contrast to the de novo mutation scenario, the cleavage
rate has very little impact on Pd: This can be understood from
the fact that the overall number of resistance alleles that arise by
NHEJ before driver fixation is proportional to the overall num-
ber of cleavage events that occur, which is independent of the
actual cleavage rate (as long as selection against the driver does
not yet have a strong effect on its spread). Successful fixation,
on average, always requires � 2N conversion events through-
out this process, regardless of the actual conversion rate. Fitness
costs of the driver, however, can have a strong impact on Pd;

with higher fitness costs leading to lower Pd by reducingpðtÞ—
the same effect they had in the de novo mutation scenario.

Total resistance probability

Given the individual probabilities PSGV; Pm; and Pd; we can
calculate the total probability that resistance evolves by any
of the three mechanisms

Ptot$ 12 ð12 PSGVÞ
	
12 Pm


ð12 PdÞ: (17)

Figure 4 shows Ptot for a wide range of parameters and
limiting cases in our standard model. Consistent with our
results for the individual resistance mechanisms, we find
that the total resistance probability depends primarily on
three parameters: Ne; m; and d: Specifically, whenever
u ¼ 4Nem$ 0:1; resistance is likely to evolve from the SGV,
as long as resistance alleles provide a net fitness advantage
over the driver. This result is largely independent of the con-
version rate of the driver, as well as the absolute fitness cost of
the driver. Resistance alleles that arise from de novomutation
after introduction of the driver are generally less likely to
contribute to resistance than alleles from the SGV. NHEJ
produces resistance whenever Ned$ 1; unless fitness costs
of the driver are very small.

Figure 2 Probability that resistance evolves from SGV in our standard model. (A) PSGV as a function of u and cleavage rate: higher c increases PSGV by
increasing pð0Þ (see panel E). (B) PSGV as a function of u and driver cost: higher driver costs also increases PSGV by increasing pð0Þ (see F). (C) PSGV when
resistance alleles carry a codominant fitness cost ðsr0 ¼ srr=2.0Þ: (D) Same as (C), but assuming recessive fitness costs ðsrr . sr0 ¼ 0Þ: Higher fitness cost
of resistance alleles lead to lower PSGV only if fitness costs are codominant, whereas recessive costs have almost no noticeable effect. To vary u in (A–D),
we always varied Ne while keeping m ¼ 1028 constant. (E) Establishment probability as a function of cleavage rate: pð0Þ increases with c because
resistance alleles can experience their net fitness advantage faster when the driver spreads faster. Our analytics (line) agree well with numerical
simulations (d) under a Wright–Fisher model with conversion, selection, and drift. (F) Same as (E) but varying driver costs instead of cleavage rate.

Gene Drive Resistance 833



Relaxing model assumptions

Recessive and dominant driver costs: So far, we have as-
sumed that driver fitness costs are codominant. If they are
recessive, the driver can initially rise in frequency faster, as
driver heterozyogtes carry no costs. Conversely, if they are
dominant, this will slow down the initial spread of the driver.
In our standard model, the differences in driver frequency
trajectories between recessive, codominant, and dominant
driver fitness costs are only marginal (Figure 5A). This is be-
cause driver dynamics are dominated by conversion, rather
than selection, which only becomes important once driver fit-
ness costs are of the same order as the cleavage rate ðsd0 �   cÞ:

Dominance of the driver can nevertheless have a strong
impact on the probability that resistance evolves, due to its
effects on the fitness of driver/resistance heterozygotes.
Resistance alleles that are still rare will predominantly be
present in driver/resistance heterozygotes once a driver is
frequent. If driver costs are recessive, seðtÞwill then be larger
than in the codominant case, increasing pðtÞ; and thus Pm
and Pd: By contrast, if driver costs are dominant, driver/
resistance heterozygotes will have no fitness advantage over

driver homozygotes. Once wild-type alleles have been com-
pletely displaced by the driver, only resistance homozygotes
would then have a fitness advantage. Unfortunately our
approach for calculating establishment probabilities based
on Equation 10 fails here because it does not take resistance
homozygotes into account.

We can still estimate whether resistance will likely evolve
in this case by mapping the problem onto the analogous
problem of whether a beneficial mutation can establish in a
population when its fitness effects are completely recessive.
Such a recessive beneficial mutation with fitness 1þ s9 in
homozygotes and fitness 1 in heterozygotes has an establish-
ment probability of approximately

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s9=ðNepÞ

p
when ini-

tially present in a single copy (Kimura 1962), which we can
extend to the probability that the mutation will successfully
establish when it is initially present at frequency x0 � 1 :

Prðestablishjx0Þ � 12

 
12

ffiffiffiffiffiffiffiffiffi
2s9
Nep

s !2Nex0

� 12 e21:6x0
ffiffiffiffiffiffiffi
Nes9

p
:

(18)

Figure 3 Probability that resistance evolves from de novo mutation or NHEJ in our standard model. (A) Pm as a function of u and cleavage rate: higher
cleavage rate decreases Pm; because it leads to faster fixation of the driver, providing less time for resistance alleles to arise during its spread. (B) Pm as a
function of u and driver cost: higher driver costs increase Pm by increasing pðtÞ throughout the drive. (C) Pm as a function of u and (codominant)
resistance costs: resistance costs have only very little effect on Pm until they become comparable to the cost of the driver. To vary u in (A–C), we always
varied Ne while keeping m ¼ 1028 constant. (D) Pd as a function of Ned and cleavage rate, which has very little effect on Pd because the overall number
of resistance alleles created by NHEJ throughout the spread of the driver is proportional to the overall number of cleavage events that occur during its
spread, which does not depend strongly on c (a driver always has to produce roughly 2N cleavage events over the course of its spread to become fixed in
the population). (E) Pd as a function of Ned and driver cost: higher driver costs increase Pd by increasing pðtÞ; similar to their effect on Pm: (D) Pd as a
function of Ned and (codominant) resistance costs, which have only very little effect on Pd: To vary Ned in (D–F), we always varied Ne while keeping
d ¼ 1026 constant.
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In our standard scenario with cost-free resistance, the net
fitness advantage of resistance homozygotes in this case will
be s9 � sdd=ð12 sddÞ; assuming that the driver is completely
dominant and close to fixation. Figure 5B shows that for re-
sistance to evolve in this scenario, resistance alleles need to
be present at substantial initial frequency x0: For example,
when the driver has a dominant fitness cost of sdd ¼ 0:1; re-
sistance alleles would have to be present at�0:1% frequency
to have a 50% chance of successfully establishing. Note that
this would likely be the case in scenarios where d is no longer
very small, as we will show next in our treatment of the
frequent NHEJ regime.

Frequent NHEJ regime: Our dynamical model described by
Equations 1–4 assumes that d is small enough that we can
effectively neglect the contribution of NHEJ events to
changes in allele frequencies between generations. This
may no longer be the case if NHEJ becomes more frequent,
say d ¼ 0:01: Extending our model to such a scenario is
straightforward (Appendix B). Evolution of resistance is prac-
tically ensured in this regime as long as resistance alleles
carry any net fitness advantage relative to driver alleles,
given that there will always be ample supply of resistance

alleles. As long as allele frequency trajectories are still dom-
inated by conversion, rather than selection, the ratio of re-
sistance allele frequency over driver allele frequency should
then simply be

xrðtÞ
xdðtÞ

� d

12 d
: (19)

This is because every time CGD-induced cleavage in a driver/
wild-type heterozygote is repaired, in a fraction d of cases a
resistance allele will be added to the population, whereas in a
faction 12 d of cases a driver allele will be added. Fitness
differences between driver and resistance alleles will change
their relative frequencies over time, but this can be slow, un-
less these fitness differences become large. For a driver with
high conversion rate and moderate fitness costs, we would
expect that at the time the wild-type allele is lost from the
population, the population frequency of resistance alleles
should still be close to the ratio given in Equation 19.

High introduction frequency: Our simulations show that
varying the introduction frequency of the driver has almost
no noticeable effect on the total probability that resistance

Figure 4 Total probability that resistance evolves in our model. (A–C) Ptot as a function of m and d in our standard model, assuming three different
effective population sizes (A) Ne ¼ 105; (B) 106; and (C) 107: Larger values of Ne increase the probability of resistance, yet even in the scenario with
Ne ¼ 105; low values of d,1025 are still required if resistance from NHEJ is to be prevented. (D–F) Ptot as a function of m and d for fixed Ne ¼ 106 in
three limiting cases of our standard model: (D) scenario of a very weak drive with cleavage rate c ¼ 0:2: Comparison with (B) shows that this has almost
no effect on Ptot: (E) Scenario with low driver costs, sd0 ¼ sdd=2 ¼ 0:01: While this allows for larger values of d; the dependence on m does not change
much, since PSGV remains largely unaffected by the driver costs (compare with Figure 2B). (F) Scenario in which resistance alleles carry (codominant)
fitness costs almost as large (90%) as those of the driver, sr0 ¼ srr=2 ¼ 0:09: In this case, resistance is unlikely to evolve from SGV or de novo mutation.
However, it is still likely to evolve by NHEJ unless d,1025:
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evolves, which is due to two competing effects: Increasing the
introduction frequency will increase pð0Þ; and thus PSGV;
because resistance alleles present in the SGV will experience
their fitness advantage faster. At the same time, this will also
lead to faster fixation of the driver, leaving less time for de
novo resistance mutations to occur, which will decrease Pm:
The two effects approximately cancel out. Pd will generally
not depend much on the introduction frequency, as long as
xdð0Þ � 1; becausemost resistance alleles produced by NHEJ
arise when the driver is at intermediate frequency. Note that
changing xdð0Þ can still have a noticeable impact on the fix-
ation time of the driver. For example, while it takes the driver
t0:5 � 26 generations to reach frequency 0.5 in our standard
model with xdð0Þ ¼ 1025; this only takes t0:5 � 10 genera-
tions when initially introduced at frequency xð0Þ ¼ 0:01:

Varying population size: We have so far assumed that
population size remains constant over time. This assumption
is likely violated in many systems. Insect populations, for

instance, can show dramatic fluctuations in population size
over just a few generations (Berryman 2002). In temperate
areas, winters can result in population crashes, followed by
rapid increase during the growing season. Management prac-
tices for pests, such as insecticide application, can also change
population sizes dramatically, as could CGD itself if the goal is
to spread a harmful allele in the population.

Relaxing the assumption of constant population size can
affect three aspects of our analytical framework: (i) the supply
of resistance alleles in the SGV, (ii) the resistance allele
creation rates umðtÞ and udðtÞ; and (iii) the establishment
probability pðtÞ of a resistance allele. The framework by
Uecker and Hermisson (2011) we adopted for calculating
pðtÞ does in fact allow for arbitrary changes in population
size over time. Given functions NðtÞ and NeðtÞ; Equation A1
then becomes

pðtÞ ¼ 2

1þ RNt ½NðtÞ=NeðxÞ�e2
R x

t
seðyÞdydx

; (20)

which can be solved numerically for any given demography in
the samewaywedid for the constant population size scenario.
Both umðtÞ and udðtÞ are already functions of t in our model.
Under varying population size, these rates become:

umðtÞ ¼ 2NðtÞm
h
ð12xdÞ2 þ xdð12 xdÞð12 cÞ

i
(21)

udðtÞ ¼ 2NðtÞdcxdð12 xdÞ: (22)

Given pðtÞ and rates umðtÞ and udðtÞ; the resistance probabil-
ities Pm and Pd can then be calculated according to Equations
14 and 16 the same way we did for the constant population
size scenario.

Toourknowledge, therearenogeneral analytical solutions
for mutation-selection-drift balance under arbitrary demog-
raphy scenarios. Calculation of PSGV will therefore typically
rely on numerical simulations to infer the expected frequency
of resistance alleles in the SGV. However, such distributions
could be easily obtained from Wright–Fisher simulations un-
der any given demographic model, allowing for numerical
estimation of PSGV:

Data availability

Our theory for modeling CGD dynamics and calculating re-
sistance probabilities is implemented in a C++ command line
program. This program takes as input the parameter values of
the given model: xdð0Þ; c;m; d; sd0; sdr; sr0; srr;Ne;N: For the
given parameters, it then calculates the driver allele fre-
quency trajectory xdðtÞ under a deterministic model, specified
by Equations 1–4 in the absence of resistance; the rate umðtÞ
at which resistance alleles are expected to arise by de novo
mutation; the rate udðtÞ at which they are expected to arise by
NHEJ; the effective selection coefficient seðtÞ of resistance
alleles; and the establishment probability pðtÞ of a resistance
allele arising in a single copy in generation t: Results are
provided for each generation 0# t# tfix: The program also

Figure 5 (A) Driver allele frequency trajectories, effective fitness advan-
tage of resistance allele, and establishment probabilities under recessive,
codominant, and completely dominant driver fitness costs in our standard
model. pðtÞ is not visible in the dominant scenario as it is very close to
zero. (B) Threshold frequencies x0 at which a resistance allele needs to be
present to have the given establishment probability in the case of a
completely dominant driver with cost sd0: (C) Replacement of driver by
resistance allele. Shown is the deterministic frequency trajectory of a
driver allele in our standard model and its replacement by a resistance
allele from the SGV that was present as a single copy (solid line) or
100 copies (dashed line) when the driver was introduced. (D) Time until
resistance allele and driver allele reach 50% population frequency in (C)
when varying driver cost sd0: Once driver cost reaches sd0 � 0:25 in our
model, the driver will be outpaced by the resistance allele before it can
reach 50%.
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calculates the individual resistance probabilities Ptot; PSGV;
Pm; and Pd: Executables, source code, and documentation
for this program are available at http://messerlab.org/
resources/.

Discussion

The prospect of using CGD for genetic manipulation of entire
populations has sparked both optimism and deep concern.
While this technology could help us tackle some of the most
pressing public health challenges, such as vector-borne dis-
eases, there are also serious doubts regarding our ability to
control a gene drive once released into a wild population. In
this study, we showed that resistance will almost inevitably
evolve against standard CGD approaches, most likely due to
resistance alleles produced by the driver itself when cleavage
is repaired by NHEJ-type mechanisms.

We focused in our analyses on population parameters we
feel are appropriate formanyproposed target systems ofCGD,
such as insect populations. Estimates of single nucleotide
mutation rates tend to be in the range of 1029 ,m,1028

in such organisms (Haag-Liautard et al. 2007; Keightley et al.
2009, 2014), and a single mutation in the PAM motif proba-
bly already suffices to create a resistance allele against CGD
(Cong et al. 2013). In addition, indels should typically occur
within the 20-bp-long target sequence of a CGD construct at
rates comparable to single nucleotide mutation rates
(Schrider et al. 2013). In our model, we showed that resis-
tance from SGV and de novomutation is then likely whenever
Ne . 106; compatible with estimates of effective population
sizes in many insect populations (Leffler et al. 2012). In fact,
the values of Ne relevant for CGD in natural insect popula-
tions may often be much larger than these values of long-
term Ne obtained from levels of neutral diversity, which tend
to be dominated by historical bottlenecks and seasonal pop-
ulation crashes (e.g., caused by the winters in a temperate
region) (Hartl and Clark 1997; Berryman 2002; Karasov et al.
2010; Messer and Petrov 2013). During warm seasons, insect
population sizes can easily reach billions and more, and re-
sistance alleles will inevitably arise during these times when
the supply of resistance alleles is not limited by mutation. If
enough generations occur before the next population col-
lapse, resistance alleles could reach a sufficiently high fre-
quency to persist throughout the collapse (Wilson et al.
2014). In such scenarios, resistance probabilities may then
actually depend on the specific time during the year a driver
is released.

Yet even in much smaller populations, resistance is still
likely to evolve from the repair of driver-induced cleavage
events by NHEJ, unless the NHEJ rate can be limited to below
d,1=Ne: This poses a very low boundary for many natural
populations, which should be quite difficult to achieve in
practice, given that NHEJ rates observed in previous CGD
experiments were typically on the order of 1% or larger
(Gantz et al. 2015). In conclusion, our results suggest that
resistance should evolve almost inevitably against standard

CGD approaches in most natural populations, unless NHEJ
can be effectively suppressed, fitness costs of the driver are
completely dominant, or these fitness costs are on par with
those of resistance alleles.

Our modeling framework also allows us to study and
compare resistanceprobabilitiesunder specificCGDstrategies
(Esvelt et al. 2014). One proposed strategy is to disrupt an
existing gene (e.g., a gene involved in insecticide resistance).
In this case, cleavage repair by NHEJ could still achieve the
intended result—a disrupted copy of the gene. Since these
alleles should carry similar fitness costs as the driver, they are
not likely to rise in frequency. However, resistance may still
evolve if somemutations change the target sequence without
actually disrupting the gene, or if the ability to drive itself is
already associated with some fitness costs, as will likely be
the case if off-target effects of the driver have not been com-
pletely suppressed (Fu et al. 2013; Anderson et al. 2015;
Zhang et al. 2015). Another proposed strategy is the insertion
of a new gene (e.g., a gene that prevents mosquitoes from
transmitting malaria). If the target site lies in a nonfunctional
region, NHEJ could then create cost-free resistance alleles,
rendering the evolution of resistance highly probable if the
driver carries a fitness cost.

Several CGD strategies have already been proposed spe-
cifically to combat resistance (Burt 2003; Deredec et al. 2008,
2011; Esvelt et al. 2014; Noble et al. 2016a,b). One such
strategy is to include multiple gRNAs in the construct to tar-
get different sites. The probability that resistance evolves
should then remain very low in our model, due to the large
number of mutations required for an allele that is resistant to
all gRNAs. Yet in practice such a strategy will likely add com-
plexities that require more sophisticated modeling, such as
allele classes with intermediate levels of resistance and pos-
sibly intermediate fitness costs. Resistance could then still
evolve via a succession of intermediate steps. Another ap-
proach, often proposed in concert with multiple gRNAs, is
the targeting of a conserved region of an essential gene
(Esvelt et al. 2014). The idea being that individuals carrying
NHEJ alleles will then have very low fitness—even as hetero-
zygotes—and therefore will be quickly purged from the pop-
ulation. However, this strategy may not be appropriate in all
cases. For example, if the goal is to knock out an insecticide-
resistance gene, then the target gene will be predetermined.
Furthermore, NHEJmay still occasionally repair sequences in
such a way that renders them resistant to further drive, but
without introducing significant fitness consequence. Our an-
alytical framework can accommodate such an approach if we
create two categories of NHEJ alleles: lethal and viable. The
lethal NHEJ alleles can simply be ignored, while the viable
NHEJ alleles can be modeled the same way as in our original
model, but arising at a lower effective rate. Note that even if
the proportion of such viable NHEJ among all NHEJ alleles is
only 0.1–1%, as long as overall NHEJ rates are high enough,
resistance will still likely evolve in our model.

All of these approaches are based on the paradigm that
resistance is always an impediment for practical CGD
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applications, which needs to be averted usingmore elaborate
CGD approaches. Yet maybe this is not always true. In fact,
there may be scenarios in which the ensured evolution of
resistance could actually provide a valuable safety mecha-
nism for controlling a driver, while still allowing the ap-
proach to effectively achieve its goal. This is because even
when resistance alleles will ultimately replace the driver
allele, this replacement will be driven by natural selection,
which can bemuch slower than the initial rise of the driver. In
our standard model, for instance, it takes.100 generations
until resistance alleles reach 50% frequency even when they
were already present when the driver was introduced,
whereas the driver reaches . 99% frequency in ,30 gen-
erations (Figure 5C). This lag time depends on the net se-
lective advantage of the resistance allele over the driver and
will be even longer for lower driver costs (Figure 5D). Short-
term population transformations can thus still be attained.
Subsequent CGD constructs could be designed and released
that specifically target resistance alleles, based on regular
surveys of genetic variation at the target site—a process that
may be more effective and safe than the use of the CGD
system with multiple gRNAs (Esvelt et al. 2014). Our model
provides a quantitative framework for predicting the popu-
lation dynamics of driver and resistance alleles in such sce-
narios and can shed light on how drive parameters need to
be tuned to orchestrate key features of these dynamics, such
as the initial rate of spread of the driver, the maximum fre-
quency it can attain in the population, and the time it will
take until resistance alleles will replace the driver. Note that
our theory also allows the assessment of strategies involving
the intentional release of resistance alleles for controlling a
CGD approach.

It is clear that there is a need formore detailedmodeling of
CGD on several fronts. For example, we assumed that re-
sistance is a binary trait, yet resistance levels could depend on
number, type, and location of mutations in the target site
(Cong et al. 2013). Expression of the driver in the germline,
instead of embryos, could alleviate some of the recessive
fitness costs of the driver in converted individuals (Deredec
et al. 2008). Furthermore, resistance alleles may be created if
homology-directed repair inserts the driver construct, but
introduces errors that prevent it from driving. We also lim-
ited our study to resistance at the target site, even though
trans-resistance might be common. Target species may har-
bor natural variation for Cas9 expression levels or may pro-
duce peptides or RNA that silences the CRISPR machinery
(Bondy-Denomy et al. 2013). The possibility of all these
other resistance mechanisms suggests that our estimates
for the probability that resistance evolves are likely to be
conservative. Finally, we have not addressed CGD strategies
in which an allele is spread with the intention to actively
diminish a population. While our model does provide a
framework for analyzing such strategies when provided with
an explicit model for how the spread of the suppression allele
will affect population size, we still know very little about
how an actual population would react to such an approach.

Throughout this analysis we remained purposefully agnos-
tic to the potential benefits and risks of this potent biological
technology. We do, however, acknowledge the need for ex-
tensive discussion among scientists, policy makers, and the
public before any release of a CGD into a wild population is
ever considered (Esvelt et al. 2014; Oye et al. 2014; Akbari
et al. 2015). It is our hope that this work facilitates such
discussion.
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Appendix A: Calculation of Establishment Probabilities

Uecker andHermisson (2011) developed a framework for calculating the establishment probability of a newmutationwhen its
selection coefficient is time dependent. Their theory can be directly applied to our scenario if we consider a resistance allele to
be a newmutation with time-dependent selection coefficient seðtÞ: According to equation 16 in Uecker and Hermisson (2011),
the establishment probability of such a resistance allele when initially present in a single copy at time t; is then given by

pðtÞ ¼ 2

1þ ðN=NeÞ
RN
t e2

R x

t
seðyÞdydx

: (A1)

To calculate the improper integral in the denominator of Equation A1 for t , tfix;we can split it into two components, prior to
and after fixation of the driver alleleZ N

t
e2
R x

t
seðyÞdydx ¼

Z tfix

t
e2
R x

t
seðyÞdydx þ

Z N

tfix
e2
R x

t
seðyÞdydx: (A2)

The integral in the exponent of the second summand still extends back to time t; but we can again partition it into a component
prior to tfix and afterward, and then make use of the fact that seðt$ tfixÞ ¼ seðtfixÞ will no longer depend on t in the latter
component. This yields Z N

tfix
e2
R x

t
seðyÞdydx ¼

Z N

tfix
e
2

hR tfix
t

seðyÞdyþ
R x

tfix
seðyÞdy

i
dx

¼ e2
R tfix
t

seðyÞdy 3
Z N

tfix
e2seðtfixÞðx2tfixÞdx

¼ e2
R tfix
t

seðyÞdy

seðtfixÞ
: (A3)

For t$ tfix; we obtain Z N

t
e2
R x

t
seðyÞdydx ¼ 1

seðtfixÞ
: (A4)

Both of these integrals break down when seðtfixÞ ¼ 0; which could be the case if the fitness cost of the driver is completely
dominant and resistance alleles would therefore not provide any fitness advantage in driver/resistance heterozygotes. Here we
assume that seðtfixÞ. 0:

Importantly, all the above integrals are defined over continuous time,whereas in ourWright–Fisher-typemodel, generations
are discrete and values for seðtÞ are only defined for t 2 ℕ0: Before we can estimate establishment probabilities in our discrete
model, we first have tomap these integrals onto sums over discrete generations. In the following, wewill always use i; t; t9 2 ℕ0

to denote discrete variables (generations), whereas x; y 2 ℝ will denote continuous variables.
Formapping seðtÞ onto continuous time, wewill extend it to a piecewise constant functionwith seðt þ xÞ ¼ sðtÞ for 0, x, 1:

We can then associate the integrals inside the exponents in Equation A2, estimated between two discrete generations t, twith
sums of the form

g
�
t; t9
�
¼
Z t9

t
seðyÞdy �

Xt921

i¼t
seðiÞ: (A5)

Discretization of the outer integral in Equation A2 can be achieved by partitioning it into the individual integrals between
subsequent generations, yielding
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e2seðiÞðx2iÞdx

¼
Xt921

i¼t

e2gðt;iÞ12 e2seðiÞ

seðiÞ : (A6)

Both gðt; t9Þ and fðt; t9Þ are now successfully expressed in terms of only the values of seðiÞ estimated in discrete generations
i 2 ℕ0: Combining all the above results, we obtain for the establishment probability of a resistance allele arising in generation t
in a single copy in our discrete model

pðtÞ ¼

2
1þ ðN=NeÞ

�
f ðt; tfixÞ þ e2gðt;tfixÞ�seðtfixÞ�; t, tfix

2
1þ ðN=NeÞ3 1=seðtfixÞ

; t$ tfix:

8>>><
>>>:

(A7)

Appendix B: Frequent NHEJ Regime

Our dynamicalmodel for the allele frequencies described byEquations 1–4 assumed that the rates atwhich resistance alleles are
created by mutation and NHEJ are small enough that we can neglect their contribution to changes in allele frequencies
between generations. This may no longer be the case if NHEJ becomes more frequent. Extending our dynamical model to
such a scenario is straightforward. In this case, the dynamics described by Equations 1–4 become

E½x9d� ¼
xdx0½ð12 cÞvd0 þ 2cð12 dÞvdd2 cdvdr� þ xdxrvdr þ x2dvdd

vðtÞ ; (B1)

E½x9r� ¼ xrx0vr0 þ xrxdvdr þ x2r vrr þ xdx0cdvdr

vðtÞ ; (B2)

E½x90� ¼ 12 E½x9d�2 E½x9r�; (B3)

vðtÞ ¼ 2xdx0½ð12 cÞvd0 þ cð12 dÞvdd2 cdvdr� þ 2xrx0vr0 þ 2xrxdvdr þ
X
i

x2i vii: (B4)
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