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ABSTRACT The human face is an array of variable physical features that together make each of us unique and distinguishable. Striking
familial facial similarities underscore a genetic component, but little is known of the genes that underlie facial shape differences.
Numerous studies have estimated facial shape heritability using various methods. Here, we used advanced three-dimensional imaging
technology and quantitative human genetics analysis to estimate narrow-sense heritability, heritability explained by common genetic
variation, and pairwise genetic correlations of 38 measures of facial shape and size in normal African Bantu children from Tanzania.
Specifically, we fit a linear mixed model of genetic relatedness between close and distant relatives to jointly estimate variance
components that correspond to heritability explained by genome-wide common genetic variation and variance explained by uncaptured
genetic variation, the sum representing total narrow-sense heritability. Our significant estimates for narrow-sense heritability of specific
facial traits range from 28 to 67%, with horizontal measures being slightly more heritable than vertical or depth measures. Furthermore,
for over half of facial traits,.90% of narrow-sense heritability can be explained by common genetic variation. We also find high absolute
genetic correlation between most traits, indicating large overlap in underlying genetic loci. Not surprisingly, traits measured in the same
physical orientation (i.e., both horizontal or both vertical) have high positive genetic correlations, whereas traits in opposite orientations
have high negative correlations. The complex genetic architecture of facial shape informs our understanding of the intricate relationships
among different facial features as well as overall facial development.
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HUMANappearance is comprised of a remarkably variable
set of physical traits. Of all externally visible character-

istics, facial appearance is both the most morphologically
variable and the most distinctive and recognizable. Facial
appearance involves a major genetic component, with each
of the many structural features that define facial shape and

appearance themselves likely determined by a multiplicity of
genes, with environmental variables such as nutrition and
environmental toxins, exerting increasing influence over time
(Fitzgerald et al. 2010). Nevertheless, the striking similarity
of facial appearance within families, often across many gen-
erations, suggests that certain key genes exert particularly
large effects on facial shape and appearance.

Facial shape ismeasured in variousways, including specific
linear measurements between defined morphological points
as well as complex quantitative measurements of the entire
face. Previous estimates of the heritability of facial shape
distances and angles were principally derived by direct mea-
surements between common facial morphometric landmarks
on human faces, cephalograms, and skulls. These estimates
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vary widely; in general, facial height dimensions tend to be
more heritable than width (Manfredi et al. 1997; Carson
2006; Amini and Borzabadi-Farahani 2009; AlKhudhairi
and AlKofide 2010), in contrast with the rest of the skull,
for which heritability of width tends to be greater than for
height (Martínez-Abadías et al. 2009a,b, 2012).

The genetic architecture of facial shape variation has been
studiedmore extensively in mice than in humans. In themouse,
measuresofcraniofacialmorphologyarehighlyheritable(Leamy
1977; Klingenberg and Leamy 2001; Klingenberg et al. 2001;
Percival et al. 2016). Further, the mouse skull is highly inte-
grated in terms of phenotypic and genetic correlations (Leamy
1977; Cheverud 1982). Genetic and environmental correlations
also tend to be similar, likely due to their basis in similar de-
velopmental connections among traits (Cheverud 1982).

Morphological assessment of facial variation has typically
required manual landmarking, an approach that is slow, labor
intensive, and error prone; complicating its application to large-
scale studies aswell as comparisons acrossmultiple studies. As an
advance toward standardized, replicable phenotyping of human
facial traits, we combined advanced three-dimensional (3D)
imaging technology with a novel automated landmarking
method (Li et al. 2016) to derive precise, detailed, and informa-
tive facial phenotypes from 29 standard facial morphometric
landmarks (SupplementalMaterial, Table S1) (Bookstein 1997).

Our study, based on Bantu children from Tanzania, avoids
facial shape variation that occurs later in life due to injury,
weight gain, anddisease.Moreover, theseAfrican children are
very lean, with minimal variation related to facial adiposity,
and furthermore have significant occult relatedness, provid-
ing the opportunity to formally analyze the heritability of
facial shape phenotypes in this population.

To assess heritability, we analyzed genotypes of.15million
common SNPs with minor allele frequencies .1% using
Genome-wide Complex Trait Analysis (GCTA) (Yang et al.
2010, 2011). We estimated narrow-sense heritability (h2);
heritability explained by common genetic variation (h2g); and
pairwise genetic correlations of 38 facial phenotypes, incorpo-
rating close family structures into a joint linear mixed model
with two variance components, one representing the genetic
relatedness between close relatives and the other representing
the genetic relatedness between all individuals in the study
(Zaitlen et al. 2013). The phenotypic variance was then parti-
tioned into variance explained by common genetic variation,
variance explained by close genetic relationships but not com-
mon genetic variation, and the remaining residual variance
explained by the environment.

We found that facial shape and size phenotypes are highly
heritable, and additionally are highly genetically correlated, and
that a large fraction of the genetic component of facial differences
canbeexplainedbycommonvariationgenome-wide.Ourfindings
help elucidate the complex genetic relationships and pathways
underlying facial shape, augment basic biological understanding
of facial development, enable better modeling of facial shape
based on genetic correlations, and may assist in delineation and
diagnosis of facial dysmorphism syndromes.

Materials and Methods

Study subjects

Samples and data were collected from 3631 Bantu African
children aged 3–21 over a 3-year period in the Mwanza region
of Tanzania. Subjects with a known birth defect or a relative
with known orofacial cleft or facial birth defect were excluded.
Additional data collected were age, sex, height, weight, head
circumference, school, and detailed parental and grandparen-
tal ethnicity, and tribe information. Subjects with non-Bantu
tribal ancestry in one or more grandparents were excluded
from the study. Written informed consent was obtained from
all study subjects or their parents as appropriate.

3D facial imaging and automated landmarking

3D images were obtained using the CreaformMegaCapturor 3D
photogrammetry imaging system. Each subject was imaged
twice at six standard positions. Meshes were reconstructed at
the highest possible resolution and assembled using Inspeck
software to form a complete 3D mesh of the face (Figure 1).

A set of 29 morphometric facial landmarks (Figure 1 and
Table S1) was applied to each individual facial mesh using a
novel automated landmarking method (Li et al. 2016). Briefly,
this method morphs a 29-landmark template (created from a
training set of manually landmarked faces) to each individual
face through the guidance of anchor points defined by the local
curvature features of the face. Presenting the same image to
the automated landmarking system twice generates identical
landmark positions. Errors, when they occur, tend to be fairly
large, readily detectible, and easily removed.

Derivation of phenotypic variables

Landmarks were subjected to Procrustes superimposition for
geometric morphometric analysis (Bookstein 1997; Dryden
and Mardia 1998; Mitteroecker and Gunz 2009). Superficial
artifacts (smiling, squinting, mouth open, lateral nasal defor-
mity, etc.) were identified by manual quality inspection of
each facial mesh, and were corrected using a multiple linear
model in which all factors and their interactions were con-
sidered. For each correction, we determined the significance
of the artifact using a Procrustes distance permutation test on
age- and size-adjusted data. We performed the corrections
jointly using a linear model in R to avoid overcorrection
caused by overlap among the artifacts. Additionally, we de-
termined whether the corrections affected biological signals
such as the estimates of ontogenetic or static allometry and
the heritabilities of the traits. For all artifacts, we performed
canonical variate analysis both before and after to visualize
the effect of the correction (Figure S1 and Figure S2).

An additional artifact in 3D photogrammetry is “skew,”
defined as coordinated asymmetric displacement of land-
marks due either to variation in assembly of the facial views
to produce the assembled mesh or from parallax. Most land-
marks are affected by skew when it occurs, but individuals
are not equally affected. Therefore, we regressed the land-
mark data on the principal component (PC) scores for PCs
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corresponding to skew variation. Skew corrections have min-
imal effects on most subjects but graded effects on those to-
ward the ends of the skew PC. Figure S2 shows morphs that
correspond to the extreme skew values in the sample. Skew
corrections were applied to the linear distances as this im-
proved heritability, but not to themultivariatemeasures as this
did not affect heritability. We validated artifact and skew cor-
rections by determining their influences on the estimates of
allometric shape variation and on heritabilities.

We obtained 25 linear distance phenotypes representing
heights, widths, and depths of different facial structures from
the fully corrected landmark coordinates after restoring size.
Size was calculated as centroid size, as is standard in geo-
metric morphometrics (Mitteroecker and Gunz 2009). Table
S2 lists means and standard deviations for all linear distances
and centroid size.

Multivariate measures were calculated from artifact but
not skew-corrected data.We removed variation related to age
and size in symmetrized landmark data using multiple mul-
tivariate regression and centering the residuals on the sample
mean (Klingenberg and Zimmermann 1992; Klingenberg
1998). Symmetrizing the data removes facial asymmetry var-
iation. While there is biological variation in asymmetry, this
did not significantly affect the first 10 PCs, aside from the
skew artifacts discussed above. The age-shape relationship
is nonlinear, particularly when an analysis includes both
young children and adults. Within our sample, however,
polynomial fits for age or centroid size did not significantly
improve the fit (Figure S3). As our sample mostly excludes
the major shape changes occurring early in facial growth and
the slowing of changes that occur in late ontogeny, linear
regression sufficiently captures the shape variation associ-
ated with age and centroid size. Shape variation related to
size, or static allometry, was estimated using the regression

scores corresponding to size independent of age. We
obtained the scores for the first 10 PCs based on the age
and size-standardized landmark coordinate data (Figure
S4). All references to PCs in the results refer to the PC
scores derived from the phenotypic data.

We used Klingenberg’s permutation test for Escoffier’s RV
coefficient to identify the set of spatially contiguous land-
marks that maximized the ratio of covariation among them-
selves to covariation with landmarks outside of that set
(Klingenberg 2009). This method does not consider overlap-
ping determinants of covariation structure (Hallgrímsson
et al. 2009), but it reveals sets of strongly covarying, spatially
adjacent landmarks. The resulting set, defined by the nasal
region and upper lip (Figure S5), was subjected to separate
Procrustes alignment, and a principal component analysis
(PCA). The first PC (40% of variance) served as a measure
of variation within this “module.”

The final phenotype values then adjusted for biological
covariates as follows: multivariatemeasures including all PCs
and allometry were adjusted for sex; linear distances were
adjusted for age, sex, and centroid size (after age-sex adjust-
ment); and centroid size was adjusted for age and sex. In this
way, all multivariate measures and linear distances were
corrected for age, sex, and size prior to downstream analysis.
Phenotypic correlations used throughout are based on phe-
notyperesidualcorrelationsonasubsetofunrelatedindividuals.
Allmorphometric analyseswere done inMorphoJ (Klingenberg
2011) or in Rusing the Geomorph (Adams andOtárola-Castillo
2013; Adams et al. 2014) andMorpho (Schlager 2016) packages.

Genome-wide genotyping and quality control

Genome-wide genotyping, quality control, and imputation of
3480 study subjects used in these analyses were described
previously (Cole et al. 2016). The final postquality-control

Figure 1 3D facial scan with annotated
landmarks. Landmarks annotated are
defined in Table S1.
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dataset included 3480 individuals with complete phenotyp-
ing information and imputed genotypes at .15 million
markers with INFO scores .0.30. A sensitivity analysis com-
paring heritability estimates from the full imputed data set
and from a data set of only genotyped markers demonstrated
no bias in using imputed genotypes (Figure S6).

Heritability estimates

Both h2 and h2g were estimated using GCTA software (Yang
et al. 2010, 2011). We fit a joint linear mixed model with two
variance components for each phenotype as described (Zaitlen
et al. 2013). Briefly, one variance component represented close
relatives only, in which any pairwise genetic correlation in the
full genetic relatedness matrix as calculated by GCTA ,0.05
was set to 0. Specifically, our variance component highlighting
close relationships contained 4425 pairwise relationships$0.05
from a total of 2937 individuals in each triangle half of the
matrix. While this variance component represents a small pro-
portion of all pairwise relationships in our sample (0.07%), it
includes 84% of our total sample. Therefore the “missing heri-
tability” explained by this additional variance component of
close relatives is based on a large number of independent nu-
clear families, and thus is not biased by a small number of large
families (Figure S7). Heritability estimates obtained using dif-
ferent relatedness thresholds demonstrated that 0.05 was both
unbiased and conservative when compared to 0.00 and 0.025.
The other variance component represented the full genetic
relatedness matrix for all individuals. The joint model uses
4,307,014 more pairwise comparisons from 3480 individuals
to estimate h2g than the traditional GCTA unrelateds only model
(n = 1869), using their recommended relatedness threshold
cutoff value of 0.025 (Table S3) (Yang et al. 2010). GCTA uses
restricted maximum likelihood to estimate the variance of each
component, the sum of which represents total genetic variance,
used for calculating h2. By default, GCTA estimates that escape
from the parameter space were set to 1.03 1026 3 phenotypic
variance. To adjust our significance threshold formultiple testing
of correlatedphenotypes,weperformedPCAof the38phenotype
residuals in unrelated individuals to determine the number
of effectively independent phenotypes. The first 11 eigen-
vectors had eigenvalues.1, making them each representative
of at least one phenotype. We divided the traditional P , 0.05
threshold by 11, making our significance threshold P, 0.0045.

To calculate heritabilities and genetic variances for each
landmark, we obtained the genetic and phenotypic variance-
covariance matrices for the symmetrized landmarks. This
leaves out one dimension for midline landmarks and treats
the landmark coordinates for both sides as a single variable.
Heritabilities are calculated as the ratio of genetic to pheno-
typic variance for each landmark coordinate. We then used
a heatmap method to visualize these variance components
across the face. Here, each component is represented as a
vector that has a length proportional to the variance compo-
nent, an origin at each landmark, and a direction parallel to a
vector that connects each landmark to the landmark centroid.
These vectors are then used to produce a facemorph using the

thin-plate-spline method that is then superimposed on the
unmorphed mean face to generate a heatmap.

Genetic correlation

Genetic correlations between all phenotypes were also esti-
mated using GCTA software (Yang et al. 2011). We elimi-
nated PC8 and LS_STO, for which the joint heritability LRT
models were not significant (Table 2), from the genetic cor-
relation matrix. Due to nonconvergence of such a large pa-
rameter space, 148/630 bivariate analyses failed the joint
analysis and instead, for the sake of having a complete ge-
netic correlation matrix, were fit by the standard GCTA ap-
proach, using a single genetic relatedness matrix of only
unrelated individuals (n = 1869). Of those 148 bivariate
models, 36 failed the single component model of unrelateds
due to constraining genetic or environmental components.
To construct a complete genetic correlation matrix, we esti-
mated these 36 values based on both univariate and bivariate
models of the traits affected. If the bivariate model’s genetic
component was constrained or the univariate model’s herita-
bility estimate was less than the SE of that estimate, we set
the genetic covariance to 1.0 3 1026 3 phenotypic covari-
ance. If the bivariate model’s environmental component was
constrained or the univariatemodel’s heritability was essentially
equal to one, we set the genetic covariance as equal to the total
phenotypic covariance between the two traits. Therefore, the
genetic correlation matrix represents only the shared genetic
correlation which can be explained by .15 million common
variants. Table S4 includes all h2g genetic correlation estimates,
SE, and models in which those values were derived.

Data availability

Phenotype data were deposited in FaceBase (https://www.
facebase.org/; accession number: FB00000667.01). Genotype
data were deposited in the Database of Genotypes and Pheno-
types (dbGaP) (http://www.ncbi.nlm.nih.gov/gap; accession
number: phs000622.v1.p1). This study was carried out with
overall approval and oversight of the Colorado Multiple Insti-
tutional Review Board (protocol #09-0731), was additionally
approved by the institutional review boards of the University
of Calgary, Florida State University, the University of California
San Francisco, and the Catholic University of Health and Allied
Sciences (Mwanza, Tanzania), and was carried out with the ap-
proval of the National Institute for Medical Research (Tanzania).

Results

Study population and phenotypes

The study population consisted of 3480 normal African Bantu
children and adolescents ages 3–21 from the Mwanza region of
Tanzania. Over 70% of subjects were aged 7–12, and 44.4%
were male and 55.6% female (Figure 2). As described previ-
ously (Cole et al. 2016), PCA of population substructure dem-
onstrated minimal genetic clustering and an analysis of fixation
index demonstrated no apparent subgroups by school or tribe.
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For each subject, we captured 3D facial scans, applied
29 standard facial morphometric landmarks (Figure 1 and
Table S1) (Bookstein 1997), derived 38 facial shape pheno-
types based on the landmarks, carried out genome-wide SNP
genotyping, and used these data to estimate h2 and h2g for
each phenotype. These facial phenotypes represent several
different classes, including 3D summary variables in the form
of PCs derived from PCA of the whole face and PCA of the
most highly correlated landmarks positioned around the
midface, interlandmark linear distances, and global mea-
sures of overall facial size and the relationship between
size and shape (Table 1). In addition, for each subject we
obtained height and weight, from which we calculated
body mass index (BMI). Analysis of these data showed that
the mean BMI of the study population was�1 SD below the
2007 World Health Organization world standards (Figure
S8). Furthermore, the correlations between all age- and
sex-adjusted facial traits with age- and sex-adjusted BMI
in unrelated individuals are small (r2 = 20.18 to 0.14),
suggesting that BMI is not a confounding factor in our
study population.

Heritability of facial phenotypes

As shown in Figure 3 and Table 2, 36 of our 38 phenotypeswere
significantly heritable (P , 0.0045), with h2 28.3–66.9%. The
most heritable facial traits include PC7, representing nasal root
shape and mouth width (h2 = 66.9%, SE = 7.2%); total facial
width (T_R_T_L) (h2 = 66.2%, SE= 7.5%); the allometric vari-
able (h2 = 64.3%, SE = 7.2%); centroid size (h2 = 64.1%,

SE = 7.6%); and nasion to midendocanthion distance
(N_MEN) (h2 = 63.9%, SE = 7.5%). Furthermore, by com-
bining genetic variance across all 10 orthogonal PCs, which
explain .87% of total shape variation captured by sparse
landmarking (Figure S4), we obtained a single global esti-
mate of total facial shape of h2 = 50.1%. Previous studies
have suggested that vertical measures have greater heritabil-
ity than horizontal measures (Manfredi et al. 1997; Carson
2006; Amini and Borzabadi-Farahani 2009; AlKhudhairi and
AlKofide 2010). However, we observed a trend toward horizon-
tal facial measures having greater heritability than vertical mea-
sures. Figure 4 depicts h2 and h2g estimates for the 25 linear
distances, clustered by physical orientation and phenotypic cor-
relation. The three facial depth measurements, lower facial
depth (GN_T), midfacial depth (SN_T), and upper facial depth
(N_T), share the tragion landmark and have very similar h2

estimates (h2 = 48.6%, SE = 7.6%; h2 = 48.7%, SE = 7.6%;
and h2 = 51.2%, SE = 7.6%; respectively), but exhibit very
different phenotypic correlations (GN_T:SN_T = 0.31,
GN_T:N_T = 20.04, and SN_T:N_T = 0.67). Similarly,
the three horizontal eye measurements, inner canthal dis-
tance (EN_R_EN_L), outer canthal distance (EX_R_EX_L),
and average palpebral fissure length (EN_EX), likewise share
some landmarks in common and have fairly similar h2 esti-
mates, (h2 = 41.1%, SE = 7.6%; h2 = 52.2%, SE = 7.6%;
and h2 = 56.6%, SE = 7.8%; respectively), but exhibit very
different phenotypic correlations (EN_R_EN_L:EX_R_EX_L =
0.49, EN_R_EN_L:EN_EX=20.03, and EX_R_EX_L:EN_EX=
0.82). In contrast, three midfacial horizontal measures, mouth

Figure 2 Study age distribution by sex.
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width (CH_R_CH_L), philtrum width (CPH_R_CPH_L), and
subnasal width (SBAL_R_SBAL_L), share no overlapping
landmarks, have similar h2 estimates (h2 = 37.8%, SE =
7.7%; h2 = 33.7%, SE = 7.7%; and h2 = 37.2%, SE =
8.0%; respectively), and also exhibit fairly high phenotypic
correlations (CH_R_CH_L:CPH_R_CPH_L = 0.55, CH_R_CH_L:
SBAL_R_SBAL_L=0.62, andCPH_R_CPH_L:SBAL_R_SBAL_L=
0.48). It appears that facial traits of similar orientation
that either share overlapping morphological points or
have high phenotypic correlations are influenced by ad-
ditive genetic effects and environmental effects to similar
degrees.

Figure 5 shows the anatomic distribution of phenotypic
and genetic variance as well as heritability by landmark. The
pattern is consistent with Figure 3 and Figure 4 in that the

landmarks defining facial width and the orbital region tend
to have higher genetic variances and heritabilities.

Genetic basis of observed heritability

For 22 of the 38 facial phenotypes analyzed, .90% of the
narrow-sense heritability (h2) can be explained by the effects
of common genetic variation (h2g/h2). However, for a number
of other traits, common variation (h2g) accounts for ,50% of
h2; indicating significant additional genetic contributions be-
yond common variants that can be imputed for Africans from
the Illumina HumanOmni 2.5-8 array, which captures 54% of
common African variation (minor allele frequency .1%;
http://www.illumina.com/content/dam/illumina-marketing/
documents/products/datasheets/datasheet-human-omni2.5-
exome-8.pdf). However, we caution that these conclusions

Table 1 The 38 facial phenotypes derived from landmarks on 3D facial scans

Phenotype abbreviation Physical description

PCA
PC1 upper facial height, midfacial width
PC2 overall facial height, lower facial height
PC3 upper and middle facial width
PC4 width of the nose, mandible height
PC5 nose shape, height of the mouth
PC6 nasal width, maxillary prognathism
PC7 nasal root shape, mouth width
PC8 cheek protrusion
PC9 midface protrusion, upper facial height
P10 chin height, nasion protrusion
PC1 from a PCA of the midfacial landmark

network (MidfaceModPC1)
midfacial landmark network around the nose and mouth

Size-related measurements
Centroid size facial size
Allometry variation in shape due to size

Linear distancesa

AL_R_AL_L nasal width
AC_PRN nasal ala length (average)
CH_R_CH_L mouth width
CPH_R_CPH_L philtrum width
EN_EX palpebral fissure length (average)
EN_R_EN_L inner canthal width
EX_R_EX_L outer canthal width
GN_T lower facial depth (average)
LI_SL cutaneous lower lip height
LS_STO upper vermilion height
N_GN morphological facial height
N_MEN nasion to midendocanthion
N_PRN nasal bridge length
N_SN nasal height
N_STO upper facial height
N_T upper facial depth (average)
SBAL_R_SBAL_L subnasal width
SN_GN lower facial height
SN_LS philtrum length
SN_PRN nasal protrusion
SN_STO upper lip height
SN_T midfacial depth (average)
STO_LI lower vermilion height
STO_SL lower lip height
T_R_T_L facial width

a Linear distances are the distance between two landmarks (e.g., AL_R and AL_L).
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are based on estimates of h2g/h2 that have high SE (Table
2). These traits include centroid size, nasion to midendo-
canthion (N_MEN), palpebral fissure length (EN_EX), PC5
representing nose shape and height of the mouth, PC8
representing cheek protrusion, and morphological facial
height (N_GN).

To elucidate underlying genetic relationships between
different facial traits, we estimated pairwise genetic correla-
tions between all significantly heritable traits (Table S4) and
constructed a genetic correlation matrix of all significantly
heritable linear distances (Figure 6). Due to lack of power
to detect h2 in joint bivariate models between all traits
(Visscher et al. 2014), these genetic correlations are based
on the genetic covariance calculated from .15 million com-
mon variants and not total genetic covariance, resulting in
higher SE. Although not all genetic correlation estimates are
significantly different from 0 (P , 0.05), Figure 6 depicts
striking patterns of shared heritability among distinct facial
traits. A number of horizontal measurements mostly defined
by nonoverlapping landmarks have high positive genetic cor-
relations with each other. These phenotypes include palpebral
fissure length (EN_EX), outer canthal width (EX_R_EX_L),
facial width (T_R_T_L),mouthwidth (CH_R_CH_L), subnasal
width (SBAL_R_SBAL_L), philtrum width (CPH_R_CPH_L),
and two PCs that both account for midfacial width (PC1
and MidfaceModPC1). We observed a similar pattern of
high positive genetic correlations, though to a lesser extent,
among midline vertical measurements. These include upper
lip height (SN_STO), morphological facial height (N_GN),
upper facial height (N_STO), PC2 representing both overall
and lower facial height, lower lip height (STO_SL), and
philtrum length (SN_LS). Importantly, the horizontal and
vertical measurements exhibit large negative genetic corre-
lations with each other, indicating that phenotypic variation
along both horizontal and vertical measurements are largely

caused by the same genetic variation acting to increase one
direction while decreasing the other. In a simple sense, this
means that the same alleles that cause an individual to have
a broad face also cause that individual to have a short face,
and vice versa.

Discussion

We report here the first estimates of both heritability and
genetic correlation of facial shape phenotypes derived from
3D facial scans and true genome-wide genetic correlations
between1000s of individuals. Facial scans provide farmore
accuratemeasurements than previous approaches basedon
direct manual measurements between prominent facial
features (Ozsoy et al. 2009). Furthermore, direct calcula-
tion of genome sharing from genome-wide data are more
accurate than kinship coefficients used in traditional her-
itability analyses, which represent the average genetic
sharing for any given relationship and not the actual ge-
netic correlation for any specific pair of relatives (Hayes
et al. 2009).

Our analysis, carried out in Bantu children from Tanza-
nia, provides the opportunity to assess heritability of facial
shape and size in a young, lean population. The choice of
population is both a strength and a limitation of this anal-
ysis. In any population, heritability is determined by a
combination of genetic variance and environmental influ-
ences. Variation in facial adiposity, for instance, is small in
this population while it may be large in others (Figure S8)
(Cole et al. 2016). The focus on children creates the need
to adjust for age and size but also avoids facial shape
changes that occur later in life due to injury, weight gain,
and disease.

Not surprisingly, we found that many quantitative facial-
shape phenotypes, derived with high accuracy from 3D facial

Figure 3 Heritability of 38 facial traits.
The bar plot represents h2g (yellow),
missing h2 (blue), and total h2 (yellow +
blue) with error bars for all 38 facial
phenotypes analyzed. Bars that ap-
parently have no missing h2 (blue) in-
dicate that h2g equals h2; therefore,
narrow-sense heritability of that pheno-
type can be explained fully by common
genetic variation.
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scans, are highly heritable. Furthermore, most of these quan-
titative facialphenotypes canbeexplainedbycommongenetic
variants across the genome. In particular, based on h2, several
horizontalmeasurements including facialwidth (T_R_T_L; h2=
66.2%, SE = 7.5%), nasal width (AL_R_AL_L; h2 = 62.3%,
SE = 7.6%), outer canthal width (EX_R_EX_L; h2 = 56.6%,
SE=7.6%), and palpebralfissure length (EN_EX; h2=52.2%,
SE = 7.8%) appear to be among the most heritable facial
features; contrary to findings of previous heritability
studies of the face. There are several obvious potential
explanations for this difference. First, heritability of some
facial attributes may be population specific, driven by dif-
ferent underlying genetic variants in different populations;
thus reflecting differing underlying biological bases of
facial shape and size. Second, the present study popula-
tion, Tanzanian Bantu children, is a much leaner popula-
tion than has been studied previously. BMI in our cohort

of Tanzanian Bantu children is significantly lower than
world standards (Figure S8) (de Onis et al. 2004) and is
uncorrelated with our measures of facial shape after
adjusting for age, sex, and centroid size (see Materials
and Methods). Linear measures, particularly horizontal dis-
tances, collected in populations with higher BMI, may be
more affected by excess subcutaneous fat, reflecting a
greater environmental component, and thus proportion-
ately smaller genetic component. Third, genetic influ-
ences on horizontal facial distances may be proportionately
greater at younger ages, as in our cohort of children and ado-
lescents ages 3–21, whereas these distances may become pro-
portionately more affected by environmental components
with increasing age. This model of age-related shape differ-
ences fits well with what is already known about how the face
matures and morphs into the adult form. As the face reaches
adult shape at �16 years of age (as determined in males of

Table 2 Heritability of 38 facial traits

Trait h2
g SE (h2

g) h2 SE (h2) LRT P-valuea h2
g/h2 SE (h2

g/h2)

PC7 0.669 0.138 0.669 0.072 1.00 3 10217b 1.000 0.560
T_R_T_L 0.521 0.138 0.662 0.075 1.00 3 10217b 0.786 0.482
Allometry 0.643 0.132 0.643 0.072 1.00 3 10217b 1.000 0.562
Centroid Size 0.277 0.134 0.641 0.076 3.66 3 10215 0.432 0.335
N_MEN 0.260 0.134 0.639 0.075 3.89 3 10216 0.406 0.322
AL_R_AL_L 0.623 0.131 0.623 0.076 1.00 3 10217b 1.000 0.575
PC4 0.604 0.131 0.604 0.075 5.55 3 10217 1.000 0.583
PC2 0.579 0.139 0.579 0.074 1.00 3 10217b 1.000 0.607
EX_R_EX_L 0.421 0.141 0.566 0.076 8.11 3 10214 0.744 0.509
N_PRN 0.456 0.142 0.544 0.075 3.94 3 10215 0.839 0.562
EN_EX 0.208 0.140 0.522 0.078 4.35 3 10210 0.399 0.360
N_T 0.419 0.136 0.512 0.076 4.52 3 10214 0.819 0.564
PC5 0.211 0.138 0.491 0.077 6.33 3 10210 0.430 0.385
N_STO 0.443 0.140 0.490 0.076 2.22 3 10213 0.903 0.621
GN_T 0.487 0.140 0.487 0.076 2.97 3 10212 1.000 0.663
SN_LS 0.486 0.130 0.486 0.077 5.26 3 10211 1.000 0.651
SN_T 0.469 0.139 0.486 0.076 2.97 3 10213 0.966 0.650
PC3 0.308 0.139 0.478 0.078 2.03 3 10210 0.643 0.504
PC1 0.477 0.140 0.477 0.076 5.76 3 10213 1.000 0.672
PC8 0.074 0.137 0.471 0.079 2.50 3 1028 0.158 0.223
N_SN 0.244 0.137 0.456 0.075 1.95 3 10210 0.535 0.455
PC9 0.431 0.125 0.452 0.076 1.16 3 10213 0.953 0.643
MidfaceModPC1 0.433 0.138 0.433 0.078 2.23 3 1029 1.000 0.706
N_GN 0.159 0.137 0.426 0.078 1.11 3 1027 0.373 0.380
EN_R_EN_L 0.392 0.142 0.411 0.076 2.09 3 1029 0.952 0.699
AC_PRN 0.311 0.140 0.410 0.079 1.47 3 1027 0.758 0.604
SN_GN 0.239 0.139 0.386 0.079 8.70 3 1027 0.619 0.546
CH_R_CH_L 0.378 0.137 0.378 0.077 7.99 3 1026 1.000 0.747
SBAL_R_SBAL_L 0.373 0.134 0.373 0.080 2.76 3 1026 1.000 0.754
LI_SL 0.177 0.134 0.342 0.077 5.61 3 1026 0.518 0.510
SN_PRN 0.242 0.139 0.340 0.074 1.37 3 1026 0.711 0.629
CPH_R_CPH_L 0.337 0.126 0.337 0.077 3.45 3 1026 1.000 0.775
STO_LI 0.324 0.139 0.324 0.075 2.48 3 1025 1.000 0.810
SN_STO 0.314 0.131 0.314 0.079 1.57 3 1025 1.000 0.819
PC10 0.291 0.140 0.291 0.080 0.000570 1.000 0.860
STO_SL 0.283 0.134 0.283 0.078 0.000102 1.000 0.863
PC6 0.169 0.131 0.169 0.077 0.0152 1.000 1.10
LS_STO 0.076 0.116 0.076 0.077 0.259 1.000 1.61

h2, h2g, and the proportion of narrow-sense heritability explained by common genetic variants (h2g/h2), all with SE.
a LRT P-value for the joint model vs. the null model (H0: h2 = 0).
b LRT P-value was reported as 0, indicating it was less than the GCTA limit 1 3 10217.
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European descent), the midface undergoes a strong vertical
expansion and becomes relatively taller than the rest of the
face (Bastir et al. 2006).

The 10 PCs displayed similar heritabilities as the linear
distances. PCs represent axes of covariation within the data
and most combine variation from multiple if not most land-
marks. A limitation of PCA is that the assumption that each PC
is orthogonal to the previous may not map well onto the
underlying biological determinants of covariation structure.
In the absence of knowledge about those determinants, how-
ever, PCA is a widely accepted and rational approach to
multivariate data. In this context, eachPC represents adistinct
facial shape transformation that emerges from the covariance
structure of the data and can be treated as a univariate trait.

Interestingly, global facial size appears to be among the
most heritable of facial traits. Allometry, a measure of the

variation in shape due to size, has h2 of 64.3% (SE =
7.2%). Centroid size, a measure of overall face size, has
h2 of 64.1% (SE = 7.6%). These findings indicate that
there may be a strong genetic basis underlying global size
of the face and how size drives shape variation; whereas
facial shape per se, irrespective of size, may be somewhat
more influenced by environmental factors. Although our
findings also indicate that the majority of facial shape
variation can be explained by the effects of common ge-
netic variation, there were several facial phenotypes, in-
cluding centroid size, for which h2g did not explain the
majority of h2. Potential explanations for such missing
heritability include variants not in linkage disequilibrium
with variants on our array, rare causal genetic variants,
uncharacterized structural variation, and epistatic ef-
fects. Our genome-wide association studies (GWAS) of

Figure 4 Heritability of linear distances by measurement
orientation. The bar plot represents h2g (yellow), missing h2

(blue), and total h2 (yellow + blue) with error bars for
25 linear distances. Traits are first clustered by orientation,
then by facial structure with between-trait phenotypic cor-
relations seen in the colored matrix in the bottom half of
the figure.
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these same facial traits in Africans identified two loci
that were significantly associated with either centroid
size or allometry (Cole et al. 2016); traits with high h2

but variable h2g. While these heritability estimates sup-
port an overall genetic contribution, the specific esti-
mate of h2g does not provide information on the magnitude
of effect of contributing loci, and thus is not necessarily
an indicator of GWAS success. Irrespective of the spe-
cific h2g estimates for centroid size and allometry, our
GWAS of 6300 individuals had the power to detect ge-
netic determinants with relatively large effect sizes for
both traits.

We observed high positive genetic correlations among
variables that represent similar orientations on the face,
and rather high negative genetic correlations among var-
iables that represent different orientations. The highest
genetic correlations, of horizontal measures across the
facial midline, likely correspond to related genetic effects
on biological relationships underlying facial structure

during development, in which the two sides of the face
meet and fuse at the midline (Sperber et al. 2001). The
negative genetic correlations we observe between horizon-
tal and vertical facial measures are consistent with overall
phenotypic correlations between these measures. Further-
more, high positive and negative genetic correlations be-
tween a wide array of facial traits support the presence of
a finite set of underlying genes involved in overall facial
development.

Finally, our analysis of genetic variance and covariance
structure shows that genetic variation in the face is both
highly integrated and modular. Integration refers to the
developmentally based tendencies for traits to covary
(Hallgrímsson et al. 2009; Klingenberg 2013), while
modularity refers to suites of traits connected by devel-
opment (Wagner et al. 2007). We find a large number of
both positive and negative correlations among traits,
attesting to highly structured patterns of variation. For
craniofacial morphology more generally, somatic growth,

Figure 5 Distribution of variance components across the face. (A–C) The anatomical distribution of phenotypic and genetic variances as well as
heritabilities is shown. These are represented as heatmaps based on a thin-plate-spine morph as described inMaterials and Methods. (D) The heritability
estimates or the Procrustes-superimposed symmetrized landmarks are shown. (E) The vectors, magnified 10-fold, used to generate the heritability
heatmap are depicted.
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chondrocranial growth, and brain growth are known to
drive such patterns of integrated variation in both mouse
and human crania (Cooper et al. 2004; Hallgrímsson et al.
2006, 2009; Marcucio et al. 2011; Martínez-Abadías et al.
2012). Here, both facial size and facial shape allometry ex-
hibit a pattern of genetic correlations with facial measures
that capture aspects of facial height, midfacial width, and
lower facial prognathism. This pattern of genetic correla-
tions likely reflects the overall influence of somatic growth
on facial shape, forming a developmentally based module
within the face. Further work integrating developmental
studies with results such as these will shed light on the
mechanistic basis for the structure of variation in the face.
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