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Abstract

The etiologies underlying variation in adult cognitive performance and cognitive aging have 

enjoyed much attention in the literature, but much of that attention has focused on broad factors, 

principally general cognitive ability. The current review provides meta-analyses of age trends in 

heritability of specific cognitive abilities and considers the profile of genetic and environmental 

factors contributing to cognitive aging to address the ‘missing heritability’ issue. Our findings, 

based upon evaluating 27 reports in the literature, suggest that verbal ability demonstrated 

declining heritability after age 60, as did spatial ability and perceptual speed more modestly. 

Trends for general memory, working memory, and spatial ability generally indicated stability, or 

small increases in heritability in mid-life. Equivocal results were found for executive function. A 

second meta-analysis then considered the gap between twin-based versus SNP-based heritability 

derived from population-based GWAS studies. Specifically, we considered twin correlation ratios 

to agnostically re-evaluate biometrical models across age and by cognitive domain. Results 

modestly suggest that nonadditive genetic variance may become increasingly important with age, 

especially for verbal ability. If so, this would support arguments that lower SNP-based heritability 

estimates result in part from uncaptured non-additive influences (e.g., dominance, gene-gene 

interactions), and possibly gene-environment (GE) correlations. Moreover, consistent with 

longitudinal twin studies of aging, as rearing environment becomes a distal factor, increasing 

genetic variance may result in part from nonadditive genetic influences or possible GE 

correlations. Sensitivity to life course dynamics is crucial to understanding etiological 

contributions to adult cognitive performance and cognitive aging.
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Several thorough reviews of behavior genetics of cognitive aging have appeared in the last 5 

years (Finkel & Reynolds, 2009; Finkel & Reynolds, 2010; Johnson et al., 2014; Reynolds 

& Finkel, in press, 2014). Because of the scope of the issues inherent in genetic 

investigations of cognitive aging, most of these reviews relied on fairly global overviews that 
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allow for identification of major trends and issues. As these reviews exist, we feel at liberty 

to focus on two very specific issues that serve to showcase the two primary approaches 

currently in use in investigations of genetic influences on cognitive aging. First, behavior 

genetic approaches have expanded in the last decade or so to consider a broader array of 

domains such as executive functioning and working memory. Sufficient data is available to 

examine age trends not only in general cognitive ability, but also at the level of these specific 

abilities, providing the necessary data to support and interpret molecular approaches. 

Second, with the incredible advances in molecular genetics in the last decade, researchers 

have been combing the genome to identify specific genes associated with cognitive function 

and cognitive aging. It should be possible, then, to trace the proportion of genetic variance 

associated with cognitive functioning to a complete set of cognitive genes. However, 

research on these issues has not produced a straightforward answer. In the current chapter 

we use meta-analytic approaches to address the worldwide literature on twin- and family-

based studies of adult cognition and cognitive aging and consider these results in light of 

empirical findings of “missing” heritability.

Adult lifespan: decreasing, stable, or increasing heritability?

Meta-analyses of genetic influences on general cognitive ability in childhood and young 

adulthood have demonstrated that the resulting heritability estimates and patterns of 

correlations are consistent with the predictions of polygenic theory (T. J. Bouchard & 

McGue, 1981; Chipuer, Rovine, & Plomin, 1990; Erlenmeyer-Kimling & Jarvik, 1963). In 

other words, the more genetically related individuals are, the more similar their cognitive 

ability [see Box 1.1]. However, meta-analyses focusing on age differences in heritability 

estimates report decreasing twin similarity and increasing heritability from childhood 

through young adulthood (Bergen et al., 2007; Bouchard, 2013; McCartney et al., 1990). 

Multiple effects are assumed to account for these age differences: as twins grow up and 

move out of the house, parents have decreasing control over their environments and twins 

begin to select their own environments. That selection is not independent of their 

genetically-influenced personality and cognitive phenotypes (i.e., active gene by 

environment correlation plays a role).

However, evolutionary pressures and environmental influences continue to change as 

adulthood progresses, in addition to the variable action of genetic factors. What can we 

predict, then, about stability or change in heritability of cognitive ability in the second half 

of the lifespan? The active gene by environmental correlation that develops in the first half 

of the lifespan could continue into the second, resulting in steadily increasing heritability as 

MZ twins choose more similar environments than DZ twins. Alternately, as individuals age 

beyond child-bearing and child-rearing years, the evolutionary imperative to weed out 

deleterious genetic mutations wanes (Hamilton, 1966; Kirkwood et al., 2011). Therefore, the 

consequence of mutations may begin to accumulate, resulting in increasing divergence of 

MZ and DZ twin correlations (as MZs are more likely to share the mutations) and thus 

increasing heritability with age. In contrast, as twins continue to age and experience their 

separate lives, they may continue to “grow apart,” as McCartney and colleagues (McCartney, 

et al., 1990) claimed. The accumulation of unique environmental factors (environmental 

assaults, individual experiences, disease) including stochastic chance processes (Finch & 
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Kirkwood, 200) may drive down both MZ and DZ twin similarity, resulting in decreased 
heritability and increased estimates of nonshared environmental variance. Finally, it is 

possible that all of these influences have achieved a state of equilibrium by midlife, resulting 

in fairly stable heritability estimates across the second half of the lifespan.

Two recent analyses have attempted to address the issue of age differences and age changes 

in heritability of general cognitive ability in adulthood. In a fairly comprehensive review of 

existing cross-sectional and longitudinal twin studies of cognitive aging extant at that time, 

Finkel and Reynolds (Finkel & Reynolds, 2009) concluded that heritability of general 

cognitive ability increased to 80% in midlife but then decreased to 60% in late adulthood, 

with a corresponding increase in nonshared environmental variance. In contrast, 

Christiansen and McGue (Christiansen & McGue, 2013) recently reported heritability 

estimates hovering around 60% in cross-sectional twin data including over 2000 pairs and 

covering most of adulthood (age 46 – 90). Thus, evidence for both stable and decreasing 

heritability with age has been reported.

It is possible that these contrasting results are a consequence of differing definitions of 

general cognitive ability. In fact, it may be misguided to focus our efforts to understand the 

etiology of cognitive aging on general cognitive ability. Beginning with Schaie's classic 

longitudinal studies of cognitive aging (Schaie, 1996), the psychometric work by Horn and 

Cattell (Horn & Cattell, 1966, 1967), and the application of modern growth analysis 

(McArdle et al., 2002; McArdle et al., 2000), it has been clear that cognitive ability is not a 

unitary construct and that there are different patterns of cognitive aging across cognitive 

domains. Similarly, twin studies of cognitive aging that focus on individual cognitive 

domains report different patterns of genetic and environmental variance across domains and 

ages (Johansson et al., 2004; Lee et al., 2010; Lessov-Schlagger et al., 2007; McArdle et al., 

1998; Reynolds et al., 2005). Therefore, in the hope of clarifying the etiology of cognitive 

aging, we have conducted a meta-analysis of cross-sectional twin and family studies of 

specific cognitive abilities in adulthood to examine patterns of age differences in heritability 

estimates across cognitive domains.

Meta-analysis of heritability estimates

A review of the literature generated 27 articles reporting cross-sectional results from 19 

different twin and family studies of adulthood and aging that incorporated measures of 

specific cognitive functioning (see Supplement 1). Although there are several longitudinal 

twin studies of cognitive aging, only 5 reported information about specific cognitive 

abilities, a number insufficient to support the meta-analytic techniques used here. Because at 

most half of the studies reported estimates of environmental variance (shared or unique) and 

very few estimated dominance, this meta-analysis focused on narrow-sense heritability. 

Table 1 presents the characteristics of the 178 heritability estimates collected from these 

studies, clustered in 6 major cognitive domains: verbal (35 estimates), spatial (20), general 

memory (45), speed (27), executive functioning (24), and working memory (27). Clustering 

into domains followed the authors' labels or standard interpretations of the individual tests. 

Digit span tasks were considered measures of working memory. General memory included 

primarily measures of episodic memory. Three studies reported twin correlations (TC) 
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instead of heritability estimates (H); structural equation modeling was used to calculate 

heritability estimates from the twin correlations and number of pairs (Boker et al., 2011). 

Taken together, the 19 studies included 9916 participants (1929 MZ pairs and 1890 DZ 

pairs) ranging in age from 14 to 98, with a mean age of 55 (median = 65). Fifty-three 

percent of the participants were women. A full description of all studies and cognitive tasks 

is available from the authors.

Identifying a common metric of dispersion/accuracy represented the greatest challenge to 

our meta-analysis. A few studies reported confidence intervals (16.9%) and another 15.7% 

reported standard errors for their estimates. Forty-five percent reported twin correlations, 

which could be used to generate heritability estimates and corresponding standard errors via 

calculation (McCartney, et al., 1990; Sham, 1998) or structural equation modeling (Boker, et 

al., 2011). However, 22.5% reported neither standard errors nor sufficient information to 

estimate standard errors. In the interest of consistency, we chose to calculate an approximate 

standard error for each heritability estimate following Koots and Gibson (Koots & Gibson, 

1996), who used 2/√N for parent-offspring pairs, where N is the total number of twin pairs in 

the current case. The average difference between this metric and the reported or calculated 

standard errors (where available) was .007; the smallest difference by an order of magnitude 

of any of the standard error metrics we investigated.

Two approaches were used to summarize the data points within each domain. First, the 

common standard error estimate (2/√N) was used to calculate 95% confidence intervals 

around each heritability estimate. Estimates were then plotted (with confidence intervals) by 

the mean age of the sample (left side of Figures 1-6). Where mean age was not reported, the 

midpoint of the reported age range was used. A reference line is included in the figures to 

indicate the average heritability across ages. Second, a multi-level random effects regression 

model was fitted to the data points (SAS Proc Mixed; SAS, Cary, NC), including both linear 

and quadratic age components (right side of Figures 1-6). Covariates included gender, 

publication year, and region (U.S., Europe, non-European). Estimates were adjusted for 

sampling variability by including the estimated standard errors as a level 1 predictor with 

unit-constrained variance (Hox, 2010), and between-study random effects estimated. Given 

the small sample of heritability estimates within each domain (ranging from 20 to 45), there 

was insufficient power to differentiate between linear and quadratic models in 5 of the 6 

cognitive domains. Model fit statistics and parameter estimates with standard errors are 

reported in Supplemental Tables 1 and 2.

Results for verbal ability are presented in Figure 1: both the individual point estimates 

presented on the left and the fitted curve presented on the right suggest decreasing 

heritability in the second half of the lifespan and the quadratic regression fit significantly 

better than the linear model (change in model fit = 6.4, df = 1, p<.05). A reference line in the 

left panel indicates average heritability across the entire age range: before age 60, 75% of 

the study heritabilities are greater than the average, whereas after age 60, 73% of the 

heritabilities are at or below the average. Maximum (.61) and minimum (.28) heritabilities 

estimated by the regression model are reported in the right panel. The pattern of decreasing 

heritability indicated here for verbal ability is similar to the pattern reported by Finkel and 

Reynolds (2009) for general cognitive ability; the same pattern is suggested by the results 
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for spatial ability (Figure 2) and perceptual speed (Figure 4), although the comparisons of 

regression models did not achieve significance. Note that most measures of general cognitive 

function rely on four primary domains (verbal, spatial, memory, and speed) and in the 

current analyses 3 of those 4 domains manifested the same pattern reported for general 

cognitive ability by Finkel and Reynolds (2009). In contrast, the pattern of results for 

general memory (Figure 3) and working memory (Figure 5) suggest stability or possible 

increases in heritability, although the quadratic model did not achieve significance.

Executive function (Figure 6) presents the sparsest data and the greatest puzzle in these 

analyses. The individual point estimates and the quadratic regression model for executive 

functioning suggest an increase in heritability in late adulthood. However, closer 

examination of individual heritability estimates suggested that the age trends for executive 

functioning might be more complicated, with multiple inflection points across adulthood. A 

model including three linear slopes (age 20-50, age 50-65, age 65-90) provided a marginally 

better fit to the data than the linear model for executive functioning (change in model fit = 

4.8, df=2, p<.10); whereas the quadratic model did not improve fit over the linear model 

(change in model fit = 1.0, df=1, ns). Both the quadratic and three-slope models are 

presented in right half of Figure 6; the different heritability estimates at age 90 arising from 

the two models are indicated. As a result of the paucity of data, it is impossible to determine 

whether heritability for executive function increases to .77 or decreases to .27 in late 

adulthood. Even examination of the few longitudinal data points available for executive 

function cannot provide clarification: both modest increases (.52 to .61) and modest 

decreases (.52 to .43) in heritability estimates for measures of executive function are 

reported from wave 2 (mean age 72.7) to wave 3 (mean age 76.6) of the National Heart 

Lung Blood Institute twin study (Lessov-Schlagger et al, 2007).

Thus, the meta-analyses revealed some evidence for all three possible patterns of differences 

in heritability with age (increase, stability, decrease), and the patterns varied distinctly by 

cognitive domain. Interestingly, three domains of cognitive function that have been 

associated with structural changes in specific brain regions (Raz, 2000) – general memory, 

working memory, and executive functioning – show patterns of modestly increasing 

heritability with age, at some point in the lifespan. It is possible that, as Hamilton (1966) 

suggested, increasing heritability results from the accumulation with age of deleterious 

genetic mutations that impact physiological function within the brain. The APOE risk 

haplotype e4 may have maximal impacts on dementia risk particularly before age 70 

(Blacker et al., 1997) but has shown broad impacts to multiple domains of cognitive aging 

(Davies et al., 2014; Finkel et al., 2011; Reynolds et al., 2006). Other genes evaluated 

likewise do not appear to be associated particularly with narrow cognitive domains, such as 

SORL1 (e.g., episodic memory, spatial ability (Reynolds et al., 2013), or BDNF (e.g., 

hippocampal-dependent memory processes, executive functioning, global cognitive 

functioning; see (Honea et al., 2013; Kambeitz et al., 2012; Mandelman & Grigorenko, 

2012)). Verbal ability, spatial ability, perceptual speed, and possibly executive functioning 

show patterns of declining heritability, generally after age 60. With respect to these 

components of cognition, then, it appears that twins continue to “grow apart” in late 

adulthood as McCartney et al. (1990) suggested: individual life choices and experiences 

result in decreasing twin similarity and decreasing heritability.
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Overstating the case for heritable influences? Missing heritability

Measured gene approaches such as GWAS, which assay millions of single nucleotide 

polymorphisms scattered across the genome, have brought about alternative methods to twin 

and family designs. For example, the Genome-wide Complex Trait Analysis (GCTA) 

estimates the aggregate contribution of SNP variants across the genome to individual 

differences in a phenotype, summarized as a narrow-sense SNP-based heritability (Davies et 

al., 2011; Deary et al., 2012). While the GCTA approach is conceptually similar to family-

based biometrical approaches, the GCTA estimates the genetic relatedness (i.e., genomic 

relationship matrix; GRM) among otherwise unrelated individuals. In other words, even 

genetically unrelated individuals can coincidentally share some gene variants, though the 

average genetic relatedness in an unrelated sample is zero (Yang et al., 2011).

GCTA estimates of SNP-based heritability for fluid and crystalized abilities have been 

estimated at .51 and .40, respectively, based upon GWAS data collected on 3511 unrelated 

persons from the CAGES consortium ranging in age from 44 to 93 years (Davies, et al., 

2011). Moreover, 24% of the cognitive change between childhood (11 years) and older adult 

cognitive performance at ages 65 and older (residual based) is accounted for by common 

SNPs as measured using GWA SNP data on a subset of 1940 persons from the CAGES 

consortium (Deary, et al., 2012). Reanalysis of three of the CAGES consortium samples 

(N=1804) applied GCTA using a genome-scan approach to estimate the contribution of 

about 500k autosomal SNPs, reporting “population-sense heritabilities (h2
ps)” of .36 for 

crystalized ability, .19 for fluid abilities, and .26 for cognitive change (Rowe et al., 2013). 

The range of SNP-based heritability estimates across the two studies for fluid ability is 

attributed to broader age composition of the larger CAGES sample set (Davies, et al., 

2011)versus the older ages represented in the reduced sample set for which the genome scan 

was applied (Rowe, et al., 2013). Nonetheless, these SNP-based heritability estimates for 

fluid and crystalized ability measures are lower than our meta-analytic heritability estimates, 

i.e., 56-62% at the peak for verbal, spatial and speed traits (see Figures 1, 2, and 4). This 

difference is broadly consistent with GCTA estimates of heritability versus twin-based 

estimates in childhood within the same sample: SNP-based heritability (about .20-.30) 

versus traditional twin samples (.40 - .60) were substantial though lower (Plomin, Haworth, 

et al., 2013; Trzaskowski et al., 2013).

Moreover, recent investigations of Alzheimer Disease (AD), for which there has been heavy 

emphasis on consistency of phenotyping, and for which GWAS have paid off relatively more 

handsomely than in other domains, have reports of ‘missing heritability’. SNP-based 

heritability estimation suggests genetic influences explain approximately 33% of the total 

liability or risk for AD: APOE itself accounts for 6%, while nine extant identified and 

confirmed genes account for 2% (ABCA7, BIN1, CD33, CD2AP, CLU, CR1, MS4A6A, 

MS4A4E, PICALM) (Ridge et al., 2013); additional candidates have been identified based 

on a meta-analysis of GWAS studies with over 74000 individuals (Lambert et al., 2013). Yet, 

the median twin-based heritability for AD is higher at about 57% (see Gatz et al., 2014; 

Reynolds & Phillips, under review, 2014). Likewise, a study of the HRS sample suggested 

similar findings when evaluating cognitive functioning constructed from telephone screening 

performance based on the MMSE plus an episodic verbal recall memory task (C. Zhang & 
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Pierce, 2014). The SNP-based heritability ranged from 15-33% on overall performance 

while for longitudinal linear decline, SNP heritability was far lower at about 5%. One can 

debate the linearity vs. nonlinearity of the trajectory shape as to whether the heritability of 

the slope was underestimated (c.f. Reynolds, et al., 2005), but these findings coupled with 

the findings for AD collectively suggest that the SNP heritability fails to approach 

heritability values from twin studies. Thus, if up to 33% of AD risk or cognitive functioning 

is explained by common variants, of which only a fraction is due to identified candidates, 

more work remains to identify additional candidates and to ‘close’ the gap between the twin-

based and SNP-based heritability estimates.

There are a number of explanations proposed for this gap between SNP heritability estimates 

and twin- or family-based heritability estimates. These include the idea that GWAS does not, 

by design, capture: other structural variants beyond SNPs, rare variants, poorly tagged or 

multiple independent variants, dominance and epistasis (GxG interaction), epigenetics, GE 

interplay in the form of gene-environment correlation (e.g., active niche-picking), and GxE1 

interaction (e.g., see Bloom et al., 2013; Eichler et al., 2010; Gusev et al., 2013; Hemani et 

al., 2013; Kaprio, 2012; Koch, 2014; Liu & Leal, 2012; Maher, 2008; Plomin, 2013; G. 

Zhang et al., 2012; Zuk et al., 2012). Hence, while these factors likely play a role in 

contributing to human traits such as cognitive abilities they may not be accounted for when 

applying GCTA and similar methods. We emphasize that layered on top of these discussions 

must be the recognition that any of these explanations may show age-related dependencies.

Among models proposed to evaluate or uncover missing heritability, we consider the 

limiting pathways model and the local (vs genome-wide) heritability approach.

Limiting pathways model

The limiting pathway model (LP; Zuk, et al., 2012) suggests that heritability based on twin 

studies may contribute to ‘phantom heritability’ in cases where gene pathways interact, i.e., 

where there is epistasis. Indeed, the greater the number of gene pathways that hypothetically 

contribute, the greater the occurrence of phantom heritability (Zuk, et al., 2012). According 

to their models and simulations, phantom heritability in principle can occur even when 

patterns of twin correlations suggest C and may even be higher where both C and D 

influence a trait (Zuk, et al., 2012). Alternate designs, such as GCTA, offer lower bound 

narrow heritability estimates. Hence, the authors of the LP model propose that studies focus 

on individuals from isolate populations which may provide a more reasonable solution using 

IBD (identity-by-decent) sharing (Zuk, et al., 2012).However, reliance on isolate populations 

presents another set of issues in terms of trait phenomena and generalizability, among others. 

Moreover, while emerging work supports the hypothesis that epistasis may be more common 

than previously realized (Bloom, et al., 2013), findings contrary to that of the LP model are 

appearing (e.g., Maki-Tanila & Hill, 2014). Indeed, the quantification of epistasis represents 

a challenge in that even if it is substantial, epistatic effects may contribute largely to additive 

genetic variance (Maki-Tanila & Hill, 2014).

1We note that while others refer to GxE as contributing to the missing heritability presumably this refers to GxC where C refers to the 
common environment, as Gx (nonshared) E leads to dissimilarity amongst relatives.
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‘Local’ and genome-wide heritability

Models that aggregate effects across all possible contributing variants at particular loci, i.e., 

“local” heritability or loci-based heritability, as well as in aggregate across regions or the 

entire genome collectively, may provide avenues for discerning particular gene or regional 

contributions to an outcome (Gusev, et al., 2013; Rowe, et al., 2013) and inform the missing 

heritability debate. Via simulation and application to nine disease traits, Gusev and 

colleagues (Gusev, et al., 2013) considered the contribution of the most significant GWAS 

SNP at a locus (h2
GWAS), the contribution of all significant SNPs at a locus based on 

conditional linear modeling (h2
GWAS,Joint), the contribution of all SNPs at a locus 

constructed using the standard variance component approach (h2
g; i.e., using GCTA), and 

the contribution of SNPs at a locus using a variance component adjusted for linkage 

disequilibrium (LD) (h2
g,LD). Based on simulated genome-wide data modeled on the 

Wellcome Trust Case Control Consortium WTCCC1:CAD cohort, findings supported the 

conclusion that h2
g was approximately unbiased if the causal variants were randomly 

sampled (i.e., not weighted towards more common variants) but clearly biased in both 

directions if the causal variants were not randomly sampled and included more common 

variants (e.g., returning estimates that were 62% to110% of the true heritability value).In 

comparison, while h2
g,LD was routinely downward biased (returning estimates at 94-95% of 

the true value),it was less perturbed at the sampling of the causal variants. Furthermore, this 

LD-residualized variance components approach (h2
g,LD) was also advocated in genome-

wide and local-heritability contexts with the h2
g,LD explaining about 29-30% more heritable 

variance. Indeed, comparisons of the aforementioned heritability estimators at the local level 

at known GWAS loci for the selected traits suggested the presence of additional common 

SNPs while at the genome-wide level the additional low frequency (rare) SNPs contribute to 

the complex disease traits evaluated. With respect to the missing heritability question, this 

work suggests that even when considering an additive model, additional heritability may be 

uncovered when adjusting the standard variance component model (GCTA) for LD. Relevant 

work focused on rare variants suggests, however, that while a portion of rare variant 

contributions to a trait may be captured in aggregate analyses, underestimation may be 

routine due to bi-directional effects of causal variants and presence of noncausal variants 

(Liu & Leal, 2012). Hence, aggregate methods may effectively lose some signal from rare 

variants, which may otherwise be highly penetrant and individually impactful.

Overall, as GWAS chips have become denser, sample sizes have become larger, and 

considerations of genetic architecture have advanced, the missing heritability gap has 

narrowed across a number of traits (Gusev, et al., 2013; van Dongen & Boomsma, 2013). 

Moreover, with respect to cognition, when considering the same measures of cognitive 

ability at the same ages (in childhood), methods such as GCTA have explained about two-

thirds of the heritability estimated from twin models within the same sample (Plomin, 

Haworth, et al., 2013). However, across the approaches and models undertaken to evaluate 

this gap few to none have considered that genetic contributions, and hence heritability, may 

differ across the lifespan. Recognition of this may provide an insight into possible 

mechanisms that contribute to the gap in heritability estimates particularly for cognitive 

ability and aging.
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Meta-analysis of MZ/DZ correlation ratios

If the missing heritability gap is due to unaccounted for nonadditivity (dominance and 

epistasis), and in the absence of shared environment (C=0), this should be evident in ratios 

of MZ/DZ correlations that exceed 2.0 (see equations 1-3 in Box 1.1). However, we note that 

MZ-DZ correlation ratios that exceed 4.0, which does not conform to a traditional ADE 

model, could result from intensive gene-environment interplay, e.g., active gene-

environment correlational (rGE) processes such as niche-picking whereby environments are 

selected that suit genetically influenced traits (Plomin, DeFries, et al., 2013; Scarr & 

McCartney, 1983). As described above, GE correlation is theorized to explain the increasing 

heritability for general cognitive ability with age from childhood into adulthood that peaks 

in young-old age before apparently declining (Bouchard, 2013; Finkel & Reynolds, 2009; 

Plomin, DeFries, et al., 2013). Hence, for example, individuals may choose (or not) higher 

educational, occupational and leisure time environments, and spouses, conducive to their 

partly heritable abilities that may further bolster or moderate their abilities. Such an 

occurrence would therefore drive increasing MZ similarity over age relative to DZ similarity 

(c.f. McCartney, et al., 1990). Thus, GE processes could in principle result in increasing 

MZ/DZ correlation ratios such that they exceed 4.0. A further evaluation of twin correlation 

ratios, over age, may point to processes that contribute to missing heritability gap. That is, 

the missing heritability gap may narrow or widen with age.

We conducted a meta-analysis of log transformed MZ/DZ ratios of intraclass correlations 

based on Sham (1998) for each of the 6 cognitive domains represented in the collected twin 

data similar to that described above for the meta-analysis of heritability estimates. A total of 

103 twin correlations were reported across domains. We dropped two negative ratio values 

from analysis resulting from small negative correlations among DZ pairs (-.04 to -.11) given 

that these ratios did not conform to expected values (Sham, 1998). With an analysis sample 

of 101 correlations across domains and up to 21 ratio values within a domain, we limited 

covariates to age and age-squared, with age centered at the median age of 65 years. For 

executive functioning with only 8 data points, we simply adjusted for age. Analyses 

accounted for sampling variance using the inverse number of twin pairs reported given that 

the standard error of a ratio of independent correlations is not yet established. Random 

effects at the study level were nonsignificant (median=4.18%, range 0.00 to 16.75%, all p>.

30), but were retained in the model. Sensitivity analyses suggested that study dependency 

impacted confidence intervals compared to point estimates (not shown). Results suggest that 

at age 65 (the centering value), ratios tilt towards ADE models especially for verbal (see 

Table 2, Intercept effect). For general memory, an ACE model was supported based on the 

fixed effect estimate, although the confidence interval does not rule out ADE. With respect 

to perceptual speed, the answer is essentially equivocal as to ACE or ADE with a large 

confidence interval although the point estimate lies just over the ADE boundary. For the 

remaining traits, particularly working memory, as well as executive functioning, and spatial, 

the estimates favor an ADE model, although the confidence intervals do not exclude an ACE 

model. The age covariates were not individually significant (see Table 2).However, together 

the age covariates accounted for noticeable variance across domains (median=14.70%, range 

= 1.64% to 19.92%), with spatial ability reporting the smallest effect and executive 
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functioning the largest. Model fit statistics and information criteria are reported in 

Supplemental Table 3.

Figure 7 presents the individual ratios, log transformed, with the corresponding fixed effect 

estimate and its confidence interval from the age-adjusted model described above. The forest 

plots suggest that among the evident heterogeneity of individual ratios, the ratios tend to 

increase in magnitude with age, up to about age 65, perhaps most noticeably for verbal. The 

exception is perceptual speed, wherein the ratios tend to decrease with age and cluster 

towards an ACE model. We note that some of the individual ratio estimates show values 

exceeding the expected upper boundary of 4.0, inconsistent with an ADE model. This is 

predominantly the case in studies with average ages between 60 and 75. This outcome is 

particularly interesting in light of accelerating declines that may be observed at 

approximately 65 years (see Finkel et al., 2003; Reynolds, et al., 2005). Moreover, after age 

75, there are no studies reporting ratio values that exceed 4.0.Hence, peak GE correlational 

processes may occur around this age before increasing frailty sets and when older adults are 

still generally able enough to take advantage of their increased leisure time after retirement 

to select environments that impact verbal ability; however, later in adulthood, as frailty 

increases and options become more limited, GxE interaction may become more salient 

(Reynolds et al., 2014). Moreover, increasing evidence for ADE comes with increasing 

distance from rearing environments; hence rearing environment becomes a more distal 

impact while proximal environmental influences (even from mid-adulthood) remain strong.

We would be remiss, however, in not pointing out that the limited number of observations 

for analysis, and hence power, also hampered consideration of other potential moderators 

(e.g., cohort, country, etc.) beyond these initial and modest examinations of age differences. 

Yet, it is interesting to consider that even in light of the circumstance such that epistatic 

effects may contribute mainly to additive genetic variance (Maki-Tanila & Hill, 2014), 

potential shifts in the relative nonadditive contributions, or GE interplay, may become 

evident across time. Of course, large longitudinal twin designs would more appropriately 

and powerfully address these potential circumstances. AE is the typical biometrical model 

presumed based on twin correlation patterns across a number of disparate domains (i.e., M 
[rmz-2rdz] ∼ 0.003, SD=.20; (Hill et al., 2008). However, the possibly shifting patterns we 

observed in the potential contributions of C or D (and not just simplified to AE) suggest that 

one should consider development a life-long process, i.e., one biometrical model may not 

explain the whole of the adult lifespan within or across cognitive domains let alone other 

psychological and biomedical traits.

Summary and conclusions

While the etiology of cognitive abilities and cognitive aging has enjoyed much attention in 

the literature, much of that attention has focused on broad factors, principally general 

cognitive ability. In the current review, we considered age trends in heritability of specific 

cognitive abilities, as well as the profile of genetic and environmental factors contributing to 

cognitive aging to address ‘missing heritability’. Our findings based upon evaluating 27 

reports in the literature suggest that age-sensitive domains – general memory, working 

memory, and executive functioning – show some modest evidence for increasing heritability 
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with age, at least up to age 60, whereas verbal ability, spatial ability, perceptual speed, and 

possibly executive functioning show some evidence for declining heritability, typically after 

age 60. A second meta-analysis considered the gap between twin-based versus SNP-based 

heritability derived from population-based GWAS studies. Specifically, via MZ and DZ twin 

correlation ratios we agnostically re-evaluated biometrical models (ACE, ADE, AE) across 

age and by cognitive domain. Results modestly suggest that nonadditive genetic variance 

may become increasingly important with age, especially for verbal ability. If so, the lower 

SNP-based heritability estimates may result in part from uncaptured nonadditivity. 

Moreover, consistent with longitudinal twin studies of aging, as rearing environment 

becomes a more distal impact, proximal person-specific environmental influences 

strengthen, while increasing genetic variance may be partly a consequence of nonadditive 

genetic influences or possibly GE interplay (Finkel & Reynolds, 2009; Reynolds, et al., 

2005; Reynolds, et al., 2014).Both meta-analyses focused on age, however, other moderators 

may well be important. Cohort factors may be instrumental in lessening or increasing 

individual differences in abilities, and hence heritability estimates may differ as a 

consequence (c.f., Baker et al., 1996; Heath et al., 1985). Access to higher educational and 

occupational opportunities as well as leisure time pursuits are obvious examples, among 

others.

Arguments that findings of twin and family studies have been superseded by newer 

molecular techniques lose sight of the value of twin studies to understanding of etiology 

beyond heritability (van Dongen et al., 2012). Moreover, we suggest from our investigations 

herein that biometrical analysis of twins over the life course may point to dynamic shifts 

from familial/shared environments (C) contributions to non-additive genetic effects (D) 

across development, and indeed GE interplay contributions. It is only by trying to unpack 

missing heritability differences across complementary designs that we may be able to more 

fully evaluate etiologies of stability and change in cognitive functioning across the full 

lifespan. Ideally this would be done using identical phenotyping (Plomin, Haworth, et al., 

2013) and with close attention to developmental periods. Indeed, the value of rich 

phenotyping and opportunities to model GE interplay within a twin context increase 

understanding of genetic and environmental (co)actions (van Dongen, et al., 2012).

That said, we recognize that relying on scaled heritability estimates rather than genetic 

variance–as resorted to by necessity in the meta-analyses of available literature presented—

may obscured iminutions or amplifications of genetic and environmental variance that 

provide clues to genetic and environmental influences (e.g., Reynolds, et al., 2014). 

However, this requires longitudinal studies that would employ continuity and invariance of 

measurement (or the possibility to model latent scale metrics). Although conducting the 

“cradle-to-grave” longitudinal studies that would help elucidate the continuity and 

emergence of genetic and environmental influences across the life course is likely 

unattainable, collaborations among existing studies can provide an approximation. One 

example, the consortium on Interplay of Genes and Environment across Multiple Studies 

(IGEMS; Pedersen et al., 2013), has created a sample of over 17,000 twins aged 25 to 102. 

Consortiums of this nature will be necessary to support a true-life course application of both 

behavior genetic and molecular genetic methods.
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Box 1.1

Genetic contribution to differential cognitive aging patterns: Heritability

Twin and family-based methods aim to uncover etiologies of cognitive traits and rely on 

comparisons of genetic and environmental relatedness to estimate their contributions to 

individual differences (e.g., see Falconer & Mackay, 1996; Plomin, DeFries, et al., 2013; 

Sham, 1998; Visscher et al., 2008). A biometrical model of cognitive performance 

describes etiological factors that contribute to individual differences or variance in 

cognitive performance (VCOG), including genetic factors that act additively (VA), genetic 

factors that act non-additively such as dominance (VD), shared rearing or common 

environmental factors (VC), and nonshared unique environmental experiences plus any 

measurement error (VE) (c.f. Falconer & Mackay, 1996; Plomin, DeFries, et al., 2013; 

Sham, 1998):

[1a]

Moreover, the relative genetic and environmental contributions can be estimated relative 

to the total variance in cognitive performance:

[1b]

and, restated as:

[1c]

Broad-sense heritability (h2
B) indexes the proportion of variance in cognitive 

performance that is due to additive and nonadditive genetic variances while narrow-sense 

heritability (h2
N) indexes the proportion of variance in cognitive performance scores that 

is simply due to additive genetic variance (Falconer & Mackay, 1996; Plomin, DeFries, et 

al., 2013; Sham, 1998):

To estimate these components of variances using twins reared together, the covariance 

(C) or correlation (R) among each twin's cognitive performance score with their cotwin's 

cognitive performance score are computed for MZ twin pairs (CMZ, RMZ) and for DZ 

twin pairs (CDZ, RDZ). For MZ twins reared together their cognitive scores covary or 

correlate because they are genetically identical with respect to segregating genes, and 

hence for additive and nonadditive genetic influences, in addition to a common, indeed 

shared, rearing environment (Falconer & Mackay, 1996; Plomin, DeFries, et al., 2013; 

Sham, 1998):
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[2a]

[2b]

For DZ twins reared together, they covary or correlate with one another for cognitive 

performance because on average they share half of their segregating genes, ¼ of 

dominance deviations, plus a common (shared) rearing environment (Falconer & 

Mackay, 1996; Plomin, DeFries, et al., 2013; Sham, 1998):

[3a]

[3b]

By comparing the difference in the covariances, or correlations, we may evaluate the 

contributions of genetic versus environmental influences, under the assumptions of equal 

environments and random mating. However, we have too few pieces of information in 

data from twins reared together to estimate both VD, which tends to increase MZ 

similarity relative to DZ similarity, and VC, which increases both MZ and DZ similarity. 

Hence researchers must choose which of these to estimate, for example, by comparing 

the ratio of MZ twins to DZ twin correlations RMZ/ RDZ (Sham, 1998). Under a scenario 

with simply additive genetic contributions to pair similarity this ratio would be exactly 

equal to 2.0 since MZ twins are twice as similar than DZ twins with respect to 

segregating genes, 100% vs 50%. To the extent that dominance contributes to pair 

similarity the ratio of correlations would exceed 2.0 and VD instead of VC can be 

estimated. However, if common environmental experiences were the sole contributor to 

pair similarity, both MZ and DZ, the ratio of correlations would be 1.0; hence for ratios 

between 1.0 and 2.0 VC can be estimated in place of VD. Sham (1998) notes that ratios 

below 1.0 or above 4.0 do not conform to traditional biometrical models and in such 

cases neither ACE nor ADE models should therefore be fitted (cf. equations 2b and 3b 

above).

Software packages such as OpenMx (Boker, et al., 2011) or MPlus (Muthén & Muthén, 

1998-2012; Prescott, 2004) or similar are used to fit biometrical models such as that 

described in equation 1a to evaluate genetic and environmental contributions to individual 

differences. The precision of the variance components estimates are typically calculated 

within software packages; however, approximate se's for heritability, broad and narrow, 

can be estimated from intraclass correlations and sample sizes depending on the study 

design (e.g., Sham, 1998).
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It should be noted that in longitudinal studies, multivariate extensions of the described 

biometrical model are applied, and unscaled genetic and environmental variance 

estimates are emphasized (i.e., Va, VD, VC, Ve) (e.g., McArdle, et al., 1998). Considering 

unscaled or ‘raw’ variances allows one to evaluate whether genetic and environmental 

influences are accumulating or declining with age in tandem, or differentially, which may 

otherwise be obscured if relying on heritability and environmentality estimates. Indeed, 

unscaled variances may provide clues about potential genetic and environmental (co) 

actions (e.g., see Reynolds, et al., 2005; Reynolds, et al., 2014; Reynolds et al., 2007).
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Figure 1. 
Heritability of Verbal Ability: Estimates and expected curve across age.

Reynolds and Finkel Page 19

Neuropsychol Rev. Author manuscript; available in PMC 2017 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Heritability of Spatial Ability: Estimates and expected curve across age.
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Figure 3. 
Heritability of General Memory: Estimates and expected curve across age.
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Figure 4. 
Heritability of Perceptual Speed: Estimates and expected curves across age.
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Figure 5. 
Heritability of Working Memory: Estimates and expected curve across age.
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Figure 6. 
Heritability of Executive Function: Estimates and expected curves across age.
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Figure 7. 
MZ/DZ correlation ratios by study (log transformed) with overall estimate and 95% CI.

Note. Each ratio was transformed accordingly: ln(rMZ/rDZ +1). The blue circles represent 

study ratio values scaled relative to pair sample size. The red diamond represents the overall 

fixed effect estimate with a 95% CI. The solid gray vertical line at approximately 1.10 

natural log units is equivalent to a raw ratio of 2.0. Dashed gray vertical lines indicate 

boundaries in natural log units equivalent to raw ratios of 1.0 and 4.0, respectively.
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