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A redox-neutral catechol synthesis
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Ubiquitous tyrosinase catalyses the aerobic oxidation of phenols to catechols through

the binuclear copper centres. Here, inspired by the Fischer indole synthesis, we report an

iridium-catalysed tyrosinase-like approach to catechols, employing an oxyacetamide-directed

C–H hydroxylation on phenols. This method achieves one-step, redox-neutral synthesis of

catechols with diverse substituent groups under mild conditions. Mechanistic studies confirm

that the directing group (DG) oxyacetamide acts as the oxygen source. This strategy has

been applied to the synthesis of different important catechols with fluorescent property and

bioactivity from the corresponding phenols. Finally, our method also provides a convenient

route to 18O-labelled catechols using 18O-labelled acetic acid.
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C
atechols are essential bioactive molecules in human
metabolism and normal physiological activities, acting
as effective structural units in many bronchodilator,

adrenergic, anti-parkinsonian and anti-hypertensive drugs
(Fig. 1a)1. For example, L-dopa is a well-known drug used for
the treatment of Parkinson’s disease and is converted from
L-tyrosine via catalysis by tyrosine hydroxylase in the central
nervous system under mild conditions. The dopamine system
plays a central role in several significant medical conditions,
including attention deficit hyperactivity disorder (ADHD),
schizophrenia and addictions2. On the other hand, estradiol is
important in the regulation of the female oestrous and menstrual
reproductive cycles3.

Synthesis of catechols usually requires lengthy steps and harsh
reaction conditions, with low selectivity and conversion rates4.
To develop efficient routes to synthesize catechols, we aim to
construct a new C–O bond at the ortho position of phenols
through directed C–H bond oxygenation. The catalytic
transformation of the C–O bond from benzene to phenol is
considered to be one of the greatest challenges in catalytic
chemistry5. Tremendous progress has been achieved in directed
C–H hydroxylation/oxygenation by metal catalysis with O2

(refs 6–9), H2O (refs 10–12), peroxides13–18 or the in situ
hydrolysis of newly installed acyloxy groups as oxygen sources
such as OAc, OTFA and so on refs 19–30 (Fig. 1b). Notably,
Yu and colleagues6 first developed a versatile Pd-catalysed ortho-
hydroxylation of benzoic acids at 1 atm of O2 or air under non-
acidic conditions. Gevorgyan and colleagues31 recently reported
an ingenious silanol-directed Pd-catalysed C–H oxygenation of
phenols followed by desilylation of the silacyle with
tetrabutylammonium fluoride (TBAF), furnishing catechols with
PhI(OAc)2 as the oxygen source. Rao and colleagues32

demonstrated the efficient ruthenium(II)- and palladium(II)-
catalysed C–H hydroxylation of aryl carbamates and a subsequent
deprotection to afford catechols in good yields. These pioneering
works used TFA/TFAA as the oxygen source26.

We have recently reported a number of metal-catalysed C–H
bond functionalizations based on a powerful directing group,
-O–NHAc (oxyacetamide), which can act as an internal oxidant
to yield versatile phenol derivatives33,34. A variety of substituted
substrates with -O–NHAc directing group were easily prepared
from phenols or aryl boronic acid compounds35–38. Inspired
by the classic Fischer indole synthesis39–41, we hypothesized that
catechols would be furnished from N-phenoxyacetamides
provided that the acetamide group could function as an
intramolecular oxygen source. By choosing appropriate metal
catalysts, the acetamide group could function as a directing
group, an internal oxidant and an oxygen source simultaneously
(Fig. 1c)38,42–45. This design would avoid the need for an external
oxidant, which could be detrimental to the fragile polyphenols.
Notably, seminar reports from the Cheung and Buchwald46,
and Zhao and colleagues47 clearly established that the acetamide
group could participate in C–O bond formation.

Herein, we report an iridium-catalysed, one-step, mild and
redox-neutral synthesis of catechols from acetamide-protected
phenols, employing a bioinspired intramolecular oxygen transfer
strategy.

Results
Model studies. We first explored Zn-, Al-, Fe-, Cu-, Pd- and
Ru-catalysed systems to N-phenoxyacetamides (1a). Unfortunately,
the target product (2a) was not detected. The same result was
shown in the common Rh-catalysed system for -O–NHAc
(Table 1, entries 1–10 and Supplementary Table 1). Considering
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Figure 1 | A new approach to catechol synthesis inspired by Fischer indole synthesis. (a) Important catechols in biology and medicine. (b) Previous

work on catechol synthesis. (c) Our design inspired by Fischer indole synthesis.
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the design of the internal oxidation pathway, we made further
attempts using other metal catalysts in the absence of an external
oxidant. Gratifyingly, using 5 mol% [Cp*IrCl2]2 as catalyst and 2
equiv. of di-tert-butyl peroxide (DTBP) as a possible oxygen
source and heating in MeOH at 70 �C for 12 h, the target product
catechol 2a was obtained in 25% yield (Table 1, entry 12). Con-
currently, a mixture of phenol byproducts from the self-decom-
position of N-phenoxyacetamides was detected. According to the
literature and our past experience, the reaction temperature and
acid–alkali environment are important factors in the self-decom-
position of N-phenoxyacetamides. It was surprising to find that
target product was synthesized in the absence of DTBP when one
equivalent of AcOH was added (Table 1, entry 13). Lowering the
temperature greatly improved the yield. At room temperature, the
reaction proceeded to give 67% yield (Table 1, entry 14). Next,
various acids and alkalis were tested to improve the yield. As a
whole, acids were conducive to this reaction, whereas alkalis were
not. Malonic acid was preferred, with a 95% gas chromatography
(GC) yield and a 92% isolated yield (Table 1, entry 19). Bro-
moacetic acid was slightly inferior (Table 1, entry 20), whereas
HCOOH, TFA and TFA/TFAA failed to afford the product
(Table 1, entries 18, 21–22). When alkali was added, no product
was observed (Table 1, entry 11). In the absence of [Cp*IrCl2]2,
no product was detected (Table 1, entry 23). In addition, there
was no distinction under N2, O2 and air as the reaction envir-
onment. Ultimately, optimal reaction conditions to carry the
ortho-hydroxylation are: 5 mol% [Cp*IrCl2]2 and 2.5 equiv. of

CH2(COOH)2 in MeOH at room temperature in air with no
external oxidant.

Scope of Ir-catalysed ortho-hydroxylation. The scope of the
one-step neutral ortho-hydroxylation from N-phenoxyacetamides
1 to obtain catechols 2 was investigated (Table 2). Significantly,
electron-neutral and electron-rich substituents such as Me, Et, tBu
and OMe groups (2a–2e, 2o and 2p), all afforded excellent selectivity
and good yields. The hydroxylation of substrates with electron-
withdrawing substituents such as COOH, COOMe and halogen
(F, Cl, Br and I with good yield) were also well tolerated (2f–2n).
Ortho-, meta- and para-substituents on N-phenoxyacetamides
provided similarly good yields. Remarkably, meta- and para-
substituents on N-phenoxyacetamides shared the same products.
This finding showed a good selectivity of hydroxylation in the
ortho position, which was far away from the meta-substituents
(2c and 2d, 2j and 2k). In particular, the ortho-ethyl substituent
substrate showed C–H activation on the aromatic ring rather than
the aliphatic chain (2e).

The synthesis of fluorescent and bioactive catechols. Our
method provided the possibility of one-step synthesis of
complicated catechols (Table 3). Recently, we reported a new
method to afford different fluorescent heteroarylated phenols by
N-phenoxyacetamides34. When ortho-heteroarylated N-
phenoxyacetamide 1u was subject to the standard ortho-
hydroxylation conditions, the desired product 2-(2,3-

Table 1 | Screening of reaction conditions.

O

H

Catalyst
Additive, Solvent
Oxygen source

T

OH

OH

1a 2a

N
H

O

Entry Catalyst* Additive Solvent O source T (�C) % yieldw

1 ZnCl2 2.5 eq. AcOH Dioxane — 80/r.t. ND
2 AlCl3 2.5 eq. AcOH Toluene — 80/r.t. ND
3 FeCl3 2.5 eq. AcOH MeOH — 80/r.t. ND
4 TsOH — MeOH — 80/r.t. ND
5 Pd(OAc)2 2 eq. KOAc/1 eq. BQ DMA 1 atm O2 90 ND
6 Pd(OAc)2 2 eq. PhI(OAc)2 PhMe PhI(OAc)2 90 ND
7 [Ru(p-cymene)Cl2]2 2 eq. K2S2O8 TFA/TFAA TFA/TFAA 80 ND
8 Pd(OAc)2 2 eq. K2S2O8 TFA/TFAA TFA/TFAA 80/r.t. ND
9 Pd(OAc)2 10 mol% PPh3 DCE 1.2 eq. oxone 90 ND
10 [Cp*RhCl2]2 — MeOH 2 eq. DTBP 70 ND
11 [Cp*IrCl2]2 2 eq. KOAc MeOH 2 eq. DTBP 70 ND
12 [Cp*IrCl2]2 — MeOH 2 eq. DTBP 70 25
13 [Cp*IrCl2]2 2.5 eq. AcOH MeOH — 70 30
14 [Cp*IrCl2]2 2.5 eq. AcOH MeOH — r.t. 67
15 [IrCl(COD)]2 2.5 eq. AcOH MeOH — 70/r.t. ND
16 IrCl3.H2O 2.5 eq. AcOH MeOH — 70/r.t. ND
17 [Ir(COD)OMe]2 2.5 eq. AcOH MeOH — 70/r.t. ND
18 [Cp*IrCl2]2 2.5 eq. HCOOH MeOH — r.t. ND
19 [Cp*IrCl2]2 2.5 eq. CH2(COOH)2 MeOH — r.t. 92
20 [Cp*IrCl2]2 2.5 eq. CH2BrCOOH MeOH — r.t. 75
21 [Cp*IrCl2]2 2.5 eq. TFA MeOH — r.t. ND
22 [Cp*IrCl2]2 2.5 eq. TFA/TFAA MeOH — r.t. ND
23 — 2.5 eq. CH2(COOH)2 MeOH — r.t. ND

ND, not detected; r.t., room temperature.
*Reaction conditions: 0.2 mmol 1a, 5% mol catalyst, X mol additive in 0.1 M solvent under N2.
wIsolated yield.
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dihydroxyphenyl)benzothiazole derivative 2u with green
fluorescence was obtained in 76% yield. Our method could be a
general strategy to prepare fluorescent dihydroxyl heterocycle
scaffold48,49. Next, we prepared the ONHAc-containing
coumarins, the 7,8-dihydroxyl products 2v and 2w, with
complete chemoselectivity in 87% and 81% yield, respectively.
The product 7,8-dithydroxycoumarin 2v was commonly called
Daphnetin and is an important natural product from Zushima
with good anti-inflammatory and anti-oxidant activities50,51. Our
reaction could provide a powerful tool in the chemical synthesis

of Daphnetin derivatives. Finally, bioactive catechols natural
products such as L-dopa and estradiol were tested under the
standard reaction conditions, the protected L-dopa 2x, protected
dopamine 2y and estradiol 2z were successfully obtained directly
with high selectivity and excellent yields, highlighting the method’s
mild conditions,excellent functional group tolerance and selectivity.

Discussion
To understand the reaction mechanism, we first attempted to
identify the oxygen source of the catechol products. With the

Table 2 | Scope of Ir-catalysed ortho-hydroxylation*.
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*Reaction conditions: 0.2 mmol 1, 5 mol% [Cp*IrCl2]2, 2.5 equiv. CH2(COOH)2 in 0.1 M MeOH at room temperature in air with no external oxidant.
wIsolated yield.
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standard condition, using 18O-MeOH as the solvent (Fig. 2a,
eq. 1), the product detected by high resolution mass spectroscopy
(HRMS) did not show the 18O-labelled catechol, which meant the
oxygen of the product did not come from the solvent. After that,
50 ml 18O-H2O was added under the standard conditions (Fig. 2a,
eq. 2). The results showed that the addition of water had no effect

on the yield of catechol, but still no 18O-labelled product could be
detected. It seemed as though that the oxygen of catechol did not
come from the water that might be generated in the reaction.
When 18O-labelled acetic acid (CH3C18O18OH) was added
instead of malonic acid (Fig. 2a, eq. 3), the 18O-labelled product
was still not detected, which showed that the acid was also not the

Table 3 | Scope of fluorescent and bioactive catechols.
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*Reaction conditions: 0.2 mmol 1, 5 mol% [Cp*IrCl2]2, 2.5 equiv CH2(COOH)2 in 0.1 M MeOH at room temperature in air for 16 h.
wIsolated yield.
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oxygen source of the reaction. Based on the aforementioned
results, we inferred that the oxygen of the product could only
come from the carbonyl of the -O–NHAc group. Finally, we
synthesized the substrate PhONHAc with the carbonyl labelled
with 18O. Under the standard conditions, we obtained the
catechol with one 18O-labelled hydroxyl (Fig. 2a, eq. 4). The 18O-
labelled substrate and product were confirmed by HRMS (Fig. 3),
suggesting that the reaction was an intramolecular process and
that the carbonyl of the -O–NHAc group was the oxygen source.
This method may be a powerful tool to access a variety of
18O-labelled catechols, which could then be used to investigate
the metabolic pathways of catechol-derived bioactive compounds.

To probe the active intermediate in the reaction, we treated the
substrate N-phenoxyacetamide (1 equiv.) and [Cp*IrCl2]2 (0.5
equiv.) with Ag2CO3 (2 equiv.) in MeCN at room temperature for
10 h, and the five-membered iridium species 3 was obtained in
95% yield. The structure of complex 3 was confirmed by nuclear
magnetic resonance spectroscopy, HRMS and X-ray crystal-
lography. However, no product was obtained when 2.5 equiv.
malonic acid was added in MeOH (Fig. 2c), implying that species
3 is not an active intermediate of the reaction. Furthermore,
N-methyl-substituted phenoxyacetamide 1q did not give the
desired product (Fig. 2d, eq. 5) and most of the starting material
was recovered. However, the reaction proceeded smoothly when
the acetamide was replaced by hexanamide (Fig. 2d, eq. 6),
highlighting the important role of the N–H bond.

We proposed that the seven-membered [IrIII] species A might
be the active intermediate, which underwent the reductive

elimination process to form a C–O bond and afforded [IrI]
complex B (Fig. 4). Subsequently, the O–N bond oxidatively
added to the iridium complex B, generating the [IrIII] complex C.
Protonation of the intermediate C regenerated the original
catalyst and the imine compound D, which would be hydrolysed
to catechols.

The acid might play several roles such as preventing the
generation of inactive intermediate 3, consuming the byproduct
ammonia and protonating the intermediate C. Further theoretical
calculations revealed that when acid additives were introduced,
the free energy of species A underwent a significant reduction
from 22.4 to 2.1 kcal mol� 1, highlighting the crucial role of acids
in stabling species A and protonation (Supplementary Fig. 1).
Mass spectrometric experiments were carried out to explore the
interaction between [Cp*IrCl2]2 and different acids (HCOOH,
CH2COOH and CH2(COOH)2) (Supplementary Fig. 2).
Interestingly, in the Ir/HCOOH/MeOH system, HCOOH was
detected losing a molecule CO2 fragment when interacted with
[Cp*IrCl2]2, whereas CH2COOH or CH2(COOH)2 dissociated
one molecule CH3COOH and CH2(COOH)2, respectively, by
collision-induced dissociation. This result might explain why
HCOOH was ineffective in promoting the reaction.

In summary, we have described the first examples of an
iridium-catalysed synthesis of catechols from phenols through
the formation of N-phenoxyacetamide intermediates. This
bio-inspired route allows efficient, selective synthesis of
catechols, which are useful building blocks for amino acids and
pharmaceuticals. Our method also provides a convenient
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Figure 2 | Mechanistic study. (a) Isotope labelling experiments. (b) Synthesis of 18O-labelled catechols. (c) Seeking the active intermediate. (d) The

importance of the N–H bond in the substrates.
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route to 18O-labelled catechols using 18O-labelled acetic acid.
Further applications of the Ir/malonic acid/MeOH system and
mechanistic studies of the reaction are under investigation and
will be reported in due course.

Methods
Materials. For NMR spectra of compounds in this study, see Supplementary
Figs 1–27. For the crystallographic data of compound 3, see Supplementary

Tables 1–2 and Supplementary Fig. 28. For the representative experimental pro-
cedures and analytic data of compounds synthesized, see Supplementary Methods.

General procedure (2a). N-phenoxyacetamide (1) (0.2 mmol), [Cp*IrCl2]2

(5 mol%) and CH2(COOH)2 (5.0 mmol) without external oxidant were weighed
into a 10 ml pressure tube, to which was added anhydrous MeOH (1 ml) in a glove
box. The reaction vessel was stirred at room temperature for 10 h in air. The
mixture was then concentrated under vacuum and the residue was purified by
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column chromatography on silica gel with a gradient eluent of petroleum ether and
ethyl acetate to afford the corresponding product.

Data availability. The X-ray crystallographic coordinates for structures reported
in this study have been deposited at the Cambridge Crystallographic Data Centre,
under deposition number CCDC14911482. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.
uk/data_request/cif. The authors declare that all other data supporting the findings
of this study are available within the article and Supplementary Information files,
and also are available from the corresponding author upon reasonable request.
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