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Abstract

During inflammation, leukocytes influx into lung compartments and interact with extracellular 

matrix (ECM). Two ECM components, versican and hyaluronan, increase in a range of lung 

diseases. The interaction of leukocytes with these ECM components controls leukocyte retention 

and accumulation, proliferation, migration, differentiation, and activation as part of the 

inflammatory phase of lung disease. In addition, bronchial epithelial cells from asthmatic children 

co-cultured with human lung fibroblasts generate an ECM that is adherent for monocytes/

macrophages. Macrophages are present in both early and late lung inflammation. Matrix 

metalloproteinase 10 (MMP10) is induced in alveolar macrophages with injury and infection and 

modulates macrophage phenotype and their ability to degrade collagenous ECM components. 

Collectively, studies outlined in this review highlight the importance of specific ECM components 

in the regulation inflammatory events in lung disease. The widespread involvement of these ECM 

components in the pathogenesis of lung inflammation make them attractive candidates for 

therapeutic intervention.
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1. Introduction

The extracellular matrix (ECM) is a critical component of normal lung tissue that not only 

provides structural support for cells and tissue architecture of the airways and lung 

parenchyma, but also is a major effector of cell behavior and fate. Indeed, we now know that 

the ECM has considerable control over cellular function during lung development, 

homeostasis, normal repair, immunity, inflammation, and disease. The airways, blood 

vessels, interlobular septa, and visceral pleura are bordered and embedded in specialized 

ECM structures. As for all visceral organs, the lung ECM consist of two distinct 

compartments. One compartment is the basement membrane (basal lamina), which is a thin, 

organized layer of laminins, type IV collagen, nidogen/entactin, and perlecan, a heparan 

sulfate proteoglycan. Basement membrane is the substratum on which endothelial and 

epithelial cells reside and is well established as a key driver of differentiation and cell 

survival. The second compartment is the interstitium, which is mostly a loose connective 

tissue composed of an array of structural and nonstructural ECM components such as 

fibrillar collagens (e.g., types I and III), elastin, fibronectin, fibrillins, various proteoglycans, 

matricellular proteins (e.g., CCN proteins, SPARC, tenascins, thrombospondins) and 

polysaccharides, such as hyaluronan, an abundant and physiologically important 

glycosaminoglycan (GAG) [1, 2]. Within the interstitium are blood and lymph vessels, 

airway smooth muscle bundles and cartilage, and a range of cells types, including 

fibroblasts, pericytes, and resident leukocytes. Furthermore, the ECM includes numerous 

related proteins, such as the enzymes that form fibers, proteinases that remodel ECM, 

cytokines and growth factors that are stored within the ECM, and more.

Recent studies have further indicated that specific individual components of the ECM can 

impact developmental and pathological events within the lung. For the purpose of this 

review, we will focus on versican and hyaluronan, two interstitial ECM components [3] that 

can serve as ligands for leukocytes and impact immune and inflammatory responses in lung 

disease [3–7]. In addition, we will discuss how specific leukocytes, such as the macrophage, 

interact with the ECM and the importance of a specific matrix metalloproteinase (MMP), 

MMP10, in controlling the state of macrophage activation in lung disease.

2. The ECM as a regulator of the innate immune response

Inflammatory responses as a result of tissue infection require the emigration of leukocytes 

from the vasculature to the infected area as part of the innate immune response. Upon 

extravasation into the subendothelial and/or subepithelial compartments, leukocytes 

encounter an ECM enriched in versican and hyaluronan that functions as a scaffold or 

“landing strip” for cell adhesion and subsequent retention and activation [8] (Figure 1). 

These components are highly interactive and bind chemokines, growth factors, proteases, 

and receptors on the surface of the immune cells to provide intrinsic signals and influence 

immune cell phenotype [9–11]. We recently demonstrated that hyaluronan interacts with the 

surface of T-regulatory cells through CD44 and promotes their differentiation [12–14]. 

Furthermore, once bound, these leukocytes modify the ECM in such a way as to generate 

pro-inflammatory ECM fragments to further drive the inflammatory response [15, 16]. 

Fragments of ECM affect multiple functional properties of inflammatory and immune cells 
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[17]. Since different types of infection may demand extravasation of certain immune cell 

types, the ECM often undergoes compositional changes which regulate the appropriate 

cellular responses. Such compositional changes may enrich for specific ECM molecules that 

actively participate in the recruitment and activation of specific immune cell types to either 

promote or inhibit the inflammatory cascade [18]. Such findings suggest that the ECM may 

be a useful therapeutic target to control various aspects of the immune response associated 

with inflammation in a variety of diseases [19].

3. ECM components: interaction with leukocytes

A number of different ECM components interact with leukocytes and it has become clear 

that this interaction is a critical part of the inflammatory response [20]. It has also become 

clear that the ECM exhibits specificity for binding leukocytes and impacting their phenotype 

[6]. We have become interested in versican and hyaluronan, which increase during 

inflammation. Versican is a proteoglycan that exists in at least four different isoforms due to 

alternative splicing of the major exons that code for the attachment regions of the 

chondroitin sulfate (CS) GAGs attached to the core protein [21, 22]. Versican interacts with 

a number of other molecules, many of which are involved in promoting tissue inflammation 

[6]. For example, versican interacts with hyaluronan [23, 24], link protein, TSG-6, and 

CD44 through a common structural domain in each of the proteins called the link module 

[25, 26]. These macromolecules form higher ordered macromolecular complexes that 

increase as part of the inflammatory response [27–31]. Known functions for versican include 

controlling tissue space due to its ability to entrap water such as observed in the lung [32, 

33], as well as influencing cell adhesion, proliferation, migration, and survival [21, 34–36]. 

Versican is highly interactive due to the negatively charged CS side chains. For example, 

versican regulates the availability and activity of several inflammatory chemokines [37–41]. 

In addition, the CS chains of versican interact with MMPs [42], influencing their catalytic 

activity [43–45]. As versican accumulates in diseased tissues, it can be degraded by a 

number of proteases including five members of the a disintegrin and metalloproteinase with 

a thrombospondin type-1 motif (ADAMTS) family of proteases [46, 47]. Cleavage of 

versican generates biologically active fragments that have been associated with 

inflammatory cytokine release and cell death through apoptosis [48, 49]. In addition, the G3 

domain of versican can interact with P-selectin glycoprotein-1 (PSGL-1) and cause 

macrophage aggregation [50]. Several studies indicate that versican is a danger-associated 

molecular pattern (DAMP) molecule that interacts with toll-like receptors (TLRs), such as 

TLR2 on alveolar macrophages to promote production of inflammatory cytokines such as 

tumor necrosis factor α (TNFα), IL-6, and other pro-inflammatory cytokines [51–57]. As 

such, versican has been implicated in regulating several key events in the inflammatory 

response [3, 6, 36, 58, 59].

Several studies have demonstrated that hyaluronan, a binding partner of versican, influences 

inflammatory responses [60–62]. Hyaluronan interacts with the surface of many myeloid 

and non-myeloid cells through CD44, a major cell surface receptor for hyaluronan [63], to 

affect their phenotype. Lack of CD44 leads to excessive accumulation of hyaluronan in the 

lungs of bleomycin-treated animals due to the inability of lung cells to clear hyaluronan via 

CD44 [64]. As hyaluronan accumulates, hyaluronan fragments also accumulate and interact 
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with immune cells to promote the expression of specific inflammatory cytokines and 

chemokines to drive the immune response. Low molecular weight hyaluronan (LMW-HA) 

activates inflammatory gene expression in epithelial cells, dendritic cells, endothelial cells, 

fibroblasts, and macrophages [65–71]. Lack of CD44 limits macrophage recruitment to the 

lung when mice are challenged with lipopolysaccharide (LPS) [72]. Interestingly, alveolar 

macrophages isolated from CD44-deficient, LPS-treated mice secrete lower levels of TNFα, 

suggesting a key role for CD44 in the innate immune response to LPS. Recently, it has been 

recognized that it is possible to stimulate chemokine expression by immune cells in the 

absence of CD44 [73–75]. This stimulation involves the TLRs as part of the innate immune 

response [76]. Using a series of TLR−/− mice, it has been demonstrated that hyaluronan 

fragments stimulate elicited alveolar macrophages to express inflammatory chemokines via 

TLR2 and TLR4 pathways [75, 77]. TLRs are found not only on myeloid cells, but also on 

non-myeloid cells of the lung [78, 79]. While the above studies implicate TLR2 and TLR4 

in the hyaluronan innate immune response, other studies suggest that TLR3 is involved since 

viral infection of synoviocytes causes hyaluronan synthase 1 (HAS1) activation with no 

effect on HAS2 or HAS3 [80]. Interestingly, overexpression of HAS2 in epithelial cells is 

associated with decreased hyaluronan cable structures and reduced monocyte binding to the 

ECM [81]. These findings, plus our own data, suggest that HAS1, together with versican, 

may be critical for the formation of this proinflammatory ECM following lung infection. In 

fact, a number of studies demonstrate that these ECMs are important for leukocyte adhesion 

during inflammation in the lung [64, 82], colon [83–85], kidney [86, 87], and skin [88, 89].

4. Versican and hyaluronan as components in lung disease

The observation that versican, a CS proteoglycan (CSPG), is abundantly expressed during 

lung development, is expressed at very low levels in lungs of healthy adults, but is re-

expressed and accumulates in a number of lung diseases, including bacterial infection 

(Figure 2), suggests that versican functions in a number of overlapping processes in lung 

development, injury, and repair [32, 90–92]. Recent studies show that versican is expressed 

and accumulates in the lungs of mice in studies of gram-negative lung infection [59, 90], 

acute lung injury [93], allergen-induced airway inflammation [94], fibrosis [95], cancer [51, 

55, 96, 97], and emphysema[98]. Similarly, in humans, versican accumulates in chronic lung 

diseases such as pulmonary fibrosis [99–101], acute respiratory distress syndrome [102, 

103], asthma [104, 105], cancer [106], lymphangioleiomyomatosis [107], and chronic 

obstructive pulmonary disease (COPD) [108, 109]. Whereas numerous studies show that the 

re-expression and accumulation of versican is a common observation in lung disease, very 

little is known about the regulation of versican expression or the role of versican in the 

pathogenesis of lung disease.

Our recent work showing that versican expression and accumulation is rapidly increased in 

lungs of mice with gram-negative pneumonia suggests an important role for this CSPG in 

the innate immune response to lung infection (Figure 2) [59, 90]. There are multiple binding 

domains on versican for a number of cytokines, chemokines, adhesion molecules and growth 

factors, many of which are involved in the innate immune response [3, 36, 110]. The ability 

of versican to bind to chemokines is due in large part to the negatively charged CS side 

chains associated with the α- and β-GAG domains. For example, versican regulates the 
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availability and activity of several chemokines including CXCL2, CXCL10, CCL2, CCL5, 

CCL8, CCL20, and CCL21 [37–41, 111]. We previously showed that GAGs provide fine-

tune control of the innate immune response in lungs by controlling the kinetics of 

chemokine-GAG interactions, chemokine diffusion, and leukocyte migration [9, 10, 112, 

113]. Chemokine-GAG interactions are also known to regulate the oligomerization of 

chemokines in tissues [114, 115] and the ability of chemokines to bind to their high affinity 

receptor on leukocytes [116, 117]. More recently, studies show that the binding of versican 

to TLR2 reprograms macrophages and dendritic cells [51, 118]. The reprograming of 

dendritic cells by versican in a TLR2-dependent manner increases the amount of IL-10 and 

IL-6 receptors on the cell surface, resulting in a immunosuppressive phenotype [118]. As 

such, versican has been implicated in regulating several key events in the innate immune 

response [3, 6, 36, 58, 59]. The observation that versican is observed in a number of lung 

diseases and is able to modify the innate immune response in studies performed in vitro 
makes it an attractive target for therapeutic intervention. However, to advance these concepts 

into preclinical studies, we need to learn much more about the mechanisms whereby 

versican modifies outcomes in fundamental/experimental studies of lung disease.

5. Chronic changes to airway ECM in asthma

Bronchial biopsies from asthmatic adults and children demonstrate features of airway 

remodeling, including excessive subepithelial ECM protein/proteoglycan deposition that are 

already present by early childhood [119–122]. Excessive ECM production by human lung 

fibroblasts (HLFs) and the role of epithelial regulation of fibroblasts have been extensively 

studied in the context of pulmonary fibrosis [123]; however, there is less data on the role of 

epithelial regulation of ECM production by fibroblasts in asthmatic airway remodeling [124, 

125]. Previous work has demonstrated that mesenchymal cells are the predominate source of 

many ECM constituents. This is particularly true for fibroblasts that have undergone 

transforming growth factor-β (TGF-β)-dependent fibroblast-to-myofibroblast transition 

(FMT), differentiating into a phenotype expressing cytoskeletal alpha smooth muscle actin 

(α-SMA) [126, 127]. Myofibroblasts are the primary source of types I and III collagen in 

fibrotic lesions [128–130]. Additionally, myofibroblasts represent a contractile phenotype 

that may directly participate in scar formation and contraction in the asthmatic airway [131]. 

Other important ECM constituents such as fibronectin, hyaluronan, and versican are also 

primarily secreted by fibroblasts and may play important roles in airway remodeling. 

Hyaluronan is major component of the ECM and its clearance is essential for resolution of 

local inflammation during acute injury [132, 133]. Furthermore, expression of airway 

hyaluronan [134, 135] and versican [136, 137] is higher in asthmatics and correlates with 

asthma severity [138]. Hyaluronan has also been linked to localized collagen deposition in 

animal models of asthma [139]. Interestingly, fibroblasts from patients with airway hyper-

responsiveness demonstrate greater overall ECM production than those from healthy 

individuals [140, 141]. Collagens I and III, hyaluronan, and versican are, therefore, 

potentially important constituents of altered basement membranes and may be differentially 

regulated in asthma [128, 132, 142, 143].
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5.1. Role of the airway epithelium in regulating ECM in asthma

The current mainstay of therapy for persistent asthma is suppression of airway inflammation 

using corticosteroids. However, clinical trials in asthmatic children show that although 

inhaled corticosteroids improve symptoms and prevent exacerbations, they do not alter the 

natural course of asthma [144, 145]. Because the airway epithelium undergoes significant 

structural changes early in asthma, and is the first contact point between the host airways 

and the environment, a new paradigm of asthma pathogenesis has emerged to partially 

explain asthma pathogenesis and airway remodeling, wherein ongoing injury, irritation, 

and/or viral infection of airway epithelial cells results in disordered wound repair in 

asthmatics, including disordered regulation of lung fibroblast and airway smooth muscle 

activity and altered airway ECM deposition (Figure 3) [146]. In vivo animal models of 

airway remodeling [147–149] and descriptive data from human bronchial biopsies [150–

152] suggest the airway epithelium secretes proteins that regulate lung fibroblasts and 

airway remodeling with increased ECM deposition, including TGF-β [150, 153–155], 

VEGF [151, 156–159], periostin [160, 161], activin A [162–164], and follistatins [165, 166]. 

Furthermore, recent ex vivo investigations using primary bronchial epithelial cells (BECs) 

from asthmatic and healthy children demonstrated that when co-cultured with BECs from 

healthy children, lung fibroblast expression of types I and III collagen, hyaluronan, as well 

as expression of α-SMA, indicative of a myofibroblast phenotype, are downregulated [167, 

168]. This downregulation is diminished in fibroblasts co-cultured with asthmatic BECs 

[167, 168], suggesting that, in addition to stimulatory signals, there must be epithelial-

derived factors that inhibit fibroblasts and FMT, such that in normal airways, a balance of 

epithelial-secreted stimulatory and inhibitory factors that regulate fibroblasts and ECM 

deposition. Other studies have shown that airway epithelial cells synthesize hyaluronan and 

its degradative enzymes, the hyaluronidases (Hyals), in response to oxidative stress and 

other injurious agents [169–174] and that hyaluronan-enriched ECM synthesized by 

respiratory epithelial cells can impact monocyte adhesion [175].

5.2. Effects of airway ECM on immune cells in asthma

In addition to its role as a structural component of the airway, the ability of the ECM to 

modulate the recruitment and adhesion of inflammatory cells in the airway is an emerging 

area of investigation [20]. ECM, enriched in hyaluronan and versican, is synthesized by 

various lung cells in response to allergens, inflammatory cytokines, and other infectious 

agents [3]. Hyaluronan and its degradation products, are key ECM components that are 

believed to be involved in modifying immune cell recruitment, activation, and retention 

during inflammation [176]. Additional studies have demonstrated that hyaluronan binding 

partners such as versican [59] are also critical to the recruitment and activation of leukocytes 

in hyaluronan-enriched matrices. Versican accumulation in the subepithelial layer in airways 

of atopic asthmatics has been described and correlates with the degree of airway hyper-

responsiveness [99].

In recent years, there has been an emerging appreciation for the role of ECM in leukocyte 

trafficking and modulation of local airway inflammation [20, 177, 178]. Evidence from both 

animal and human cell culture models has demonstrated that modulation of hyaluronan 

occurs in the setting of infection and/or viral mimetics [84, 179]. Hyaluronan levels in lung 
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tissue and bronchoalveolar lavage fluid (BALF) are elevated and correlate with the degree of 

inflammation in animal models of lung injury [139, 180, 181]. Furthermore, concentration 

of airway hyaluronan is higher in asthmatics and correlates with asthma severity [105, 134, 

135, 138]. Blockade of the major hyaluronan receptor, CD44, reduced hyaluronan and 

eosinophil accumulation in animal models of antigen-induced eosinophilia [177]; however, 

CD44-deficient mice suffer from increased inflammation and increased deposition of 

hyaluronan suggesting that CD44 is critical for hyaluronan turnover [64, 182]. Indeed, 

Hyal1 and Hyal2, two principal hyaluronidases, have been shown to be dependent on an 

association with CD44 for their activity [183]. Turnover of hyaluronan by Hyals is important 

in fibrotic lung disease and diverse biological activity can be stimulated by differing sizes of 

hyaluronan fragments [31, 132, 184]. For example, high molecular weight hyaluronan 

(HMW-HA) has been shown to stabilize inflammatory cell activation, inhibit scar formation, 

and suppress inflammation [31, 185]. In contrast, LMW-HA has been found to stimulate 

gene expression in macrophages, endothelial cells, and epithelial cells and to enhance scar 

formation [66, 186–188]. Furthermore, LMW-HA has been found to increase production of 

TGF-β by eosinophils and prolong their survival in a dose-dependent, CD44-mediated 

fashion [189]. The latter finding is of significant interest in the context of activation of 

resident lung fibroblasts.

Given that a compelling argument for a critical role of hyaluronan in the establishment and 

regulation of airway inflammation is building, the study of hyaluronan binding partners has 

also become an important area of investigation. Versican content in normal lung is typically 

low; however, it increases dramatically in the context of disease and inflammation and is 

known to interact closely with hyaluronan, TSG-6, and CD44 [25, 26]. Additional studies 

have confirmed that increases in versican expression influence cell adhesion, proliferation, 

migration, and survival, as well as regulation of key inflammatory responses [6, 34, 59]. 

Accumulation of versican in the subepithelial layer in airways of atopic asthmatics has been 

described previously and correlates with the degree of airway hyper-responsiveness to 

methacholine challenge [99]. In addition, increased accumulation of versican has been 

associated with both small and large airway remodeling seen in autopsy specimens 

following fatal asthma exacerbations [136]. Subjects with uncontrolled asthma demonstrate 

increased accumulation of versican in biopsy specimens from their central airways 

compared to healthy subjects with well controlled asthma [104]. Interestingly, these same 

subjects also demonstrated a greater number of myofibroblasts per unit area in tissue 

samples. Of note, HLFs obtained from asthmatic adults produce greater amounts of 

proteoglycans, including versican, in vitro compared to HLFs obtained from healthy adults 

[141]. Additional studies have confirmed the presence of versican in the sputum of adults 

with severe asthma, which correlates negatively with their forced expiratory volume over 

one second (FEV1), indicating a correlation with airway obstruction [105]. In animal studies, 

rats sensitized with ovalbumin displayed increased deposition of proteoglycans in the 

airways and BALF. Increased staining for versican was observed in the airways and blood 

vessels of the ovalbumin-exposed rats, which co-localized with α-SMA staining, suggesting 

an association with myofibroblasts in these tissues. Furthermore, these changes were not 

reversible following treatment with budesonide, a commonly used inhaled corticosteroid 

[190]. More recently, in a mouse model of allergic airway inflammation using cockroach 
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antigen (CRA), we found increased subepithelial accumulation of versican and hyaluronan 

that paralleled monocyte/macrophage infiltration (Figure 4) [94], supporting a role for these 

ECM components in leukocyte retention. Of interest in this same study, differentiated 

primary human airway epithelial cells from asthmatic children expressed elevated levels of 

versican and hyaluronan when compared to epithelial cells from healthy children, suggesting 

that epithelial cells may also be a source of these ECM components and that their production 

may be dysregulated in asthma.

Respiratory viruses also play a significant role in asthma inception and exacerbation and are 

a major cause of morbidity in asthma [191]. Our group [59, 176, 179] and others [84] have 

shown that HLFs and smooth muscle cells treated with respiratory syncytial virus and/or the 

viral mimetic, poly I:C, produce a complex viscous ECM that is enriched in hyaluronan and 

versican, and displays extensive hyaluronan- and versican-enriched “cables” extending into 

the ECM. Monocytes, eosinophils, and lymphocytes specifically adhere in much larger 

numbers to this enriched ECM rather than directly to the cell surface [179]. Furthermore, we 

have shown that formation of a monocyte-retaining ECM can be blocked by the presence of 

anti-versican antibodies [179]. Since viral infection is the most common trigger of acute 

asthma exacerbations, these exacerbations may be caused by changes in ECM remodeling 

that take place in the lung, creating a microenvironment that supports inflammatory cell 

invasion and adhesion. Presently, data regarding the regulation of HLF deposition of ECMs 

enriched in hyaluronan and versican, and the role that viral infection and/or aeroallergen 

stimulation of airway epithelial cells may play in modifying ECM in asthmatic lungs is 

lacking, but may offer valuable insight into the regulation of airway inflammation.

6. The macrophage, ECM and lung inflammation

6.1. Macrophage heterogeneity

Macrophages play essential, yet distinct, roles in both promoting and resolving inflammation 

as well as in both in facilitating tissue repair and contributing to its destruction [192]. That a 

single cell type can serve opposing functions may seem counterintuitive, but dramatic 

phenotypic changes occur when macrophages respond to local stimuli [192–197]. Based on 

patterns of gene and protein expression and function, macrophages are commonly classified 

as classically activated (M1) or alternatively activated (M2) cells (as well as sub-M2 types) 

[192–194, 197]. The M1 phenotype is induced by infection and pro-inflammatory TH1 

cytokines [196]. M1 macrophages are effective at killing bacteria and release pro-

inflammatory cytokines, such as IL-1β, IL-12, and TNFα. In contrast, the M2 phenotype is 

induced by the TH2 cytokines IL-4 and IL-13 and other factors [196, 197]. M2 macrophages 

release anti-inflammatory factors, such as IL-10 and TGF-β1, are weakly microbicidal, and 

promote repair [196]. However, dividing macrophages into M1 vs. M2 classes oversimplifies 

the complex continuum of functional and reversible states that these immune cells exist in in 
vivo [198, 199].

6.2. Macrophages and fibrosis

Macrophages present early in inflammation are functionally distinct from those at later 

stages [197, 200–207]. Depletion of macrophages in the early phases of wound repair 
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significantly impairs scar formation [208, 209], whereas depletion of macrophages during 

later stages leads to an inability to resolve scars [204, 210]. Hence, early phase 

macrophages, which are predominately M1-biased cells, contribute to ECM deposition and 

fibrosis likely by producing profibrotic cytokines that promote the activation of resident 

fibroblasts and pericytes into ECM-producing myofibroblasts [197, 200–203, 211–215]. 

During the later resolution phase, macrophages tend to be alternatively activated, 

remodeling-competent M2-biased macrophages [202, 213, 216] (Figure 5). Although far 

from being fully understood, resolution of scarring and fibrosis appears to be – not 

surprisingly – the responsibility of macrophages and, in particular, M2 macrophages [202, 

204, 217–221].

Despite the compelling data in various tissue models with macrophage-depletion and direct 

proteolysis strategies, M2 macrophages – or specific subsets of M2 macrophages – have 

been considered to be profibrotic [222] for two key reasons. One, M2-like macrophages (or 

M2 markers) are present in scars and fibrotic tissue. However, these are mostly correlative 

data, whereas functional studies – such as our data below – indicate that M2-biased 

macrophages are working to resolve fibrosis, not promote it. A couple of studies concluded 

that M2 macrophages are profibrotic in interstitial lung disease, including idiopathic 

pulmonary fibrosis (IPF). One study relied on one M2 marker [223] and the other on three, 

including CD163 [224], but no M1 markers. Although the use of M1 and M2 makers may be 

convenient – and provides a reasonably good lexicon for discussion of macrophage subtypes 

– we hold that assessing functional read outs is more critical to understanding macrophage 

biology.

The second reason why M2 macrophages are thought to be profibrotic is because they 

express known or suspected profibrotic factors, particularly TGF-β1 and arginase-1, a 

cytosolic enzyme that functions in the synthesis of proline, an abundant amino acid in 

collagens. However, depletion of TGF-β1 or arginase-1 from macrophages does not affect 

fibrosis [225, 226]. It is likely that macrophage-derived TGF-β1 is a functionally distinct 

pool from the well-established profibrotic TGF-β1 produced by resident epithelium and 

interstitial cells.

6.3. Collagen degradation

Current models indicate that ECM turnover involves two sequential steps: limited 

extracellular proteolysis followed by uptake and lysosomal degradation [227, 228]. For the 

first step, some MMPs cleave the large collagen fibrils into fragments that are then 

endocytosed and degraded intracellularly [218, 229–231]. However, because MMPs act on 

much more than ECM, they can contribute to resolution of fibrosis by directly degrading 

ECM or indirectly by shaping the proteolytic phenotype of cells [232–234]. Based on 

published data [218, 221], we propose that MMP10 is a critical effector controlling the 

ability of M2-like macrophages to clear fibrotic ECM.

6.4. MMPs: effectors of immunity

Several proteins influence macrophage behavior, including some MMPs. For example, 

MMP12 and MMP28, both macrophage products, either promote or restrict macrophage 
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influx into lung [235, 236], and MMP28 and TIMP3 regulate M1 activation of macrophages 

in lung [237, 238]. As their name (matrix metalloproteinases) implies, MMPs are thought to 

degrade ECM proteins, a function that is indeed performed by some members [239–242]. 

However, ECM degradation is neither the sole, nor predominant function of these enzymes. 

Findings from several groups demonstrate that individual MMPs regulate specific immune 

processes, such as leukocyte influx and activation [243–248]. MMPs control immune 

functions typically by gain-of-function processing of non-ECM proteins, such as cytokines, 

chemokines, surface proteins, etc. [248–253]. Two other important concepts, both supported 

by many observations with gene-targeted mice [243, 245, 247], are that i) individual MMPs 

perform specific, non-redundant functions with no evidence of functional compensation by 

other MMPs; and ii) in normal processes, such as repair and immunity, MMPs typically 

serve beneficial roles. However, if their expression is prolonged or misregulated, then their 

catalytic activity can lead to disease.

Recent findings suggest that MMP10 impacts macrophage functions with different outcomes 

in different conditions and at different stages. In an acute setting, MMP10 moderates the 

proinflammatory activity of macrophages, which appears to be a beneficial effect [254]. 

Later on, MMP10 facilitates scar resolution and limits fibrosis by activating the ability of 

M2-biased macrophages to degrade ECM. This remodeling activity is beneficial in a setting 

with excess ECM, such as a wound (scar) or fibrotic tissue, as found in IPF. However, this 

MMP10-dependent ECM degrading activity of macrophages can be damaging when 

sustained in an otherwise structurally normal lung, such as the development of emphysema 

after many years of smoking. For example, blocking MMP10 activity or the pathways it 

controls or altering macrophage activation status could reduce the destructive potential of 

M2 cells in chronic conditions (e.g., COPD), whereas stimulating these mechanisms could 

be beneficial in IPF.

The importance of MMP10 in human lung disease is being recognized by others. Both Sokai 

et al. [255] and Vuga et al. [256] proposed that MMP10 is a predictor of outcomes in IPF, 

complementing earlier work showing that MMP10 is among the genes that are over-

expressed in acute exacerbations of IPF [257]. In addition, MMP10 is expressed by lung 

macrophages in human smokers with emphysema [258], and MMP10 is one of two genes 

whose levels are significantly related to a decline in FEV1 in human smokers with COPD 

[259], findings we validated with functional studies as part of large genome-wide association 

study (GWAS) on obstructive lung disease (discussed below) [260]. Furthermore, because 

macrophages and MMPs are important effectors in many conditions, such as asthma, 

vascular disease, cancer, and more, MMP10’s control of macrophage activation may be 

relevant to a wide range of models and diseases.

6.5. MMP10 promotes ECM degradation by M2 macrophages

In models of excess ECM deposition in lung (bleomycin fibrosis; WCP, unpublished 

observations) and skin (scarring in wounds) [221], macrophage MMP10 functions to reduce 

collagen accumulation. In both models, levels of deposited collagen were greater in 

bleomycin-treated lungs and skin wounds in Mmp10−/− mice than in wildtype mice, with no 

differences in collagen expression or other synthetic endpoints between genotypes [221].
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Net collagen deposition is the sum of collagen production minus turnover, and we 

determined that significantly less collagenase activity is released from Mmp10−/− 

macrophages. The missing activity is not that of MMP10; it cannot cleave fibrillar collagens 

[243, 261]. Depletion of macrophages in wildtype tissue reduced collagenase activity to the 

levels seen in Mmp10−/− samples, but ablation did not further lower the activity in 

Mmp10−/− tissue. Selective ablation of M2 cells [262] led to decreased collagenase activity 

in wildtype explants, but not in Mmp10−/− samples. In addition, whereas M2 polarization in 

culture increased the collagenolytic activity released from wildtype macrophages, it had no 

effect on the activity released from Mmp10−/− macrophages.

We compared the expression of MMPs with known or suspected macrophage-derived 

collagenase activity (i.e., MMP2, 8, 9, 13, 14, 16 [263, 264]) between wildtype and 

Mmp10−/− tissue and M0-, M1-, and M2-polarized macrophages. Consistently, we found 

reduced expression of MMP8 (collagenase-2) and MMP13 (collagenase-3) in Mmp10−/− 

samples and M2-biased macrophages. We found no expression difference between wildtype 

and Mmp10−/− M0-and M1-biased cells. We assessed the relative contributions of MMP8 

and MMP13 to M2 collagenase activity. Whereas anti-MMP13 removed essentially all 

activity, anti-MMP8 removed none [221]. Overall, these data indicate that MMP10 functions 

in M1 macrophages to moderate their pro-inflammatory behavior and to transition them into 

ECM remodeling-competent M2 cells (Fig. 5)

6.6. MMP10 and emphysema

If MMP10 controls the ECM remodeling activity of M2 macrophages, then this MMP could 

be detrimental in long-term conditions, such as cigarette smoke-induced emphysema. 

Indeed, a multi-center study identified MMP10 as a candidate gene for COPD in humans 

[260]. Using a model of chronic (6-mo) exposure to cigarette smoke, we found that 

Mmp10−/− mice are fully resistant to the development of emphysema. As stated above, 

MMP10 is produced by macrophages from human smokers with emphysema [258] and is 

one of two genes whose expression correlates with reduced lung function in smokers [259].

These findings indicate that macrophage MMP10 contributes to disease progression in 

emphysema, which is seemingly opposed to the protective role for this MMP in acute 

models, such as bleomycin fibrosis. However, there are important differences between these 

models, especially with respect to macrophage biology. As discussed above, macrophages 

that function early in inflammation are functionally distinct from those that function late in 

inflammation or in a persistent inflammatory response, like long-term smoke exposure. 

Whereas acute infection and injury bias macrophages toward an M1 phenotype [197], 

cigarette smoke promotes expansion of M2 macrophages [265]. Macrophages are considered 

to be the destructive cell in emphysema [266, 267], and our findings indicate that MMP10 

promotes the ECM-degrading activity of M2 macrophages [221]. Thus, in acute or fibrotic 

settings, MMP10 is beneficial by moderating the pro-inflammatory activity of M1-biased 

macrophages and by stimulating the ability of M2-biased macrophages to remodel scar 

tissue. But in a chronic setting, MMP10-driven ECM remodeling could be excessive and 

detrimental, as suggested in our smoke-exposure studies. Still, the common conclusion 

among these models is that MMP10 functions to control macrophage behavior.

Wight et al. Page 11

Cell Immunol. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Conclusions

The ECM serves as a template for adhesion once leukocytes invade tissue in immune and 

inflammatory responses in diseases of the lung. Within the lung, there is a complementary 

set of ECM components that characterize each cellular compartment and any disturbance in 

the composition and/or organization of these components disrupts lung architecture and 

destroys lung function. Specific components of the ECM, such as versican and hyaluronan, 

are dramatically altered in all forms of lung disease, including bacterial and viral infection as 

well as asthma. These changes promote leukocyte invasion and retention and significantly 

affect normal tissue architecture and lung function. The macrophage is a critical player in 

lung disease. These cells come into contact with the ECM through a specific set of ECM 

receptors on the cell surface. Such interactions impact the ability of these cells to proliferate, 

migrate, and degrade the ECM via a specific set of proteases including MMP10. Defining 

precise roles for these specific ECM components in lung disease is critical if effective 

therapeutic interventions are to be developed in the future.
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Abbreviations

ECM extracellular matrix

GAG glycosaminoglycan

MMP matrix metalloproteinase

CS chondroitin sulfate

ADAMTS a disintegrin and metalloproteinase with a thrombospondin type-1 motif

PSGL-1 P-selectin glycoprotein-1

TLR toll-like receptors

TNFα tumor necrosis factor α

LMWHA low molecular weight hyaluronan

LPS lipopolysaccharide

HAS1 hyaluronan synthase 1

CSPG chondroitin sulfate proteoglycan

COPD chronic obstructive pulmonary disease

HLF human lung fibroblast

TGF-β transforming growth factor-β
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FMT fibroblast-to-myofibroblast transition

α-SMA alpha smooth muscle actin

BEC bronchial epithelial cell

Hyal hyaluronidase

BALF bronchoalveolar lavage fluid

HMW-HA high molecular weight hyaluronan

FEV1 forced expiratory volume over one second

CRA cockroach antigen

M1 classically activated macrophages

M2 alternatively activated macrophages

IPF idiopathic pulmonary fibrosis
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Highlights

1. Leukocytes interact with lung extracellular matrix (ECM) during 

inflammation

2. This interaction affects how leukocytes accumulate, migrate, and differentiate

3. Versican and hyaluronan are ECM components that regulate leukocyte 

phenotype

4. Versican and hyaluronan increase in a range of lung diseases

5. Macrophages can both promote and resolve inflammation and are influenced 

by MMP10
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Figure 1. 
Extravasation of leukocytes across the endothelium and/or epithelium (E) into the 

interstitium of the tissue during an inflammatory response. The leukocytes interact with 

specific ECM components, such as versican and hyaluronan, generated by resident cells of 

the tissue, such as endothelia and epithelia, and stromal cells, such as fibroblasts and smooth 

muscle cells. This interaction involves receptor-mediated interactions with hyaluronan and 

versican via cell surface receptors such as PSGL-1, TLR2, and CD44. These interactions in 

turn influence leukocyte phenotype by stimulating intracellular signals that promote their 

adhesion, proliferation, migration, differentiation, and activation. Furthermore, the 

leukocytes themselves may produce versican and hyaluronan in response to inflammatory 

stimuli to further enrich the matrix with these specific components. Such matrices, 

depending on their interactive partners, may exhibit either pro-inflammatory or anti-

inflammatory properties. Figure from: Thomas N. Wight, Inkyung Kang, Mervyn J. 

Merrilees, Matrix Biology. 35:152–161, 2014, http://dx.doi.org/10.1016/j.matbio.

2014.01.015. Reuse permitted under Creative Commons Attribution-NonCommercial-No 

Derivatives License (CC BY NC ND).
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Figure 2. 
Versican accumulation during embryonic mouse development and in lungs of a mouse with 

Pseudomonas aeruginosa lung infection. (A) Versican accumulation in fetal lung tissue at 

E14.5 days. (B) Versican accumulation in the lung of a 16-week-old mouse treated with PBS 

as a vehicle control. (C) Versican accumulation from a 16-week-old mouse infected with live 

Pseudomonas aeruginosa for 5 days. Brown indicates positive staining for versican β-GAG; 

blue, hematoxylin counterstain. Br, bronchiole; Di, diaphragm; Ri, rib; PV, postcapillary 

Vein; TB, terminal bronchiole. Arrows indicate versican staining in the alveolar septa; * 

marks an area of positive staining of the alveolar septa; cells in alveolar space makes it 

difficult to distinguish these two anatomical compartments. (D) The amount of versican-

stained lung tissue as a percentage of total lung tissue in control mice (PBS) and those 

exposed to live P. aeruginosa for up to 5 days. Values are the mean β SEM (n = 3–

6). asignificantly different from PBS, bsignificantly different from 4 hr, csignificantly 

different from 24 hr. p<00001 using a one-way ANOVA with Tukey’s multiple comparison 

test. Scale (A–C) 100 μm; (C inset) 50 μm. Figure reused with permission from: Jessica M. 

Snyder, Ida M. Washington, Timothy Birkland, Mary Y. Chang, Charles W. Frevert, Journal 
of Histochemistry & Cytochemistry (Volume 63 Issue 12) pp. 952–967, copyright c 2015 by 

The Authors. Reprinted by Permission of SAGE Publications, Inc.

Wight et al. Page 31

Cell Immunol. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Working hypothesis of leukocyte/ECM interaction in asthma suggesting that ongoing injury, 

irritation, and/or bacterial/viral infection of the epithelial cells results in signals that promote 

disordered wound repair resulting in altered ECM remodeling and the formation of a 

versican-/hyaluronan-rich ECM that promotes leukocyte recruitment and activation. Blue 

arrow indicates agonists that promote ECM accumulation and red arrow indicates 

antagonists the prevent ECM accumulation.
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Figure 4. 
Hyaluronan (A,D), versican (B,E ) and macrophage (C,F) involvement (brown color) in 

control- and CRA-treated mouse lungs showing increases in hyaluronan and versican 

content in the subepithelial region of airway bronchioles in the CRA-treated lungs. These 

areas were also enriched in F4/80 positive macrophages. Figure adapted with permission 

from: Stephen R. Reeves, Gernot Kaber, Alyssa Sheih, Georgiana Cheng, Mark A. Aronica, 

Mervyn J. Merrilees, Jason S. Debley, Charles W. Frevert, Steven F. Ziegler, Thomas N. 

Wight. Journal of Histochemistry & Cytochemistry (Volume 64, Issue 6) pp. 364–380, 

copyright c 2016 by The Histochemical Society. Reprinted by Permission of SAGE 

Publications, Inc.
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Figure 5. 
MMP10 functions in a cell-autonomous manner to control the state of macrophage 

activation. Likely via shedding of a yet-to-be-identified surface protein, MMP10 drives the 

conversion of pro-inflammatory M1-biased macrophages towards immunosuppressive M2-

biased cells. In addition, MMP10 controls the activation of ECM degrading activity in M2 

macrophages, such as by promoting expression of MMP13, a collagenolytic proteinase.
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