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Articulation points in complex networks
Liang Tian1,2, Amir Bashan3, Da-Ning Shi2 & Yang-Yu Liu1,4

An articulation point in a network is a node whose removal disconnects the network. Those

nodes play key roles in ensuring connectivity of many real-world networks, from infra-

structure networks to protein interaction networks and terrorist communication networks.

Despite their fundamental importance, a general framework of studying articulation points in

complex networks is lacking. Here we develop analytical tools to study key issues pertinent to

articulation points, such as the expected number of them and the network vulnerability

against their removal, in an arbitrary complex network. We find that a greedy articulation

point removal process provides us a different perspective on the organizational principles of

complex networks. Moreover, this process results in a rich phase diagram with two funda-

mentally different types of percolation transitions. Our results shed light on the design of

more resilient infrastructure networks and the effective destruction of terrorist commu-

nication networks.
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A
fundamental challenge in studying complex networked

systems is to reveal the interplay between network
structure and function1,2. Here we tackle this challenge

by investigating a classical notion in graph theory, that is,
articulation points. A node in a network is an articulation point
(AP) if its removal disconnects the network or increases the
number of connected components in the network3,4 (Fig. 1a).
Those APs can be easily identified using a linear-time algorithm
based on depth-first search5. It has been found that APs play
important roles in ensuring the robustness and connectivity of
many real-world networks. For example, in infrastructure networks
such as air traffic networks or power grids, APs, if disrupted or
attacked, pose serious risks to the infrastructure6,7. In wireless
sensor networks, failures of APs will block data transmission from
one network component to others8. In the yeast protein–protein
interaction network, lethal mutations are enriched in the group of
highly connected proteins that are APs9. Analysis of APs hence
provides us a different angle to systematically investigate the
structure and function of real-world networks.

Despite the importance of APs in ensuring the robustness and
connectivity of many real-world networks, we still lack a deep
understanding on the roles of APs in many complex networks.
Can we design an AP-based attack strategy to more efficiently
destroy malicious networks? Can we develop an AP-based
network decomposition method to better reveal the organizing
principles of complex networks? What happens if we keep
removing APs from a random graph or a real network? Will there
be a core left? If yes, what’s the implication of such a core in terms
of structural integrity and functionality of the network? How to
quantify if a real network has overrepresented or under-
represented APs comparing to its randomized counterparts? In
this article we offer an analytical framework to study those
fundamental issues pertinent to APs in both real networks and
random graphs, harvesting a series of interesting results.

Results
Articulation point–targeted attack. Representing natural vul-
nerabilities of a network, APs are potential targets of attack if one
aims for immediate damage to a network. Note that the removal
of an AP in a network may lead to the emergence of new APs in
the remainder of the network, that is, new potential targets of
attack (Fig. 1b). This fact inspires us to design a brute-force AP-

targeted attack (APTA) strategy: iteratively remove the most
destructive AP that will cause the most nodes disconnected from
the giant connected component (GCC) of the current network.
Given a limited ‘budget’ (that is, the number of nodes to be
removed), this APTA strategy is very efficient in reducing the
GCC, compared with strategies based on other node centrality
measures, such as degree10,11 and collective influence12. Indeed,
we find that for a small fraction of removed nodes APTA leads to
the fastest reduction of GCC for a wide range of real-world
networks from technological to infrastructure, biological,
communication, and social networks (Supplementary Note 1;
Supplementary Fig. 1). Depending on the initial network
structure, APTA would either completely decompose the
network or result in a residual GCC that occupies a finite
fraction of the network. This residual GCC is a biconnected
component (or bicomponent), in which any two nodes are
connected by at least two independent paths and hence no AP
exists5. For accuracy, we will call it residual giant bicomponent
(RGB) hereafter. This RGB naturally represents a core that
maintains the structural integrity of the network.

Greedy articulation points removal. We also find that the
identification and removal of APs provide us a new perspective
on the organizational principles of complex networks. For
example, in the terrorist communication network of the 9/11
attacks on U.S. (Fig. 1a), each AP member (shown in red) can be
considered as a messenger of a particular subnetwork, because
any information exchange between that subnetwork and the rest
of the network passes through the AP13. All the APs and their
associated subnetworks in the original network constitute the first
layer of the terrorist network. After removing all the APs in the
original network, the first layer is peeled off, new APs emerge and
the second layer of the network is exposed. We can repeat this
greedy APs removal (GAPR) process until there is no AP left in
the network. Note that at each step we simultaneously remove
all the APs present in the current network. Figure 1 illustrates
this network decomposition process in the 9/11 terrorist
communication network, which has 62 terrorists. We find that
this network consists of three layers and an RGB of 26 nodes.
(Note that the RGB associated with the GAPR process is similar
to but not necessarily the same as that of the APTA process,
see Supplementary Note 2; Supplementary Fig. 2.) Interestingly,
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Figure 1 | Articulation points and the greedy articulation points removal process. (a) Articulation points in the terrorist communication network from the

attacks on the United States on September 11, 2001 are highlighted in red. This network contains in total 62 nodes and 153 links13. (b,c) At each time step,

all the articulation points and the links attached to them are removed from the network. This greedy articulation points removal procedure can be

considered as a network decomposition process: at each step, all the removed nodes (because of the removal of articulation points in the current network)

form a layer in the network. We peel the network off one layer after another, until there is no articulation point left. We find that this terrorist

communication network consists of 3 layers, shown in light yellow, blue, and green, respectively. (d) After 3 steps, a well-defined residual giant

bicomponent is left, which contains 26 of the 62 nodes. Interestingly, 16 of the 19 hijackers (highlighted with squares) are in the residual giant bicomponent,

which is statistically significant (Fisher’s exact test yields a two-tailed test P value 1.13� 10� 5).
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among those 26 RGB nodes, 16 of them are hijackers in the 9/11
terrorist attack, which in total has 19 hijackers. In a sense, this
RGB serves as a core maintaining the functionality of this covert
network, which has a particular goal—hijacking. Note that some
of the hijackers in the RGB are not hubs (that is, highly connected
nodes), but only have two or three neighbours in the network.
Hence they cannot be easily identified through traditional
network decomposition methods, for example, maximum
clique3,4, k-core decomposition14,15 and t-core decompo-
sition16–18, which are designed to uncover or extract a dense
core structure consisting of highly connected nodes (Supplemen-
tary Note 3; Supplementary Fig. 3).

Interestingly, we find that the two RGBs associated with the
APTA and GAPR processes significantly overlap for many real-
world networks (Supplementary Note 2; Supplementary Fig. 2).
Note that, compared with APTA, the GAPR process is
deterministic and avoids the optimization of the damage caused
by nodes removal, which make it analytically solvable. Hereafter
we focus on the RGB obtained from the GAPR process.

Articulation points and residual giant bicomponent in real
networks. The results presented in the previous subsections
prompt us to study the fraction of APs (nAP:¼NAP/N) and the
relative size of the RGB (nRGB:¼NRGB/N) in a wide range of real-
world networks. Here NAP, NRGB and N represent the number of
APs, the number of nodes in the RGB (obtained from the GAPR
process), and the number of nodes in the whole network,
respectively.

We find that many real networks have a non-ignorable fraction
of APs and a rather small RGB (Fig. 2a). One may expect that

infrastructure networks should have a relatively small fraction of
APs and a large RGB, and hence are very robust against AP
removal. Interestingly, this is not the case. The power grids in two
regions of U.S. have almost the largest fraction (B24%) of APs
among all the real networks analysed in this work. And they have
almost no RGB. The road networks of three states in U.S. have
almost 20% of APs, and a small RGB nRGB� 0:08ð Þ. These results
suggest that infrastructure networks are apparently not optimized
with respect to AP removal. Indeed, because of the high cost of
adding new links (for example, connecting two power stations
with high-voltage transition lines, or connecting two cities with a
new highway), infrastructure networks typically lack a high
redundancy, but are often optimized with respect to other criteria,
such as social profitability. By contrast, among all the 28 food
webs we analysed, 22 of them have no APs (and hence nRGB¼ 1).
In other words, those ecological networks tend to be biconnected
and the extinction of one species will not disconnect the
whole community. This high structural robustness could be
because of evolutionary inter-species interactions across the
whole community19.

More interestingly, we find that most of the real networks
analysed here have either a very small RGB or a rather big one
(see Fig. 2a, light magenta and turquoise regions). Later we will
show that this phenomenon is related to a discontinuous phase
transition associated with the GAPR process.

To identify the topological characteristics that determine these
two quantities (nAP and nRGB), we compare nAP (or nRGB) of a
given real network with that of its randomized counterpart. To
this aim, we randomize each real network using a complete
randomization procedure that turns the network into an Erd+os-
Rényi (ER) type of random network with the number of nodes
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Figure 2 | Articulation points and the residual giant bicomponent in real networks. (a) Fraction of articulation points ðnreal
AP Þ versus relative size of the

residual giant bicomponent ðnreal
RGBÞ is plotted for a wide range of real networks, from infrastructure networks to technological, biological, and social

networks. Most of the real networks analysed here have either a very small residual giant bicomponent or a rather big one (highlighted in light magenta and

turquoise, separately). (b,c) Fraction of articulation points ðnrand�ER
AP Þ and relative size of the residual giant bicomponent ðnrand�ER

RGB Þ, obtained from the fully

randomized counterparts of the real networks, compared with the exact values (nreal
AP and nreal

RGB). (d,e) Fraction of articulation points ðnrand�degree
AP Þ and relative

size of the residual giant bicomponent ðnrand�degree
RGB Þ, calculated from the degree-preserving randomized counterparts of the real networks, compared with

the exact values (nreal
AP and nreal

RGB). In b–e, all data points and error bars (standard error of the mean or s.e.m.) are determined from 100 realizations of the

randomized networks, and the dashed lines (y¼ x) are guide for eyes. For detailed description of these real networks and their references, see

Supplementary Note 7; Supplementary Tables 1–14.
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N and links L unchanged20. We find that most of the completely
randomized networks possess very different nAP (or nRGB),
comparing to their corresponding real networks (Fig. 2b,c). This
indicates that complete randomization eliminates the topological
characteristics that determine nAP and nRGB. By contrast, when
we apply a degree-preserving randomization, which rewires the
links among nodes, while keeping the degree k of each node
unchanged, this procedure does not alter nAP and nRGB

significantly (Fig. 2d,e). In other words, the characteristics of a
network in terms of nAP and nRGB is largely encoded in its degree
distribution P(k). Most of the real-world networks display slightly
smaller nAP and bigger nRGB than their degree-preserving
randomized counterparts. We attribute these differences
to higher-order structure correlations, such as clustering21

and degree assortativity22, which are eliminated in the degree-
preserving randomization.

Analytical framework of the greedy articulation points removal
process. The results of nAP and nRGB in real-world networks
encourage us to analytically calculate nAP and nRGB for networks
with prescribed degree distributions23. To achieve that, we analyse
the GAPR process on infinitely large networks and explore in
depth the effect of different degree distributions on nAP and nRGB.
Consider the discrete-time dynamics of the deterministic GAPR
process, which generates a series of snapshots for the remainder
network with a clear temporal order {0, 1,..., t,...., T}. Here, T is the
total number of GAPR steps, which is also the number of layers
peeled off during the GAPR process. We denote the fraction of
APs and the relative size of the GCC in the original network as
nAP(0) and nGCC(0), respectively. Removal of the original APs
leads to a new fraction of APs nAP(1) and a smaller GCC of relative
size nGCC(1). We repeat this process and denote the fraction of APs
and the relative size of the GCC of the network snapshot at time
step t as nAP(t) and nGCC(t), respectively. At the end of the GAPR
process, we have nAP(T)¼ 0 and nGCC(T)¼ nRGB. On the basis of
the configuration model of uncorrelated random networks23–25, we
can analytically calculate nAP(t) and nGCC(t) for networks with
arbitrary degree distributions at any time step t. This enables
us to further compute T and nRGB. See Methods section and
Supplementary Note 4 for the details of our analytical framework
of the GAPR process.

Articulation points in classical model networks. The analytical
framework of the GAPR process enables us to calculate various
quantities of interests. We first investigate the fraction of APs in
the original network, that is, nAP¼ nAP(0). We calculate nAP in
two canonical model networks: (1) ER random networks with
Poisson degree distributions P(k)¼ e� cck/k!, where c is the mean
degree (hereafter we also use c to denote the mean degree of a
general network); and (2) scale-free (SF) networks with power-
law degree distributions P kð Þ� k� l, where l is often called the
degree exponent (Fig. 3a,b). The fraction of APs is trivially zero in
the two limits c-0 and c-N, and reaches its maximum at a
particular mean degree cAP. For ER networks, we find that
cAP¼ 1.41868?, which is larger than cp¼ 1, the critical point of
ordinary percolation where the GCC emerges1,2.

The phenomenon that nAP displays a unimodal behaviour and
the fact that cAP4cp can be explained as follows. The process of
increasing the mean degree c of an ER network can be considered
as the process of randomly adding links into the network. When
the mean degree c is very small (nearly zero), there are only
isolated nodes and dimers (that is, components consisting of two
nodes connected by one link), and thus nAP-0. With c gradually
increasing but still smaller than cp, the network is full of finite
connected components (FCCs), most of which are trees (Fig. 3c).

Hence, in the range of 0ococp most of the nodes (except
isolated nodes and leaf nodes) are APs, and adding more links to
the network will increase the number of APs (Fig. 3c). When
c4cp, the GCC develops and occupies a finite fraction of nodes in
the network (highlighted in light blue in Fig. 3d–f). In this case,
we can classify the links to be added to the network into two
types: (I) links inside the GCC (yellow dashed lines); and (II)
links that connect the GCC with an FCC or connect two FCCs
(turquoise dashed lines). The probability that an added link is
type-I (or type-II) as a function of the mean degree c is shown in
Fig. 3a (light blue region). Adding type-I links to the network will
never induce new APs, and may even convert the existing APs
(see Fig. 3d,e, nodes in black boxes) back to normal nodes. By
contrast, adding type-II links will never decrease the number of
APs and could convert normal nodes (see Fig. 3d,e, nodes in
orange boxes) to APs. The contributions of these two types of
links to nAP compete with each other. At the initial stage of this
range of c (c4cp), since the GCC is still small, most of the added
links are type-II (Fig. 3a, turquoise dashed line), and thus nAP

continues to increase (Fig. 3a, red line). At certain point cAP,
where the peak of nAP locates, the contribution of type-I links to
nAP overwhelms that of type-II links, hence nAP begins to
decrease. When the mean degree c is large enough, the network
itself becomes a bicomponent without any AP.

The phenomena that cAP4cp is even more prominent for SF
networks generated by the static model26, where cp(l)o1 and
cAP(l)41.41868?. This is because, for those SF networks, even
though the GCC emerges at lower cp(l), its relative size is rather
small at the initial stage of its emergence and the network is more
fragmented in FCCs, which results in larger cAP(l) (Fig. 3b)
(see Supplementary Note 5 for details).

Percolation transitions associated with greedy articulation
points removal. We now systematically study the behaviours of
nGCC(t) and nRGB, as functions of the mean degree c for infinitely
large ER networks. To emphasize the c-dependence, hereafter we
denote nGCC(t) and nRGB of ER networks as nGCC(t, c) and
nRGB(c), respectively. To systematically characterize the
percolation transitions, various quantities will be analysed, such
as the critical mean degree, critical exponents, the jump size of the
order parameter at criticality, and so on.

As shown in Fig. 4a (grey lines), after any finite steps of GAPR,
the GCC always emerges in a continuous manner, suggesting a
continuous phase transition. Hereafter we will call it GCC
percolation transition. For t steps of GAPR, the GCC perco-
lation transition displays a critical phenomenon: nGCC t; cð Þ�
c� c� tð Þð Þb tð Þ for (c� c*(t))-0þ , where c*(t) is the critical mean

degree, that is, the percolation threshold, and b(t) is the critical
exponent. We find that as t increases, c*(t) becomes larger and
larger, but eventually converges to c*(N)¼ c*¼ 3.39807?. Note
that, for any finite t, the critical exponent b(t) associated with
the GCC percolation transition is the same: b(t)¼ bGCC¼ 1
(see Fig. 4c, grey lines).

By contrast, if we allow for infinite steps of GAPR (that is, we
stop the process only if there is no AP left), the size of the
resulting GCC (that is, the RGB), denoted as nRGB(c), displays a
remarkable discontinuous phase transition: nRGB(c) abruptly
jumps from zero (when coc*) to a finite value at c*, and then
increases with increasing c (see Fig. 4a black line). Hereafter we
will call it RGB percolation transition. If we denote the jump
size as D, we find that nRGB cð Þ�D� c� c�ð ÞbRGB with critical
exponent bRGB¼ 1/2 when (c� c*)-0þ (Fig. 4c, black line),
suggesting that the RGB percolation transition is actually a hybrid
phase transition14,27,28. In other words, nRGB(c) has a jump at the
critical point c* as a first-order phase transition but also has a
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critical singularity as a second-order phase transition. Intere-
stingly, the GCC and RGB percolation transitions have
completely different critical exponents associated with their
critical singularities (Fig. 4c).

We also calculate the total number of GAPR steps T(c) needed to
remove all APs of an infinitely large ER network of mean degree c

(Fig. 4b). We find that T(c) is finite for coc*; diverges when
(c� c*)-0� ; and is infinite for any c4c*. The divergence of T(c)
displays a scaling behaviour T cð Þ� c� c�j j� g� with critical
exponent g� ¼ 1/2 when (c� c*)-0� (Fig. 4d, magenta line).

The nature of the discontinuous RGB percolation transition
and the behaviour of T(c) can be revealed by analysing the
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dynamics of the GAPR process. In particular, we can calculate
nGCC(t, c), nAP(t, c), as well as a key quantity in the GAPR
process, that is, the average number of newly induced APs per
single AP removal: Z(t, c)¼ nAP(t, c)/nAP(t� 1, c) for t40 and at
different mean degrees c (Fig. 4e–g).

For c4c* (supercritical region), the fraction of APs exponen-
tially decays as nAP t; cð Þ� exp � t=~T cð Þ

� �
after an initial

transient time (Fig. 4f, turquoise lines), where ~T cð Þ is the
characteristic time scale. In this region, with increasing t, Z(t, c)
quickly reaches an equilibrium value Z 1; cð Þ¼ exp � 1=~T cð Þ

� �
,

which is smaller than 1 (Fig. 4g, turquoise lines). Consequently,
nGCC (t, c) converges to a finite value for t-N (Fig. 4e, turquoise
lines), resulting in a finite nRGB. Since T(c) is infinite in this
region, we can use ~T cð Þ to characterize the relaxation behaviour
of GAPR process. We find that ~T cð Þ increases as c decreases
(Fig. 4b, turquoise line), and diverges as ~T cð Þ� c� cj *|� gþ with
critical exponent gþ ¼ 1/2 when (c� c*)-0þ (Fig. 4d, turquoise
line). Note that as c decreases and approaches c* from above, the
equilibrium value Z(N, c) gradually approaches 1 (Fig. 4g).

When (c� c*)-0þ (that is, right above the criticality), the
fraction of APs decays in a power-law manner for large t, that is,
nAP� t� z with z¼ 2 (Fig. 4f and inset, black line), rendering
Z(N, c)¼ 1 (Fig. 4g, black line). Consequently, nGCC(t, c)
converges to a finite value in the t-N limit (Fig. 4e, black lines),

leading to a finite nRGB. The fact Z(N, c)¼ 1 suggests that in
average every removed AP will induce one new AP at the next
time step, and hence the GAPR process will continue forever.
This explains why T(c*) diverges. Note that the equilibrium value
Z(N, c)¼ 1 can only be reached when nAP(t, c) displays a power-
law decay as t-N. This is because, as long as nAP(t, c) is finite at
any finite t, the GAPR will gradually dilute the network, rendering
a larger and larger value of Z(t, c) as t grows.

When (c� c*)-0� (that is, right below the criticality), as well
as in the entire subcritical region (coc*), after an initial decay,
nAP(t, c) begins to exponentially grow with increasing t (Fig. 4f,
magenta lines). Consequently, Z(t, c) is initially o1, but then
becomes drastically larger than 1 (Fig. 4g, magenta lines), which
causes nGCC (t, c) quickly decays to zero (Fig. 4e, magenta lines),
and hence T(c) is finite and the RGB dose not exist. The sudden
collapse of the RGB upon an infinitesimal decrease in c suggests
the discontinuous nature of the RGB percolation transition in ER
networks. Note that at time step T, the network will break into
pieces and there is no AP left. Hence in the last few GAPR steps
the growth of nAP (t, c) will slow down and eventually decrease
(Fig. 4f,g, tails in the magenta lines).

For finite-sized networks sampled from a network ensemble with
a prescribed degree distribution, the value of nRGB at criticality c* is
subject to large sample-to-sample fluctuations, being either zero or
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a large finite value (Fig. 5a and inset), which is another evidence of
discontinuous phase transition29. This discontinuous phase
transition also partially explains the fact that real-world networks
have either a very small or a rather big RGB (Fig. 2a).

The nature of the RGB percolation transition in SF networks is
qualitatively the same as that in ER networks. The transition from
the non-RGB phase to the RGB phase is discontinuous (Fig. 5a).
The critical point c*(l) increases with decreasing l. Also, the
jump of the RGB relative size at criticality increases as l
approaches 2 (Fig. 5a).

The c� l phase diagram of SF networks is shown in Fig. 5b.
The whole diagram consists of three phases. For cocp(l) (grey
region), there exists no GCC in the network, and hence no RGB.
For cp(l)ococ*(l) (light blue region), even though the GCC
may survive after certain finite steps of GAPR, the RGB still does
not exist. Since in both regimes there is no RGB, we call them
non-RGB-I phase and non-RGB-II phase, respectively. The
transition between these two phases is the ordinary GCC
percolation transition, which is continuous (thick dashed line).
Note that, in non-RGB-II phase, the phase transition associated
with the emergence the GCC after any finite t steps of GAPR is
still continuous (thin dot-dashed lines). For c4c*(l) (light yellow
region), the network suddenly has an RGB. This regime is
referred to as the RGB phase. As we mentioned above, the
transition between the non-RGB-II phase and the RGB phase is
discontinuous (thick solid line). We have performed extensive
numerical simulations to confirm our analytical results
(Supplementary Note 6; Supplementary Figs 4–6).

Structural transitions in complex networks have been exten-
sively studied and found to affect many network proper-
ties10–12,14,29–43. Here we show for the first time that there
exists two different types of percolation transitions associated
with the removal of APs.

Discussion
In this article, we systematically investigate AP-related issues in
complex networks. Many interesting phenomena of APs are

discovered and explained for the first time. On the empirical side,
we proposed two AP-based applications: a network attack
strategy (APTA) and a network decomposition method (GAPR).
We found that, given a limited ‘budget’ (that is, the number of
nodes to be removed), our APTA strategy is more efficient in
reducing the GCC of the network than other existing strategies. In
revealing the core-periphery structure of complex networks, our
GAPR method is quite different from traditional network
decomposition methods in the sense that our identified core
may include low-degree nodes. Those sparsely connected nodes
can be functionally very important, but they are always ignored in
traditional decomposition methods. On the theoretical side, we
proposed an analytical framework to calculate various AP-related
properties, among which the emergence of the RGB as a
discontinuous percolation transition is of great theoretical
interest. This finding also provides a theoretical explanation of
the empirical findings that most of the real-world networks have
either a very small RGB or a rather big one.

Taken together, our results offer a different perspective on the
organizational principles of complex networks, shed light on the
design of more resilient infrastructure networks and more
effective destructions of malicious networks, and open new
avenues to deepening our understanding of complex networked
systems. Since the identification of APs also helps us better solve
other challenging problems, for example, the calculation of
determinants of large matrices44, and the minimum vertex cover
problem on large graphs (a classical NP-hard problem)45, we
anticipate that our results on APs will trigger more research
activities on those problems as well.

Methods
Theoretical analysis of greedy articulation points removal process. Our the-
oretical treatment of the GAPR process is based on the local tree approximation,
which assumes in the thermodynamics limit (that is, network size N-N) there
are no finite loops in a network and only infinite loops exist23–25,28. This
approximation allows us to use the convenient techniques of random branching
processes to solve the GAPR process on large uncorrelated random networks
(Supplementary Note 4). Note that the local tree approximation is only exact for
networks with finite second moment of the degree distribution. However, it has
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been demonstrated in various network problems that this approximation can
obtain very accurate results even for networks with diverging second moment of
the degree distribution28. Here we find that this local tree approximation works
very well in analysis of the GAPR process (Supplementary Notes 4 and 6).

At each time step t during the GAPR process in a network G, we classify the
remaining nodes into the following three categories or states: (1) at-nodes: nodes in
FCCs; (2) bt-nodes: nodes that are APs in the GCC; (3) gt-nodes: nodes that are not
APs in the GCC. Note that if a node is a gt-node, it must be gt-node with tot.
(The notations bt and gt here have totally different meanings from the critical
exponents b and g mentioned in the main text.)

According to the local tree approximation (Supplementary Note 4), the state of
a randomly chosen node i can be determined by the states of its neighbours in G n i,
that is, the induced subgraph of G with node i and all its links removed. In other
words, in order to determine the state of a node, we need to know the states of its
neighbours. Therefore, at each time step t, we need to know the probability that,
following a randomly chosen link to one of its end nodes, this node belongs to any
of the above categories after this link is removed. These probabilities are denoted as
at, bt, and gt, respectively. Note that for convenience sake here we use the same
notation to denote both the state of a node and the probability of a node in that
state. To be precise, hereafter when we consider the state of a neighbour of a given
node i, we mean the state of the neighbour in the induced subgraph G n i.

The GAPR process can be fully characterized by the three sets of probabilities
{a0, a1,...}, {b0, b1,...} and {g0, g1,...}. Note that every node must belong to one of the
three categories, which means the three sets of probabilities are not independent
from each other. Specifically, at time step t, the probability gt can be derived by the
other two sets of probabilities through the following normalization condition:

Xt

t¼0

at þ
Xt

t¼0

bt þ gt¼1: ð1Þ

Hereafter we focus on at and bt only. We can calculate {a0, a1,...} and {b0, b1,...} in
an iterative way. At first, we consider the initial time step t¼ 0. The self-consistent
equations for a0 and b0 are given by

a0¼
X1
k¼1

Q kð Þ a0ð Þk� 1 ð2Þ

b0¼
X1
k¼3

Q kð Þ 1� 1� a0ð Þk� 1 � a0ð Þk� 1
h i

; ð3Þ

where Q(k)¼ kP(k)/c is the degree distribution of the nodes that we arrive at by
following a randomly chosen link (a.k.a. the excess degree distribution)1,2. We
derive the above equations based on the following observations: (1) a0-node: its
neighbours can only be a0-nodes; (2) b0-node: since it is an AP node, at least one of
its neighbours is an a0-node. Moreover, since it belongs to the GCC, at lease one of
its neighbours is not an a0-node.

For the t-th GAPR time step (t40), we can compute at and bt as follows:

at¼
X1
k¼1

Q kð Þ at þ
Xt� 1

t¼0

bt

 !k� 1

�
X1
k¼1

Q kð Þ
Xt� 2

t¼0

bt

 !k� 1

ð4Þ

bt ¼
X1
k¼3

QðkÞ
Xk� 2

s¼1

k� 1
s

� �
1�

Xt

t¼0

at �
Xt� 1

t¼0

bt

 !s

�
Xk� 1� s

r¼1

k� 1� s
r

� �
atð Þr

Xt� 1

t¼0

bt

 !k� 1� s� r

:

ð5Þ

The derivations of equations (4 and 5) are based on the following observations:
(1) at-node: First, its neighbours can only be at-nodes or bt-nodes with tot
(because if one of its neighbours is at-node with tot, this node will be an AP
before time step t and hence would have already been removed; if one of its
neighbour is bt-node, this node will belong to the GCC at time step t). Second, its
neighbours can not be all bt-nodes with tot� 1. Otherwise this node will be a leaf
node before time step t� 1, and will become an isolated node before the t-th time
step. In this case, we can not reach this node through a randomly chosen link at
time step t. (2) bt-node: First, its neighbours can not be at-nodes with tot,
otherwise this node would have been removed before time step t. Second, since it is
an AP node, at least one of its neighbours is an at-node. Finally, since this node
belongs to the GCC, at least one of its neighbours is neither at-node nor bt-node
with tot.

Diagrammatic representations of these probabilities (at, bt, gt) and their
relationship are shown in Supplementary Figs 7–9 (see Supplementary Note 4
for details).

By solving the above self-consistent equations, we can obtain {a0, a1,...} and
{b0, b1,...}, which govern the whole process of GAPR. With these two sets of
probabilities, we can compute any quantities of interest, such as the total number of
GAPR steps, the fraction of APs, the relative size of the GCC and the RGB, and so
on (Supplementary Note 4; Supplementary Figs 10–12).

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.
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