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Insights into psychosis risk from leukocyte microRNA
expression
CD Jeffries1, DO Perkins2, SD Chandler3, T Stark4, E Yeo5, J Addington6, CE Bearden7,8, KS Cadenhead9, TD Cannon10, BA Cornblatt11,
DH Mathalon12, TH McGlashan13, LJ Seidman14, EF Walker15,16, SW Woods13, SJ Glatt17 and M Tsuang3

Dysregulation of immune system functions has been implicated in schizophrenia, suggesting that immune cells may be involved in
the development of the disorder. With the goal of a biomarker assay for psychosis risk, we performed small RNA sequencing on
RNA isolated from circulating immune cells. We compared baseline microRNA (miRNA) expression for persons who were unaffected
(n= 27) or who, over a subsequent 2-year period, were at clinical high risk but did not progress to psychosis (n= 37), or were at high
risk and did progress to psychosis (n= 30). A greedy algorithm process led to selection of five miRNAs that when summed with +1
weights distinguished progressed from nonprogressed subjects with an area under the receiver operating characteristic curve of
0.86. Of the five, miR-941 is human-specific with incompletely understood functions, but the other four are prominent in multiple
immune system pathways. Three of those four are downregulated in progressed vs. nonprogressed subjects (with weight -1 in a
classifier function that increases with risk); all three have also been independently reported as downregulated in monocytes from
schizophrenia patients vs. unaffected subjects. Importantly, these findings passed stringent randomization tests that minimized the
risk of conclusions arising by chance. Regarding miRNA–miRNA correlations over the three groups, progressed subjects were found
to have much weaker miRNA orchestration than nonprogressed or unaffected subjects. If independently verified, the leukocytic
miRNA biomarker assay might improve accuracy of psychosis high-risk assessments and eventually help rationalize preventative
intervention decisions.
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INTRODUCTION
Schizophrenia affects about 1% of the general population,
typically emerges in late adolescence and early adulthood, and
is usually chronic, relapsing and disabling.1,2 However early
identification and treatment of psychosis is associated with better
clinical outcome,3 and interventions in persons experiencing high-
risk symptoms show promise in preventing the development of
psychosis.4 Clinical diagnostic criteria for the psychosis prodrome
identify persons with a 13–22% 2-year psychosis risk.5–11 While
much higher than the general population risk, this relatively low
conversion rate hampers the development and implementation of
preventative interventions. Thus, for persons at high risk a
biomarker assay that improved risk prediction would be of great
value. In addition, employed biomarkers may illuminate mechan-
isms involved in the emergence of schizophrenia and potentially
point towards new therapeutic targets.
The tissue used for biomarker discovery should represent the

disease pathology. Regarding schizophrenia, biomarker studies
have often considered circulating immune cells as easily
accessible proxies for the brain that may reflect an environmental

or genetic vulnerability that is shared with the brain.12,13 More-
over, peripheral immune cells are now known to regulate
brain functions involved in schizophrenia, including cognition,14

behavioral responses to stress,15 neural plasticity16 and
neurogenesis.17–19 In addition, converging reports from genetic,
epidemiological, clinical and post-mortem studies implicate
dysregulation of both the innate and adaptive immune systems
in schizophrenia.20 In particular meta-analyses have found
schizophrenia to be associated with elevations in blood levels of
specific analytes,21,22 as well as shifts in adaptive immune cell
populations.23 We and others have found that alterations in plasma
analyte levels predicted psychosis in persons meeting clinical
criteria for psychosis risk.24,25 Thus, peripheral immune cells may
be of value for schizophrenia biomarker discovery because their
dysregulation may be directly linked to emerging psychosis.
Here we report the results of small RNA sequencing on RNA

isolated from circulating immune cells, emphasizing the compar-
ison of expression in persons at clinical high risk for psychosis who
progressed to psychosis (schizophrenia or a related disorder) vs.
those who remained psychosis-free. We focused on microRNAs
(miRNAs), ~ 22 nucleotide single-stranded RNA molecules that are
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now generally appreciated as regulators of mRNA processing in
translation and doubtless involved in many developmental and
pathological processes in animals.26–28 In particular, alterations in
miRNA abundance may indicate a shift in immune system state.
The present work offers a preliminary connection of immune cell
miRNA levels and the likelihood of transition from clinical high risk
to psychosis, providing further evidence of association of immune
dysregulation.

MATERIALS AND METHODS
As described previously, the North American Prodrome Longitudinal Study,
Phase 2 (NAPLS 2)29 is an eight-site observational study of the predictors
and mechanisms of conversion to psychosis in persons at elevated risk
indicated by the Criteria of Psychosis-Risk States.30 The full NAPLS 2 cohort
includes 764 high-risk and 280 demographically similar unaffected subjects
between the ages of 12–35. The study was approved by the Institutional
Review Board at each site, and each subject provided written informed
consent or assent, with a parent or guardian consenting for subjects o18
years old.
In the present analysis, we included all high-risk subjects with RNA

samples who had either progressed to psychosis within 2 years (n= 30) or
who remained nonprogressed at 2-year follow-up (n= 37), as of February
2012. Also included were some unaffected comparison subjects (n= 27)
who did not meet high-risk criteria and had no personal or family history of
a psychotic disorder.

Assessments
Clinical assessments were done every 6 months and subjects followed for
up to 2 years. Participants were screened using the Structured Interview for
Psychosis-Risk Syndromes and rated with the Scale of Psychosis-Risk
Symptoms as defined by the Criteria of Psychosis-Risk States: attenuated
psychotic symptoms, brief intermittent psychotic symptoms, substantial
functional decline combined with a first-degree relative with a psychotic
disorder, or schizotypal personality disorder in individuals o18 years
old.30 The Structured Clinical Interview for DSM-IV31 was used to determine
psychiatric diagnoses.
Data on prescription medications were based on self-reports and/or

parental reports. Socioeconomic status was estimated by maximum years
of education of mother or father.

Assays of leukocytes for miRNAs
Immediately after phlebotomy, leukocytes were isolated on a filter and
RNA preserved with RNAlater (Qiagen, Venlo, The Netherlands). Samples
were stored at − 20 °C until processing. RNA was extracted using a
modification of the LeukoLOCK procedure (Life Technologies, Foster City,
CA, USA).32 Small RNA libraries were prepared with Illumina TruSeq kits
(Illumina, San Diego, CA, USA) following manufacturer's protocol. Barcoded
libraries were combined in equimolar amounts (10 nmol l− 1 each), then
diluted to 4 pmol l− 1 for each flowcell lane and sequenced by Illumina
HiSeq Sequencing Systems (Illumina).
The Illumina processing pipeline v1.5 (Illumina) was used for base-calling

using the SCARF text format. Each of 2588 mature miRNA sequences from
miRBase v21 was sought as an exact sequence match within each read. From
an initial set of 100 samples, we excluded 6 (3 unaffected, 1 nonprogressed, 2
progressed) with low-abundance reads, leaving 27 unaffected and 67 high-
risk subjects. The analysis was also repeated using trimmed subsequences of
canonical miRNA sequences to account for isoform diversity.

Normalisation
For all analyses, we included the 136 miRNAs that were robustly expressed,
defined as ⩾ 10 000 total reads in the 94 subjects. However, different
subjects sometimes had many miRNAs with high read counts or many with
low read counts. For one pair of miRNAs, this skewness would already
imply high correlations. Thus, to avoid spuriously high correlations from
skewness, we divided read counts for each sample by the average of read
counts for the top 30 miRNAs of that sample, forming quotients
(Supplementary Materials and Methods) and reducing the ratios max-
imum:minimum among the top 30 miRNAs. For each miRNA, we then used
the average and s.d. over all unaffected subjects’ quotients for that miRNA
to process all quotients into z-scores; final values for each miRNA were in a
4× range over all 94 samples.

One nonprogressed sample was confidentially submitted in technical
duplicates for sequencing. After normalization, the 136 robustly expressed
miRNAs had a Pearson correlation of 0.61, achieving the 98.4th percentile
of all 4371 possible correlations over 94 samples. If the 20 least-correlated
miRNAs were dropped, the correlation rose to 0.80. Visually, the quality of
this correlation as a test of the normalization process can be appreciated
from a graph in Supplementary Materials and Methods. Numerically, the
correlation in 136-dimensional space of two vectors having entries
generated from a normal distributions would exceed 0.61 with probability
9.3E− 15.

Trimmed miRNA sequences
Each canonical mature miRNA sequence shown in miRBase is only a
representative of multiple RNA species arising from the same precursor,33

and other isoforms might be important in cell functions.34 To investigate
the potential impact of multiple isoforms, we trimmed two bases from the
5ʹ end and four bases from the 3ʹ end of each canonical sequence,
completely retabulated matches, and reanalyzed read count data. This had
the effect of multiplying the grand total of all miRNA matches by ~ 1.79.
However, rerunning normalization and analyses with trimmed miRNA
sequences led to similar choices of informative miRNAs for the full set of
samples from trimmed vs. untrimmed data (Supplementary Materials and
Methods). That is, the first, second, and fourth chosen miRNAs for the full
data were, respectively, the first, second, fifth chosen for trimmed data,
and so on.

Construction of a classifier that best differentiated nonprogressed
from progressed subjects
We detected ⩾ 1 reads for 1569 of the 2588 canonical miRNAs in miRBase
v21 but limited our analyses to the 137 miRNAs with at least 10 000 reads
over 94 subjects. One miRNA (miR-486-5p) was discarded as super-
abundant (62% of all reads), leaving 136 miRNAs.
We employed a greedy algorithm (Supplementary Materials and

Methods) to develop our classifier. It selected first the one miRNA that
best distinguished nonprogressed from progressed, based on the Student
t-test P-value. The greedy algorithm then sought to add a weighted,
second miRNA that best improved the overall Student t-test P-value, if
possible. The greedy algorithm continued to add miRNAs to the sum until
no improvement in the metric was possible or a limit was reached. We
predicted (correctly) that classifier functions with low Student t-test P-
values would also achieve high area under the curve of the receiver
operating characteristic (AUC of ROC), thereby diversifying performance
objectives.
Using the Student P-value as the selection metric was not logically the

same as optimization of various geometric fits as in conventional linear
regressions. That is, we sought to distinguish the groups as sets, not as
abstract points in space separated by a hyperplane in some way. In our
tests enforcing the same limits on the number of selected markers, the
AUCs obtained were about the same or superior to those from standard
geometric methods (data not shown).
Notably, the nonzero weights of miRNA values we used were all +1. In

practice, the greedy algorithm typically terminated after ⩽ 10 iterations
(selection of ⩽ 10 of 136 miRNAs, each weighted +1 in a classifier function).
Considering its construction, we call this greedy algorithm ‘Coarse
Approximation Linear Function’ (CALF); a similar algorithm has been
developed for distinguishing pairs of markers.35 CALF is now freely
available at https://cran.r-project.org/web/packages/CALF/index.html.
Although using real numbers as weights as in conventional regression
would presumably yield better metric (and AUC) values, using +1 avoided
instability. That is, setting aside a few samples and re-computing optimal
real weights in conventional methods generally would not yield exactly the
same real numbers, but stable (identical) weights would be more likely
when limited to +1 (Supplementary Materials and Methods). In mathema-
tical experiments with real data, we have found that in dimensions 45,
using few +1 weights can approximate target functions almost as well as
using the same number of real-valued weights. This surprising fact is due,
in higher dimensions, to the exponentially increasing crowding of
directions defined by all such coarse vectors (as rays from origin)
among the directions defined by all real vectors as they penetrate the
cube with vertex components +1 (Supplementary Materials and Methods).
However, using any classifier algorithm that automatically selected a
small subset of markers and otherwise passed rigorous randomization tests
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(as in Figure 1 above) would have been acceptable from the standpoint of
prudent classifier construction processes that support reproducibility.

Assay validation
Real time quantitative PCR validation of sequencing results was done with
a total of 37 clinical high-risk subjects who did not progress to psychosis
within 2 years and 30 others who did progress. Following conventional
reverse transcription, cDNA synthesis, and preamplification steps, samples
were assayed with high-throughput real-time qPCR (HT-PCR) using
Fluidigm technology (San Francisco, CA, USA). A total of 21 miRNAs were
assayed, including the 5 miRNAs selected in the classifier function
(equation (1)). Data for 32 nonprogressed subjects and 24 progressed
subjects could be compared with read counts. The 56 Spearman
correlation of PCR values vs. RNA-seq read values averaged 0.64 (s.d.
0.11); minimum was 0.30. It follows that the 56 Spearman correlations with
such values would arise by chance with probability o5.2E− 30.
Furthermore, a simple (but likely suboptimal) way to modify the classifier

(equation (1)) to use PCR data is to find for each of the subjects the
average over the 21 miRNAs of Cq values. The averages can be subtracted
from the raw Cq values to reduce gross sample-to-sample biases. A signal
remains when selected miRNAs are relatively high within one group and
low in the other. The Student P-value for such a classifier from equation (1)
was 0.0012 and the AUC was 0.72.
In summary, PCR values and RNA-seq values were consistent. However,

switching to PCR technology in an extension of the present work would
properly assay anew a pool of the five selected miRNAs in equation (1), as
well as other miRNAs that could be selected by CALF if the five were
disallowed, all leading to a revised classifier function similar but not
necessarily identical to equation (1).

Randomization tests to assess significance of classification
Prudent case/control classifier construction can include six steps. First, a
classifier algorithm is applied to true data, yielding a performance number
(for example, AUC). Next, case and control memberships of all samples are
randomly permuted, the model-building algorithm is re-applied to the
pseudo data exactly as to the true data, and the performance number
recorded—all repeated multiple times (for example, 1000 times). If such
randomization tests indicate clear ability of the algorithm to distinguish

case from control, further development of the classifier is indicated. Then
the same algorithm is applied multiple times (for example, 1000 times) to
random 80% subsets of true cases and controls. The resulting classifiers are
integrated to produce a final classifier. The integrated classifier is tested
with true data. If the integrated classifier performs well, then it is applied to
external data (beyond the means and scope of the present pilot study).
This general process and its many modern enhancements are widely used
in drug design, development of cancer biomarkers, genomic research and
other fields.37–41 It can be attempted with any classifier algorithm. We
emphasise publication of histograms of randomization tests (see Figure 1)
or the logical equivalent to reduce readers’ scepticism. For example, a
successful training set histogram would reduce likelihood of someone
repeatedly adjusting an algorithm post hoc to optimize performance with
both training and external data.
It should be emphasized that the randomization tests herein are applied

to AUCs of true and pseudo classifiers; this is logically distinct from
applying the true classifier to true and randomized data, as is often done.

Figure 1. Histogram of one AUC from true data vs. 1000 AUCs of
classifiers built by the same greedy algorithm applied to pseudo
data (NP and P labels randomly permuted). Fitted with a beta
distribution, the AUC from real data indicates a P-value of 0.012.
Since 17 random AUCs of 1000 by chance exceed the true AUC, an
algebraic method36 gives alternative P-value= 0.018. Thus, the
performance of the Greedy Algorithm limited to selection of at
most six markers and applied to the full data set is unlikely to be
chance. AUC, area under the curve of receiver operating
characteristic.

Table 1. Demographic and clinical characteristics of study subjects

Unaffected
comparison
(UC) n=29

Clinical high
risk, not

psychotic (CHR-
NP) n= 37

Clinical high
risk, psychotic
(CHR-P) n=30

Age, average (s.d.) 19.3 (4.4) 18.1 (3.8) 18.7 (3.7)

Ancestry
% Caucasian 61%, 65% 52%
% African 32% 13.5% 19%
% Asian 7% 13.5% 19%
% Mixed 0% 8% 10%

Sex, % male 68% 62% 74%
SES, average (s.d.) 7.5 (1.7) 6.5 (1.7) 6.2 (1.6)

Peripheral blood mononuclear cells
Neutrophils % 56 (11) 55 (13) 55 (10)
Lymphocytes % 34 (9) 35 (11) 33 (9)
Monocytes % 8 (2) 7 (3) 8 (3)
Eosinophils % 2 (3) 2 (2) 2 (2)
Basophils % 1 (1) 1 (1) 1 (1)

SOPS scores, average (s.d.)
Totala 4.8 (5.3) 36.8 (12.4) 45.0 (13.0)
Positivea 1.3 (1.8) 12.6 (4.4) 13.9 (3.7)
Negativea 1.3 (1.8) 11.5 (5.9) 14.0 (5.9)
Disorganizeda .8 (1.1) 4.9 (2.6) 6.2 (3.4)

Generala,b 1.4 (1.7) 7.8 (4.5) 10.9 (4.7)

Prescription medication
Antipsychoticc 0% 27% 13%
Antidepressantd 3% 24% 23%
Stimulant 0% 7% 6%
Mood stabilizer 0% 0% 3%
Benzodiazepinee 0% 3% 13%
NSAID 0% 0% 0%
Antibiotic 0% 0% 0%

Substance use
Tobacco usef 7% 30% 39%
Alcohol use 41% 38% 35%
Marijuana useg 7% 24% 32%

Abbreviations: NSAID, non-steroidal anti-inflammatory drug; SES, socio-
economic status. aCHR-P vs UC t-test P-valueo0.0001, CHR-NP vs UC t-test
P-valueo0.0001. bCHR-P vs CHR-NP t-test P-value= 0.02. cCHR-P vs UC FET
P-value= 0.047, CHR-NP vs UC FET P-value= 0.001. dCHR-P vs UC
FET P-value= 0.011, CHR-NP vs UC FET P-value= 0.002. eCHR-P vs UC FET
P-value= 0.047. fCHR-P vs UC FET P-value= 0.001, CHR-NP vs UC
FET P-value= 0.02. gCHR-P vs UC FET P-value= 0.020, CHR-NP vs UC FET
P-value= 0.056.
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Nonetheless, best practices do not insure that the only or best classifier
has been developed. Furthermore, selected markers might only be
surrogates for some deeper, causal markers unknown or inaccessible to
the experimenter. It is always possible that systematic bias could have
entered the analysis as misdiagnoses or some fundamental chemical bias
in RNA-seq processing. Ultimately, the true utility of classification by
miRNAs will rest with testing samples from additional subjects.

RESULTS
Participant characteristics
Table 1 provides a description of subjects. All at high-risk met
attenuated psychosis criteria. The 30 progressed included: 14 with
schizophrenia; 11 with psychosis, not otherwise specified; 2 with
major depression with psychotic features; and 1 each with
schizoaffective, delusional and psychotic bipolar disorder.

Using individual miRNAs
The smallest Student t-test P-value for a miRNA for nonprogressed
vs progressed data was α= 0.0053 (miR-941) (see Supple-
mentary Materials and Methods). Thus, Bonferonni control for
multiple comparisons over 136 miRNAs would declare no
individual miRNA as a statistically significant biomarker. However,
as explained by Fredrickson et al.,42 it can indeed happen
that the association between a set of markers and phenotypes
reaches a high level of reliability while individual markers in the
same set fail to do so. This principle is heavily employed in the
present work.

Using sets of miRNAs for psychosis-risk prediction
The performance of the miRNA classifier developed from all
nonprogressed and progressed subjects using the sum of the first
six miRNAs chosen by CALF was AUC= 0.88. This value was
superior to 983 of 1000 AUCs from exactly the same algorithm
applied to randomized data (Figure 1). Next we applied CALF to
1000 random selections of 80% subsets of nonprogressed subjects
and 80% subsets of progressed subjects. The 7 miRNAs that were
selected in at least 225 of the 1000 trials are shown in Figure 2,
and 5 of these were also among the six in the initial classifier
developed from all subjects. Our integrated classifier was thus the
sum of the five miRNAs chosen by both approaches, where the '+'

means the value (z-score of normalized data) is added and the '–'
means the value is subtracted from the final score:

-miR-941þmiR-103a-3p -miR-199a-3p -miR-92a-3p -miR-31-5p ð1Þ
The classifier function (equation (1)) generally results in higher
values for progressed (mean= 1.24, s.d. = 0.27) than nonpro-
gressed subjects (mean= -0.78, s.d. = 0.22), with AUC= 0.86
(Figure 2). In addition (equation (1)) achieved AUC= 0.75 on
application to unaffected vs progressed subjects. Regarding ranks
of total read counts among the 136 miRNAs, those in equation (1)
ranked 39, 18, 119, 1, 115, respectively, implying the 5 miRNAs in
equation (1) have diverse frequencies among the top 136.
Random permutations of true data will have chance patterns

that algorithms can exploit to create seemingly convincing
classifiers. As shown in Figure 1, many pseudo classifiers achieved
AUCs well in excess of 0.5, the customary value of random
classifiers using prior probabilities. However, as shown in Figure 1,
only 17 of 1000 pseudo AUCs exceeded the true AUC, yielding36 a
P-value of (17+1)/(1000+1) = 0.018. Alternatively, fitting a beta
distribution to a histogram of pseudo AUCs using EasyFit
(MathWave, Dnepropetrovsk, Ukraine) led to an estimated P-
value = 0.012.
Prescription medication use is common in subjects at high-risk

of psychosis43 (Table 1) and may affect leukocytic miRNA
expression. To investigate the effects, the 5-miRNA sum
(equation (1)) was applied to 1000 random selections of 25
samples from the set of nonprogressed and 25 samples from the
set of progressed subjects. The average AUC was 0.86 with s.
d. = 0.029. We then selected 1000 times random subsets in 2 ways:
to maximize or minimize the number of treated subjects plus a
number of untreated subjects needed to make a total of 25. The
resulting AUCs were in [0.83, 0.87]. This experiment therefore
provided evidence of little influence of medications on the
performance of the classifier (equation (1)) (Supplementary
Materials and Methods, Supplementary Table S1).

miRNA–miRNA correlation networks within groups
We next explored the degree of co-regulation among 136 robustly
expressed miRNAs. We randomly selected 1000 times sets of 25
subjects from each of the 3 groups. From each selection, Pearson
correlations of all 9180 distinct pairs of 136 miRNAs were

Figure 2. (a) The Greedy Algorithm was applied to 1000 selections of random 80% subsets of nonprogressed subjects and random 80%
subsets of progressed subjects. Each time up to six markers could be chosen. The seven most frequently chosen markers are shown with their
selection rates. The solid bars indicate the five markers that were also selected in the first six markers chosen by the Greedy Algorithm for the
full data set (Figure 1), yielding as a sum of z-scores the classifier function in sum (equation (1)). This function applied to the full data yields
AUC= 0.86. (b) ROC of the five-miRNA classifier function (equation (1)). Dotted lines are 95% confidence levels, and the dashed line is
hypothetical performance of a random classifier. AUC, area under the curve; miRNA, microRNA; ROC, receiving operating characteristics.
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Figure 3. Graphs from miRNA–miRNA correlations. Edges represent strong correlations. Looped regions are common subgraphs. Networks
shown are strongly correlated miRNAs among unaffected controls. miRNA, microRNA.

Figure 4. Graphs from miRNA–miRNA correlation with the same criteria as in Figure 3 but for nonprogressed subjects. This graph is similar to
that in Figure 3. miRNA, microRNA.
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calculated. Surprised by the consistent differences group vs.
group, we redid all calculations with random subsets of 23 and 21
subjects instead of 25. This yielded essentially the same patterns
(Supplementary Materials and Methods). Correlation graphs of
miRNA data have been reported elsewhere in neuroscience.44

Restricting attention to the 40 most robustly expressed miRNAs
(that include 3 miRNAs from equation (1), namely, miR-941,
miR-103a-3p, and miR-92a-3p), we contrasted miRNA–miRNA
correlation networks over the 3 groups by randomly selecting
1000 times subsets of 25 samples from each group and calculating
all 780 Pearson correlations of pairs (from 40 miRNAs represented
by 25-dimensional vectors). In each group and for each pair of
miRNAs, we tabulated the number of times of 1000 possible that
the correlation exceeded 0.5878 (P-value =~ 1.00E− 3 for normally
distributed 25-dimensional vectors, hence expecting 0.78 times
among 780 random pairs to exceed that threshold). Such
correlations were much more frequent than chance; those
occurring in 4500 of 1000 trials became edges in graphs in
Figures 3–5 (drawn with Pajek http://pajek.imfm.si/doku.php).
Clearly, highly correlated miRNAs were more numerous in
nonprogressed and unaffected subjects than in progressed
subjects. Notably, miR-941 and miR-103a-3p were both included
in the correlation networks for unaffected and nonprogressed
subjects but absent from the network for progressed subjects.

Bioinformatic analyses
Although the seed region (nucleotides 2 through 8, numbered
from 5ʹ end) was originally proposed to define the agency of
miRNA targeting,45,46 recent reports suggest that all of the mature
miRNA sequence may be involved. Other types of targeting
include ‘offset’ (starting at base 3), ‘supplementary’ (additional

binding in a second region) and ‘compensatory’ (supplementary
targeting that tolerates limited mismatches in the seed).47 Also,
‘centered’ sites were found as a class of miRNA target sites that
lack both perfect seed pairing and 3ʹ-compensatory pairing and
instead have 11–12 contiguous Watson–Crick pairs near the center
of the canonical miRNA.48 Regarding prevalence of non-seed
binding, a transcriptome-wide survey for miR-155 found that
~ 40% of miR-155-dependent Argonaute (Ago) binding occurs at
sites without perfect seed matches.49 In mouse brain, G-bulge
sites (positions 5 or 6 in the seed) were found often bound and
regulated by miR-124, and more generally, bulged sites comprise
⩾ 15% of all Ago-miRNA interactions.50 An analysis of 18 000 high-
confidence miRNA–mRNA interactions found ~ 60% of seed
interactions to be noncanonical, containing bulged or mis-
matched nucleotides.51 In summary, evidence suggests miRNA
targeting is not necessarily a function of base pairing of the seed
region.
Moreover, many canonical miRNAs are very similar as

sequences. To filter our list of 136, we used Ingenuity (QIAGEN).
The Ingenuity list typically represents sets of miRNAs with very
similar sequences by just one from the set. We noted that
consequently only 92 of the 136 robustly expressed miRNAs were
in the Ingenuity miRNA targeting database (for example, the nine
let-7 species in our 136 were represented by let-7a-5p). There are
5 miRNAs in equation (1), so 10 pairs. We calculated the Smith–
Waterman sequence alignment score52 for all 10 pairs using
weights: match +1, mismatch − 1, gap − 1. Pairs of the five miRNAs
in equation (1) had strong similarities. For example, the score
11 − 0 − 2 = 9 is reached for miR-199a-3p 5ʹ-ACAGUAGUCUGCA
CAU_UGGUUA-3' and miR-941 5'-CACCCGGCUGUGUGCACAUG

Figure 5. Graphs from miRNA–miRNA correlations with the same criteria as in Figures 3 and 4 but for progressed subjects. Evidently much
organisation of miRNA networks is lost in subjects who eventually progressed to psychosis. miRNA, microRNA.
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UGC-3ʹ because they contain the common subsequence
GU-UGCACAU-UG (Supplementary Materials and Methods).

The average of the 10 alignment scores was 6.4. Then we
selected 1000 times a random set of 5 miRNAs from the 87 in
Ingenuity excluding the 5 in equation (1) and calculated the 10
Smith–Waterman scores and their 1000 averages. The average was
5.1. A total of 19 times of 1000 the random averages were ⩾ 6.4.
Thus, the Monte Carlo36 estimated P-value that the true sequence
similarities are due to chance is 0.02 (Supplementary Materials and
Methods). Other Smith–Waterman weight choices including
extreme choices with mismatch or gap equal to − 100 (so exact
match subsequences) led to the same conclusions (data not
shown). In summary, taken as full, canonical sequences, the five
miRNAs selected in equation (1) from nonprogressed vs pro-
gressed analysis were as sequences more similar than would be
expected by chance.

DISCUSSION
This study suggests that expression patterns of small, regulatory
miRNAs in leukocytes differentiate persons at clinical high risk for
psychosis who subsequently develop psychosis from those who
do not. While no single miRNA exhibits statistically significant
predictive power, we found that a sum of five abundantly
expressed miRNAs produced a risk classifier that survives
randomization testing. That is, stringent randomization tests have
implied: original data likely contained miRNA information that
distinguished nonprogressed from progressed; the normalization
procedure we used likely did not obliterate that information; and
the greedy algorithm (CALF) found a classifier function with AUC
performance better than chance would readily allow. Randomiza-
tion tests might seem obviously necessary, but many reports of
classifier constructions in the scientific literature do not
include them.
Our results are consistent with a study conducted by Gardiner

et al.53 that compared miRNA expression in 112 schizophrenia
subjects to that of 76 unaffected comparison subjects. They
reported 83 miRNAs as downregulated, 30 of which were robustly
expressed and thus considered in our analyses; remarkably,
miR-92a-3p, miR-199a-3p, miR-31-5p in equation (1) were among
these. There was, however, no apparent overlap between our
study and a second investigation of monocyte miRNA expression
in schizophrenia.54 Certain other studies did not consider the five
miRNAs in equation (1) in their analyses.55–58

miRNA regulation of gene expression in humans is based on
imperfect base-pair binding of the mature miRNA to a targeted
mRNA. The canonical sequences of the five miRNAs selected from
nonprogressed vs. progressed analysis in equation (1) are
significantly more similar than expected. This finding implies that
these five miRNAs may in some way co-regulate gene expression
and may be in themselves co-regulated. Finally, the remarkably
different miRNA–miRNA correlation networks in Figure 3 suggest a
shift in network orchestration in persons who progressed to
psychosis.
Our findings require further investigation in terms of affected

genes and cellular products. Most informative would be mRNA:
miRNA co-expression analyses. Assuming correct and representa-
tive sampling and reproducibility of lab assays, and noting
favorable outcomes of randomization tests, the classifiers and
regulatory network patterns herein are unlikely to be due to
chance. However, verification is needed with additional samples,
possibly using an alternative assay technology such as HT-PCR.
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