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The characteristic features of Alzheimer’s disease (AD) are the appearance of extracellular amyloid-beta (A) plaques and neu-
rofibrillary tangles in the intracellular environment, neuronal death and the loss of synapses, all of which contribute to cognitive 
decline in a progressive manner. A number of hypotheses have been advanced to explain AD. Abnormal tau phosphorylation 
may contribute to the formation of abnormal neurofibrillary structures. Many different structures are susceptible to AD, including 
the reticular formation, the nuclei in the brain stem (e.g., raphe nucleus), thalamus, hypothalamus, locus ceruleus, amygdala, 
substantia nigra, striatum, and claustrum. Excitotoxicity results from continuous, low-level activation of N-methyl-D-aspartate 
(NMDA) receptors. Premature synaptotoxicity, changes in neurotransmitter expression, neurophils loss, accumulation of amyloid  
-protein deposits (amyloid/senile plaques), and neuronal loss and brain atrophy are all associated with stages of AD 
progression. Several recent studies have examined the relationship between A and NMDA receptors. A-induced spine loss 
is associated with a decrease in glutamate receptors and is dependent upon the calcium-dependent phosphatase calcineurin, 
which has also been linked to long-term depression.
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INTRODUCTION

Dementia in the elderly population is most commonly 
caused by Alzheimer’s disease (AD). The characteristic 
features of AD are the appearance of extracellular amy-
loid- (A) plaques and neurofibrillary tangles in the intra-
cellular environment, neuronal death and the loss of syn-
apses, all of which contribute to cognitive decline in a pro-
gressive manner. AD is a terminal and incurable disease.1) 
The most AD important risk factor is age, with the preva-
lence of AD rising exponentially after 65 years of age.2,3) 
The overall prevalence of AD is expected to double within 
20 years as average lifespan increases in developing 
nations.

Neurodegenerative conditions associated with cogni-

tive decline, including AD, are frequently associated with 
changes in the number and shape of dendritic spines prior 
to neuronal death.4,5) Neurodegeneration in AD patients is 
characterized by changes in neurotransmitter expression, 
reduced neutrophil numbers, synaptotoxicity, accumu-
lation of A-protein deposits (amyloid/senile plaques), 
and large scale neuronal death and neural atrophy in the fi-
nal phase of the disease.6-10) A number of studies have sug-
gested that A accumulation may contribute to dendritic 
spine loss.4,5) Deficits in memory and other cognitive func-
tions in the initial stages of the disease are associated with 
changes in the hippocamus and the entorhinal cortex.11) As 
many as 80% of the neurons in the hippocampus may die 
over the course of AD, and this progressive loss is mani-
fest in the cognitive changes and other symptoms seen in 
AD patients.9,11)

In this review article, we will summarize the anatomy, 
pathogenesis, neural mechanisms, the role of tau, N-meth-
yl-D-aspartate (NMDA) receptors and brain-derived neu-
rotrophic factor (BDNF), animal models, risk factors, and 
prevention of AD. These topics are of critical importance 
due to the ever-increasing prevalence of AD.
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Fig. 1. Pathogenic hypotheses for synaptic and neuronal toxicity in Alzheimer’s disease.

BRAIN AND ANATOMY

Memory functions are primarily mediated by the hippo-
campus and it’s associated structures (e.g., subiculum, 
dentate gyrus, parasubiculum, presubiculum, and en-
torhinal cortex).12-14) Accelerated hipocampal atrophy that 
is especially marked in the frontal-temporal horn and atro-
phy of the cerebral cortex is associated with AD. Early- 
phase neurocognitive symptoms of AD include memory 
and spatial learning deficits, both functions associated 
with the hippocampus.15-19) Application of A oligomers 
reduces the density of spines in organotypic hippocampal 
slice cultures and dissociated cultured neurons.20-24) 
Significant atrophy of the entorhinal cortex occurs in AD 
and histological evaluation reveals neuronal degener-
ations and the presence of neurofibrillary tangles within 
layers II-IV. Neuritic plaques are frequently seen in layer 
III, while layers V and VI have relatively fewer neuro-
fibrillary tangles compared to layers II and IV.14,25,26) In 
addition, neuronal loss in layer II damages the perforant 
pathway or the projection of the entothinal cortex into the 
hippocampus. Efferent connections from the hippo-
campus to the cortex are inhibited by the progressive de-
generation of neurons from layer IV.14,27) Furthermore, 
damage to layer IV and layer II within the entorhinal cor-
tex has been associated with pathological alterations in the 
closely related hippocampal formation. Prominent neuro-
nal atrophy and neurofibrillary tangle deposition are seen 
in the CA1 region of the hippocampus.14,28) 

NEURAL MECHANISMS

Cell types affected by AD include: locus ceruleus, the 
nuclei of the brain stem (e.g., raphe nucleus), reticular for-
mation, amygdala, substantia nigra, striatum, hypothal-
amus, thalamus, and claustrum, and select regions of the 
cerebral cortex. The neuronal types affected vary by re-
gion according to the expression of neurotransmitters, 
neuromodulators, and neuropeptides. The degenerative 
process results in cerebral atrophy and neuron loss.29-32) 
Disease pathobiology affects non-neuronal cells as well; 
oligodendroglia, astrocytes, blood vessels, microglia, and 
the choroid plexus all undergo degenerative processes. 
Transgenic mouse models of AD indicated that amypoid 
plaques occur in the vicinity of structural changes capable 
of altering brain function, including neurite dystrophy and 
spine loss.5,33-36) Synaptic loss strongly correlates with 
cognitive deficits in AD. Synapse loss is likely a morpho-
logical reflection of the synaptic dysfunction that begins 
early in the disease.33,37-40) Early structural studies of post-
mortem brain tissues demonstrated that AD patients ex-
hibited a reduced number of dendritic spines and reduced 
synapse density in the hippocampus and cortex relative to 
age-matched control brain tissues. There was a direct cor-
relation between increased dendritic spine loss and wor-
sening mental status. The progressive atrophy of dendritic 
spines is therefore proportional to AD pathogenesis and 
may represent accurate indicator of advancing disease.5,41) 
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PATHOGENESIS OF ALZHEIMER’S DISEASE

A number of hypotheses have been proposed that may 
explain AD pathogenesis: (a) the A-amyloid hypothesis, 
(b) the A-amyloid oligomer hypothesis, (c) the pre-
senilin hypothesis, (d) the Ca2+ dysregulation hypothesis, 
(e) the lysosome hypothesis, and (f) the tau hypothesis 
(Fig. 1). Although the amyloid hypothesis is the best-de-
veloped hypothesis,42,43) multiple reports have suggested a 
weak correlation between A deposition and neuronal 
atrophy and cognitive impairment.43,44)

A is the most widely studied component of AD 
pathogenesis. The isolation and partial sequencing of the 
meningovascular A by George Glenner and Caine Wong 
in 1984 was a turning point for modern research of the fun-
damental mechanisms of AD.45) Multiple forms of A are 
derived by proteolytic cleavage from the type I cell-sur-
face protein amyloid precursor protein (APP). The amy-
loid hypothesis broadly posits that excessive amounts of 
A peptide in the brain (particularly A42) are respon-
sible for AD-related pathology, including amyloid pla-
ques, neurofibrillary tangles, synapse loss, and eventual 
neuronal cell death.2,3,46,47)

Imaging of amyloid plaques reveals the rapid formation 
of plaque structures over a 24 hour time period; dystrophic 
swelling of adjacent dendrites begins to appear within one 
week.48,49) Instability of spines in the vicinity of A pla-
ques reflects dynamically dysfunctional plasticity in neu-
ronal structures. These processes enhance functional defi-
cit in the regions surrounding plaques.48)

ALZHEIMER’S DISEASE AND  
NMDA RECEPTORS

Glutamate is the principal excitatory neurotransmitter of 
the Central Nervous System (CNS). Glutamate mediates 
neuronal plasticity, neural transmission, memory proc-
esses, and learning.50) The pathogenesis of AD is strongly 
associated with alterations in glutamate signaling and the 
tissues affected by AD contain high densities of glumater-
gic neurons.9,51-56) Early degeneration occurs to the neo-
cortex pyramidal neurons of layers V and III57,58) and to the 
glutamate-innervated cortical and hippocampal neurons.59) 
‘Excitotoxicity’ occurs as a result of the chronic, moderate 
activation of NMDA receptors, leading to neurodege-
neration.9,60-63) The excitotoxicity hypothesis is supported 
by clinical evidence indicating that the NMDA receptor 
antagonist memantine slows AD progression.64) Prolonged 
Ca2+ elevation suppresses synaptic function, leading to 

subsequent synaptotoxicity and eventually atrophy; these 
events correlate with the loss of learning and memory 
functions in AD.56,64,65) Multiple neurotrophic factors 
have been demonstrated to enhance defense against 
excitotoxicity. Fibroblast growth factor treatment alters 
expression of NMDA receptors in cultured cortical and 
hippocampal neurons, protecting against glutamate 
toxicity.66)

NMDA receptors mediate synaptic plasticity, critical 
for memory and learning functions, through long-term po-
tentiation (LTP).67-69) Synaptic plasticity is an essential 
component of memory and learning.5,70) LTP of synaptic 
transmission and permanently altered expression of 
post-synaptic AMPA (-amino-3-hydroxy-5-methyl-4- 
isoxazolepropionic acid) receptors occurs as a result of 
high levels of synaptic activity and open NMDA 
receptors.71) However, mild synaptic stimulation elicits 
long-term depression (LTD) in active NMDA receptors.5,72) 
Several recent studies have examined the relationship be-
tween A and NMDA.73) A-induced spine loss is asso-
ciated with a decrease in glutamate receptors, also required 
for LTD, in a calcineurin-dependent manner.3,20,74-76) It is 
widely believed that the synaptic dysfunction and synapse 
loss contribute to the cognitive deficits of patients with AD. 

There are a variety of potential links between A and 
the NMDA receptor: 1) NMDA receptor may bind A di-
rectly or through indirect interactions; 2) NMDA re-
ceptors may mediate A activity relative to plasticity 
and/or synaptic transmission; 3) NMDA may be a down-
stream target of A, meaning that A mediates the func-
tion of NMDA receptors; 4) NMDA signaling may influ-
ence the assembly of A plaques (Fig. 2).

TAU PROTEIN

The accumulation of the protein tau within the brain tis-
sue of AD patients was first described in 1986.77,78) Tau 
phosphorylation was also proposed as a potential contrib-
utor to the formation of neurofibrillary tangles in AD.78-80) 
In patients with AD, hyperphosphorylation of certain ami-
no acids in tau proteins causes the proteins to dissociate 
from the microtubules, disturbing the transport structure 
and resulting in starvation of neurons and, ultimately, cell 
death. Hyperphosphorylated tau thus has an important 
role in intracellular neurofibrillary changes and the patho-
genesis of AD and related tauopathies.81,82)

CNS dendrites primarily express the axonal protein 
tau.83) Tau mediates transfer of Fyn, a Src kinase, to the 
dendritic compartment; Fyn subsequently phosphorylates 
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Fig. 2. Several potential roles for N- 

methyl-D-aspartate receptors (NMDA- 

Rs) in the amyloid- (A) cascade are 

depicted. 

APP, amyloid precursor protein; LTD, 

long-term depression; LTP, long- 

term potentiation.

NMDA, facilitating an interaction with the post-synaptic 
density protein 95 (PSD95). In studies involving APP 
transgenic (APPtg) APP23 mice, the PSD95 complex ex-
erts toxic effects in concert with A, resulting in as evi-
denced by marked functional deficits in memory, in-
creased excitotoxicity, and death.84) Reductions in fast 
axonal transport and microtubule density tau transgenic 
mice are associated with amyotrophy, axonopathy, and 
motor deficits.84-86)

BRAIN-DERIVED NEUROTROPHIC FACTOR  
AND ALZHEIMER’S DISEASE

BDNF, a growth factor included within the neuro-
trophin family, is a critical mediator of neuronal survival, 
synaptic plasticity, and cellular differentiation. In addition 
to these well-established cell survival functions, BDNF 
contributes to cognitive activity learning, behavior, and 
memory.87,88) Low expression of BDNF mRNA in the nu-
cleus basalis of Meynert, the neocortex, and the hippo-
campus has been reported in postmortem samples taken 
from AD patients.89-92) Immediate, transient hippocampal 
elevation of BDNF mRNA levels occurs in mice during 
the execution of passive avoidance tests, hippocampus- 
dependent learning in the Morris water maze and con-
textual fear tests. Anti-BDNF antibodies induce impaired 
memory in mice during the passive avoidance and water 
maze tests.93-95) Impaired LTP of the hippocampus occurs 
in mice deficient in neuronal BDNF; LTP can be restored 
in these animals following administration of BDNF. 96) 

Cognitive decline occurs as the result of acetylcholine 
inhibition brought on by atrophy of cholinergic neurons in 
the forebrain of AD patients. BDNF enhances differ-

entiation and survival of cholinergic neurons in the basal 
forebrain. Importantly BDNF induces the secretion of 
acetylcholine in basal forebrain neurons; acetylcholine is 
deficient in AD.97,98) Cumulatively, preclinical observa-
tions have suggested that deficient BDNF synthesis con-
tributes to neuronal dysfunction in AD.

ANIMAL MODELS AND BEHAVIOR

Memory and learning are dependent upon alterations in 
synaptic transmission within the hippocampus and other 
areas of the brain. Transgenic animals that over-express 
A accurately model familial-type AD and may contrib-
ute to increased understanding of the pathogenesis of cog-
nitive and memory deficits.5,99) Synaptic function and 
plasticity have been extensively studied in transgenic APP 
and APP/PS mice, with a focus on the dentate gyrus and 
CA1 subfields of the hippocampus. AD transgenic mice 
show abnormal synaptic transmission and impaired LTP, 
often well in advance of plaque formation.3,100-102) 
Memory and learning deficits may occur within 3 months 
in mouse models, suggesting that soluble A contributes 
to AD pathogenesis.103,104) Alternate studies report later 
onset of symptoms at more advanced ages, implicating in-
soluble A plaques.100,104-109) The specific structure of A 
that is responsible for cognitive deficits has been the sub-
ject of great debate. Amygdala-dependent learning is 
strongly inhibited with increasing age in Tg2576 mice 
models, suggesting that the amygdala is susceptible to A 
toxcicity.35,110,111)
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RISK FACTORS

Several risk factors of AD development have been re-
ported, including psychosocial, genetic, and vascular 
parameters. AD may be classified as early (＜65 years) 
and late (60 to 65 years) onset disease. Late-onset AD is 
associated with strong genetic heritability, perhaps as high 
as 58-79%. Autosomal dominant mutations in the genes 
for presenilin 1 and 2 and APP are found in earl-onset, 
familial disease. Vascular risk factors (e.g., obesity, tobac-
co use, and blood cholesterol) and vascular diseases (e.g., 
diabetes mellitus, hypertension, and stroke) dare linked to 
an elevated risk of AD. Psychosocial factors such as low 
educational level, lack of social engagement, and poor so-
cial networking have also been associated with increased 
risk of AD.1,112,113)

COGNITIVE RESERVE AND PREVENTION

The quantitative function known as brain reserve has 
wide ranging biological implications for the pathogenesis 
of AD. For example, environmental stimuli trigger upre-
gulation of BDNF and neurogenesis,114-116) encouraging 
neural plasticity.116,117) Cognitive and brain reserves, en-
hance our understanding of the differences in the clinical 
pathology of the brains of AD patients.114,116) A number of 
studies have evaluated the association between leisure ac-
tivities and AD incidence.114) Engagement in intellectual 
activities (e.g., games, reading, or coursework) or social 
activities (e.g., maintaining close relationships with 
friends and relatives) was assessed in a large cohort of eld-
erly New Yorkers who had not been diagnosed with AD; 
individuals engaged in numerous leisure activities had a 
dramatically reduced risk of developing AD during fol-
low-up evaluation.118,119)

CONCLUSIONS

The principle aim this review article was to discuss the 
neuronal impairments associated with AD. A variety of in-
teresting theories are emerging, including different per-
spectives on hypotheses such as the A cascade, Ca2+ dys-
regulation, tau hyperphosphorylation, and lysosome 
hypotheses. Various hypotheses related to AD play key 
roles in developing remedies and treatments. The use of 
animal models can shed light on research. The available 
evidence indicates that glutamatergic system, including 
NMDA receptors, contributes significantly to neuronal 
atrophy and synaptic dysfunction triggered by A. Results 

have demonstrated low brain BDNF mRNA expression in 
patients with AD, including the hippocampus, which is re-
sponsible for learning and memory. 
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