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Abstract
68Ga-labeled, low-molecular-weight imaging agents that target the prostate-specific membrane 

antigen (PSMA) are increasingly used clinically to detect prostate and other cancers with positron 

emission tomography (PET). The goal of this study was to compare the pharmacokinetics of three 

PSMA-targeted radiotracers: 68Ga-1, using DOTA-monoamide as the chelating agent; 68Ga-2, 

containing the macrocyclic chelating agent p-SCN-Bn-NOTA; and 68Ga-DKFZ-PSMA-11, 

currently in clinical trials, which uses the acyclic chelating agent, HBED-CC. The PSMA-

targeting scaffold for all three agents utilized a similar Glu-urea-Lys-linker construct. Each 

radiotracer enabled visualization of PSMA+ PC3 PIP tumor, kidney, and urinary bladder as early 

as 15 min post-injection using small animal PET/computed tomography (PET/CT). 68Ga-2 
demonstrated the fastest rate of clearance from all tissues in this series and displayed higher 

uptake in PSMA+ PC3 PIP tumor compared to 68Ga-1 at 1 h post-injection. There was no 

significant difference in PSMA+ PC3 PIP tumor uptake for the three agents at 2 and 3 h post-

injection. 68Ga-DKFZ-PSMA-11 demonstrated the highest uptake and retention in normal tissues, 

including kidney, blood, spleen, and salivary glands and PSMA-negative PC3 flu tumors up to 3 h 

post-injection. In this preclinical evaluation 68Ga-2 had the most advantageous characteristics for 

PSMA-targeted PET imaging.
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INTRODUCTION

According to the National Cancer Institute, approximately 220 800 cases of prostate cancer 

will be diagnosed in 2015 in the U.S., with over 27 540 proving lethal (~12.5%).1 Existing 

imaging techniques for detection and therapeutic monitoring of prostate cancer are 

inadequate for effective management of the disease. The transmembrane glycoprotein 

prostate-specific membrane antigen (PSMA) is increasingly recognized as an important 

target for both imaging and therapy of prostate cancer.2,3 PSMA is found in benign as well 

as in malignant prostate tissue.4–6 However, expression of PSMA is greatest in prostate 

adenocarcinoma, particularly in castration-resistant disease.7,8 PSMA is also present in the 

neovasculature of solid tumors including kidney, lung,9 stomach, colon, and breast.10–12 

Expression of PSMA is associated with the neovascular endothelium in nonprostate 

tumors.13,14

We and others have used PSMA-targeted agents to image patients with prostate cancer using 

positron emission tomography (PET).15–21 Although there are debatable advantages and 

disadvantages with respect to which isotope to use for detection with PET, namely, 18F 

vs 68Ga, the radiometal 68Ga can be produced on-site with a generator, followed by simple 

synthesis of the radiotracer.22 We previously reported 68Ga-1, a radiotracer that employed 

the DOTA-monoamide chelator with conjugation to H2N-Lys-(CH2)3-Lys-urea-Glu for 

targeting to PSMA (Figure 1).23 We chose that chelator to make it possible to complex 

imaging radiometals, such as 68Ga, 86Y, or 203Pb, as well as therapeutic radiometal nuclides, 

such as 177Lu, 90Y, 212Pb, or 225Ac, within the same scaffold. Since then, two 68Ga-based 

agents have demonstrated excellent clinical results for detection of prostate cancer, 

namely, 68Ga-DKFZ-PSMA-11 (Glu-urea-Lys-(Ahx)-HBED-CC) and EuK-Subkff-68Ga-

DOTAGA (68Ga-PSMA I&T).24–27 Those compounds both employ the Glu-Lys-urea-based 

PSMA-targeted moiety, while 68Ga-DOTA-DUPA-Pep, also recently tested clinically, uses 

DOTA-monoamide as the chelating agent and Glu-Glu-urea as the PSMA-targeting 

moiety.28 A recent preclinical study also evaluated 68Ga-(CHX-A″-DTPA)-Pep using CHX-

A″-DTPA as the chelating agent.29 Among the agents, 68Ga-DKFZ-PSMA-11 has been 

most widely studied clinically.2,16–18,30,31

Due to the growing number of clinical trials employing 68Ga-based, PSMA-targeted PET, 

we decided to investigate structural elements that could promote the least off-target uptake 
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of this class of radiotracers. Specific attention was given to decreasing activity within renal 

and salivary gland tissue, commonly seen with these agents. Here we describe a head-to-

head, preclinical comparison of 68Ga-1, 68Ga-2, a new radiotracer containing the 

macrocyclic chelating agent NOTA, and 68Ga-DKFZ-PSMA-11. Tumor uptake, selectivity, 

and pharmacokinetics were assessed. Although we would prefer head-to-head studies in 

clinical subjects, we believe that a preclinical study such as this retains value as it is 

carefully controlled and all of the aforementioned agents were evaluated for 

pharmacokinetics in preclinical studies23,24—with similar comparisons performed—before 

their successful move to the clinic.24,25

RESULTS

Chemical and Radiochemical Syntheses and Characterization

Structures of the radioligands used for the study are shown in Figure 1. Lys-Glu urea was 

used as the PSMA-targeting moiety in all cases. Selected physical properties of 1, 2, and the 

corresponding natural Ga-complexes are summarized in Table 1. Since NOTA is a 

hexadentate N3O3 macrocyclic chelator, 68Ga-2 was expected to produce a neutral 

compound.32 DKFZ-PSMA-11 chelated with HBED-CC is reported to provide a 

uninegative, hexadentate chelation (N2O4) to Ga(III) at room temperature, with two 

carboxylates and two phenolates.33–35 All three radiotracers were synthesized in high 

radiochemical yield (~95–99%) and purity (>98%), with specific radioactivity >168 GBq/

µmol (4.05 mCi/µmol).

We have investigated two radiolabeling methods, one in the presence of HEPES buffer as 

reported by Eder et al.24 and the other by a method reported by us23 following a literature 

procedure.36 For the latter method, preconcentrated 68Ga(III)-Cl3 could be directly used for 

radiolabeling, without adjusting pH, and radiolabeling could be done in a total volume of 

300–350 µL using as low as 4 µg of any of the three ligands. Based on the HPLC retention 

time (Table 1), the nonradiolabeled precursor DKFZ-PSMA-11 was the least hydrophilic, 

although, after radiolabeling, 68Ga-DKFZ-PSMA-11 became the most hydrophilic 

compound in the series. The partition coefficient (log P) between n-octanol and PBS was 

also determined. Both 68Ga-2 (−4.04 ± 0.16) and 68Ga-DKFG-PSMA-11 (−3.89 ± 0.16) 

were found to be 1 order of magnitude more hydrophilic than 68Ga-1 (−3.0 ± 0.1).

Precursor ligands and the corresponding stable metal-labeled compounds demonstrated high 

binding affinity to PSMA, with Ki values ranging from 0.03 to 0.81 nM (Table 1). The 

known, high-affinity PSMA inhibitor ZJ4337 was used as a reference ligand and exhibited a 

Ki of 0.31 nM (Table 1). DKFZ-PSMA-11 displayed the highest PSMA-binding affinity 

from the compounds tested in this comparative study.

Cellular Uptake and Internalization Studies

Comparative cell uptake and internalization experiments using isogenic human prostate 

cancer PSMA+ PC3 PIP and PSMA− PC3 flu cells revealed significantly higher uptake and 

internalization of 68Ga-2 and 68Ga-DKFZ-PSMA-11 compared to 68Ga-1 as shown in 

Figure 2. The HBED-CC conjugate 68Ga-DKFZ-PSMA-11 demonstrated significantly 
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higher cell surface uptake and internalization at 30 and 60 min post-incubation compared 

to 68Ga-1 (P < 0.001 for both cell lysate and glycine wash) and for 68Ga-2 (P < 0.001 

glycine wash at 30 and 60 min and cell lysate at 60 min P < 0.05) from the series. Cell 

uptake of the three agents can be specifically blocked nearly completely with excess ZJ43 

(10 µM). For all three agents there was a fast cell internalization rate from 10 to 30 min with 

a slow rate of internalization noted from 30 min to 1 h post-incubation at 37 °C.

Biodistribution

Table 2 shows the pharmacokinetics in selected organs for 68Ga-1, 68Ga-2, and 68Ga-

DKFZ-PSMA-11, respectively. All compounds exhibited clear PSMA-dependent binding in 

PSMA+ PC3 PIP tumor xenografts. The tumor uptake for 68Ga-1 was 19.5 ± 1.8% ID/g at 1 

h, highest at 2 h (24.8 ± 1.1% ID/g), and remained high at 3 h post-injection (19.5 ± 5.1% 

ID/g) (Table 2). PSMA+ PC3 PIP-to-PSMA-PC3 flu tumor uptake ratios were 84 ± 4 at 1 h 

and 149 ± 16 at 2 h. The distribution within normal organs and tissues was also favorable, 

with low blood and normal tissue uptake and rapid clearance. The highest accumulation of 

radioactivity was observed in the kidneys, where uptake was expectedly high and peaked at 

26.5 ± 6.9%ID/g at 1 h and decreased to 11.9 ± 1.0%ID/g by 2 h and remained roughly the 

same at 3 h post-injection.

68Ga-2 showed the highest PSMA-dependent tumor uptake with 42.2 ± 6.7%ID/g at 1 h 

post-injection. Tumor uptake remained high, with faster clearance from 1 to 2 h. The PSMA

+ PC3 PIP-to-PSMA− PC3 flu tumor ratios were 110 ± 22 at 1 h, 232 ± 26 at 2 h, and 182 

± 15 at 3 h. Renal uptake for 68Ga-2 was highest at 1 h, 106 ± 23%ID/g, much higher than 

that seen for 68Ga-1, and showed faster renal clearance, which decreased to 34.7 

± 5.7%ID/g by 2 h post-injection. In addition, nontarget organs, such as blood, heart, liver, 

spleen, stomach, and pancreas, showed lower uptake (≤1%ID/g at 1 h, except for spleen) and 

faster clearance than for 68Ga-1.

68Ga-DKFZ-PSMA-11 showed the highest PSMA-dependent tumor uptake with 26.9 

± 5.6% ID/g at 3 h post-injection. Tumor uptake was nearly comparable from 1 to 3 h post-

injection. The PSMA+ PC3 PIP-to-PSMA− PC3 flu ratios were 47 ± 8 % at 1 h, 58 ± 27 at 2 

h, 164 and 111 ± 21 at 3 h post-injection.

Figure 3 summarizes several comparative tissue uptake properties of the three agents. PSMA

+ PC3 PIP tumor uptake of 68Ga-2 was significantly higher than 68Ga-1 at 1 h post-

injection (P < 0.01) (Figure 3A). There was no significant difference in PSMA+ PIP tumor 

uptake between 68Ga-1 and 68Ga-DKFZ-PSMA-11 or between 68Ga-2 and 68Ga-DKFZ-

PSMA-11 (P > 0.05) at any time-point. As shown in Figure 3B, renal uptake of 68Ga-1 was 

significantly lower than 68Ga-2 and 68Ga-DKFZ-PSMA-11 (P < 0.001) at 1 h, although 

there was no significant difference between 68Ga-2 and 68Ga-DKFZ-PSMA-11.

At 2 h post-injection renal uptake of both 68Ga-1 and 68Ga-2 were significantly lower than 

for 68Ga-DKFZ-PSMA-11 (P < 0.001) and renal uptake of 68Ga-1 was still significantly 

lower than 68Ga-2 (P < 0.01). At 3 h post-injection renal uptake of both 68Ga-1 and 68Ga-2 
was significantly lower than for 68Ga-DKFZ-PSMA-11 (P < 0.001). Figure 3C reveals 

that 68Ga-DKFZ-PSMA-11 demonstrated significantly higher salivary gland uptake up to 3 
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h after injection compared to 68Ga-1 and 68Ga-2 (P < 0.001). Figure 3D shows higher 

spleen uptake for 68Ga-DKFZ-PSMA-11 compared to either 68Ga-1 or 68Ga-2 at all time-

points. Between 68Ga-1 and 68Ga-2, the former showed significantly lower spleen (P < 

0.05) uptake at 1 and 2 h post-injection compared to the latter. Selected PSMA+ PC3 PIP 

tumor-to-background for the three agents at 1–3 h post-injection are shown in Supporting 

Information Figure S1. As anticipated from the biodistribution data, PSMA+ PC3 PIP 

tumor-to-salivary gland (P < 0.001) and PSMA+ PC3 PIP tumor-to-kidney ratios proved 

significantly higher for 68Ga-1 and 68Ga-2 than for 68Ga-DKFZ-PSMA-11 (P < 0.001).

PSMA+ PC3 PIP tumor-to-PSMA− PC3 flu tumor ratios were also significantly higher 

for 68Ga-1 and 68Ga-2 compared to 68Ga-DKFZ-PSMA-11 at 1 h post-injection (P < 

0.001). The data show that PSMA+ PC3 PIP tumor-to-blood ratios were highest for 68Ga-2 
at all three time points.

Small Animal PET-CT Imaging

Whole body PET-CT images were studied for 68Ga-1, 68Ga-2, and 68Ga-DKFZ-PSMA-11 

in intact male NOD/SCID mice (Figure 4) bearing both PSMA+ PC3 PIP and PSMA− PC3 

flu xenografts in opposite, upper flanks. Irrespective of charge and lipophilicity, all 

radiotracers enabled visualization of PSMA+ PC3 PIP tumor and kidneys (Figure 4). As 

anticipated from the biodistribution results, for all three agents PSMA+ PC3 PIP tumor was 

visible as early as 15 min post-injection. Renal uptake of the radiotracers is partially due to 

the route of excretion of these agents as well as to specific uptake from the expression of 

PSMA in mouse proximal renal tubules.8 All three agents showed significant bladder 

activity, indicating rapid renal clearance. A reduction of the tumor and kidney uptake to 

background levels was observed with the blocking agent ZJ43 for 68Ga-2, indicating 

PSMA-mediated accumulation. The results of blocking studies are in agreement with our 

previous report for 68Ga-1 using ZJ4323 and for PSMA-11 by Eder et al.24 using 2-

phosphonomethyl pentanedioic acid (2-PMPA).

DISCUSSION

Structural optimization of low-molecular-weight imaging and therapeutic agents targeting 

PSMA is under active investigation.23,38–48 Such optimization is geared toward high tumor 

uptake with minimal off-target, namely, renal and salivary gland, uptake at times convenient 

for imaging and endoradiotherapy. High salivary gland uptake in particular has proven to be 

a concern. We originally synthesized 68Ga-1, 23 with the DOTA chelator to enable imaging 

or therapy, depending on the radionuclide employed. We previously showed that a linker to 

DOTA containing a p-isothiocyanatobenzyl function provided the most suitable 

pharmacokinetics in a small series of compounds generated for imaging PSMA with 86Y-

PET.48 NOTA has been shown to be an effective chelating agent for 68Ga (stability constant, 

KML = 31.1), compared to DOTA (KML = 21.3).49,50 We used the commercially available p-

isothiocyanatobenzyl derivative of NOTA in 68Ga-2 for its mild radiolabeling conditions in 

the hope of creating a 68Ga-based agent with improved pharmacokinetics that could be 

generated simply, as in a kit-like preparation at room temperature. We compared the in vivo 
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performance characteristics of 68Ga-1, 68Ga-2, and 68Ga-DKFZ-PSMA-11, the latter of 

which has been used throughout Europe in clinical trials.

To improve precision with respect to the comparison, all three radiotracers were purified by 

HPLC to remove unlabeled ligand. The results obtained from biodistribution and imaging 

experiments indicated that there were no differences in absolute uptake among the three 

agents in PSMA-expressing tumors (Figure 2 and Supporting Information Figure S1), except 

for higher uptake for 68Ga-2 at 1 h post-injection (P < 0.007 between 68Ga-2 and 68Ga-1). 

That lack of difference was despite the 5-fold lower degree of internalization of 68Ga-1 than 

for 68Ga-2 or 68Ga-DKFZ-PSMA-11 (Figure 2). Internalization, believed to be a key 

element for a successful radiotherapeutic, may be less important for detection and imaging, 

at least under the conditions of the current study. We found higher nonspecific uptake 

for 68Ga-DKFZ-PSMA-11 than for 68Ga-1 or 68Ga-2, contrary to Eder et al.,24 in 

which 68Ga-1 was compared to 68Ga-DKFZ-PSMA-11 (Figure 2 and Supporting 

Information Figure S1). We believe that discrepancy derived from the lack of HPLC 

purification for 68Ga-1 in Eder et al.,24 which could negatively impact its effective specific 

activity. Another possibility could be the different tumor models used, with LNCaP used in 

the earlier report,24 and PSMA+ PC3 PIP for the PSMA-expressing positive control. 

However, we have previously reported that the level of expression of PSMA in PSMA+ PC3 

PIP tumors was very similar to that in LNCaP.51

As has been previously shown by us and others in the field of PSMA imaging with low-

molecular-weight agents,24,25,28,46,48,52,53 the key parameter of nonspecific tissue uptake 

depends on the overall physicochemical properties of the radiolabeled agent, including the 

metabolic stability of the metal-chelate complex, charge, and lipophilicity. Both the 

chelating agent and the linker employed to attach the radionuclide to the targeting agent are 

important in establishing those physicochemical features—particularly for compounds 

<1500 Da. For example, we have shown that certain 99mTc-oxo cores with different 

combinations of NxSy-based chelating agents demonstrated high retention in kidney and 

spleen for more than 6 h.45 Such agents displayed high PSMA+ tumor retention. On the 

other hand, 99mTc(CO)3-based agents showed much faster clearance from most normal 

tissues including kidneys, although, these agents showed slightly higher gastrointestinal 

uptake at initial time-points (<2 h). We have also observed high kidney uptake and retention 

for NOTA-chelated 64Cu-labeled PSMA-inhibitor compared to the CB-TE2A-

conjugated 64Cu-labeled agent46 although both chelating agents are known to form a copper 

complex with comparable stability.54,55 Modifying linker and chelating agent indeed 

revealed significant changes in biodistribution pattern as recently reported by Eder et al.47 A 

preclinical comparison of DOTA-mono amide chelated PSMA-targeting agent, 68Ga-DKFZ-

PSMA-617 vs HBED-CC-conjugated 68Ga-DKFZ-PSMA-11 demonstrated higher tumor 

uptake at later time points, lower spleen accumulation, and fast clearance of radioactivity 

from the kidneys for the DOTA-chelated agent.

CONCLUSION

We report a preclinical comparative study to evaluate the in vivo pharmacokinetics of 

three 68Ga-labeled PSMA-targeting PET radiopharmaceuticals. The macrocyclic NOTA 
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chelated agent 68Ga-2 demonstrated the highest PSMA+ tumor accumulation at clinically 

convenient times post-injection, and showed rapid clearance from most normal tissues, 

including kidney and salivary gland. 68Ga-2 is a clinically viable imaging agent for 

detecting PSMA+ lesions.

EXPERIMENTAL PROCEDURES

Solvents and chemicals purchased from commercial sources were of analytical grade or 

better and used without further purification. [68Ga]GaCl3 was obtained from the University 

of Wisconsin. DOTA-tris(t-butyl ester)-monoacid and p-SCN-Bn-NOTA were purchased 

from Macrocyclics, Inc. (Dallas, TX). Compounds 1 and 2 were synthesized following our 

previous reports.23,46 DKFZ-PSMA-11 and the corresponding stable Ga-DKFZ-PSMA-11 

were purchased from ABX (Radeberg, Germany). Triethylsilane (Et3SiH), 

diisopropylethylamine (DIEA), and triethylamine (TEA) were purchased from Sigma-

Aldrich (St. Louis, MO). All other chemicals were purchased from Thermo Fisher Scientific 

(Pittsburgh, PA) unless otherwise specified.

Analytical thin-layer chromatography (TLC) was performed using Aldrich aluminum-

backed 0.2 mm silica gel Z19, 329-1 plates and was visualized by ultraviolet light (254 nm), 

I2, and 1% ninhydrin in EtOH. Flash chromatography was performed using silica gel (MP 

SiliTech 32–63 D 60 Å) purchased from Bodman (Aston, PA). All in vitro PSMA binding 

studies and determination of partition coefficients were performed in triplicate to ensure 

reproducibility, as previously reported. 1H NMR spectra were recorded on a Bruker 

Ultrashield 400 MHz spectrometer. Chemical shifts (δ) are reported in ppm downfield in 

reference to proton resonances resulting from incomplete deuteration of the NMR solvent. 

Quantitative 1H NMR was used to prove that all synthesized compounds were at >95% 

chemical purity.

Low resolution ESI mass spectra were obtained on a Bruker Daltonics Esquire 3000 Plus 

spectrometer. High resolution mass spectra were obtained by the University of Notre Dame 

Mass Spectrometry & Proteomics Facility, Notre Dame, IN, using electrospray ionization 

(ESI) mass spectrometry either by direct infusion on a Bruker microTOF-II or by LC elution 

via an ultra-high-pressure Dionex RSLC C18 column coupled to a Bruker microTOF-Q II. 

The purity of tested compounds was also determined by analytical high performance liquid 

chromatography (HPLC) with absorbance at 220 nm and were all again determined to be 

>95%.

HPLC purification of stable compounds was performed using a Phenomenex C18 Luna 10 × 

250 mm2 column and elution with water (0.1% TFA) (A) and CH3CN (0.1% TFA) (B) on a 

Waters 600E Delta LC system with a Waters 486 variable wavelength UV/vis detector, both 

controlled by Empower software (Waters Corporation, Milford, MA). HPLC purifications 

of 68Ga-1, 68Ga-2, and 68Ga-DKFZ-PSMA-11 were performed on a Varian Prostar System 

(Palo Alto, CA), equipped with a Varian ProStar 325 UV–vis variable wavelength detector 

and a Bioscan Flow-count in-line Radioactivity detector (Washington, DC., all controlled by 

Galaxie software (Varian Inc., Walnut Creek, CA).
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All radiotracers were purified using a Varian microsob-MV 100-5 C8 25 × 4.6 mm column 

with a flow rate 1 mL/min with water (0.1% TFA) (A) and CH3CN (0.1% TFA) (B) as the 

eluting solvents. In order to ensure uniform purity of the compounds undergoing 

comparison, various HPLC methods were applied to separate excess ligand from the 

radiolabeled compound. For 68Ga-1, an isocratic solution of 80% A and 20% B was used. 

For 68Ga-2 and 68Ga-DKFZ-PSMA-11, an isocratic solution of 85% water and 15% B was 

employed.

Retention times of the radiolabeled compound and unlabeled free ligands are listed in Table 

1. The radiochemical yield and purity of the radiotracers were further checked by 

withdrawing 1 µL aliquots of the radiolabeled solution and were analyzed by radio-TLC on 

RP-18 thin layer plates using 5/1 saline/ methanol as the mobile phase. The specific 

radioactivity was calculated as the radioactivity eluting at the retention time of product 

during the preparative HPLC purification divided by the mass corresponding to the area 

under the curve of the UV absorption.

Radiolabeling Methods
68Ga-Labeling of target ligands was performed according to our previously reported 

method23 and following other literature procedures.24,36 Briefly, 488 MBq (13 mCi) 

of 68GaCl3 in 7 mL of 0.1 N HCl were obtained from an 18-month-old 1850 MBq (50 

mCi) 68Ge/68Ga generator, Eckert-Ziegler (Berlin, DE). Preconcentration was performed on 

a cation-exchange cartridge. The purified 68Ga(III)Cl3 was obtained in a total volume of 400 

µL, eluted in 2.4/97.6 0.05 N HCl/acetone. The 68Ga(III) in HCl/acetone was used 

immediately for the radiolabeling of 1, 2, or DKFZ-PSMA-11.

We investigated two radiolabeling techniques. The first was undertaken in water (without 

any added buffer solution), as we reported earlier,23 and the second used 2.1 M HEPES 

buffer at pH ~ 4, as reported by Eder et al.24 Using HEPES buffer, each ligand (12.5 µg), 

was radiolabeled in >95% yield in a total volume of ~120 µL; however, the yield was 

dependent on the total volume of the radiolabeling solution. In water the 

preconcentrated 68Ga(III)Cl3 solution could be directly used for radiolabeling at pH ~ 3–4.23 

The total volume of the radiolabeling solution was ~300–350 µL to produce >93% yield 

using ~4–6 µg of each precursor ligand.

In a typical reaction 50 µL of the concentrated radioactivity was added to 250 µL of 

deionized H2O in a 1.5 mL polypropylene vial, followed by addition of 3–5 µL of a solution 

of precursor ligand (2 µg/µL in water, pH ~ 3.5–4). The reaction vial was heated at 95 °C for 

10 min for ligand 1, ~3 min for ligand 2, and the complex was allowed to form at room 

temperature for 10 min for both 2 and DKFZ-PSMA-11. Complex formation was monitored 

by iTLC as above, using 5/ 1 saline/methanol.

For the comparison studies, all three radiotracers were purified by HPLC to remove excess 

precursor ligand so that all three radioligands could be obtained in >98% purity. The acidic 

eluate was neutralized with 50 µL 1 M Na2CO3 and the volume of the eluate was reduced 

under vacuum to dryness. The solid residue was diluted with saline to the desired 

radioactivity concentration for biodistribution and imaging studies.

Banerjee et al. Page 8

Bioconjug Chem. Author manuscript; available in PMC 2017 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PSMA Inhibition Assay

The PSMA inhibitory activity of 1, 2, and DKFZ-PSMA-11 and the corresponding natural 

Ga-labeled analogues Ga-1 and Ga-2 were determined using a fluorescence-based assay 

according to a previously reported procedure (Table 1).51 Briefly, lysates of LNCaP cell 

extracts (25 µL) were incubated with the inhibitor (12.5 µL) in the presence of 4 µM N-

acetylaspartylglutamate (NAAG) (12.5 µL) for 2 h. The amount of the glutamate released by 

NAAG hydrolysis was measured by incubating with a working solution (50 µL) of the 

Amplex Red Glutamic Acid Kit (Life Technologies, Grand Island, NY) for 1 h.

Fluorescence was measured with a VICTOR3 V multilabel plate reader (PerkinElmer Inc., 

Waltham, MA) with excitation at 490 nm and emission at 642 nm. Inhibition curves were 

determined using semilog plots and IC50 values were determined at the concentration at 

which enzyme activity was inhibited by 50%. Enzyme inhibitory constants (Ki values) were 

generated using the Cheng-Prusoff conversion.56 Assays were performed in triplicate. Data 

analysis was performed using GraphPad Prism v 4.00 for Windows (GraphPad Software, 

San Diego, California).

Determination of Lipophilicity

To a solution of 0.5 to 1 MBq of each 68Ga-1, 68Ga-2, and 68Ga-DKFG-PSMA-11 in 3 mL 

of phosphate-buffered saline (PBS, pH 7.4), was added 3 mL of n-octanol (n = 3) in 15 mL 

Eppendorf tubes. At ambient temperature tubes were vortexed vigorously for 3 min and 

were centrifuged at 3000 g for 5 min. The activity concentrations in 100 µL samples of both 

the aqueous and the organic phases were measured in a γ-spectrometer (1282 Compugamma 

CS; Pharmacia/LKB Nuclear, Inc., Gaithersberg, MD). The partition coefficient was 

calculated as a ratio between counts in the n-octanol phase to counts in the water phase.

Cell Lines

Sublines of the androgen-independent PC3 human prostate cancer cell line, originally 

derived from an advanced androgen-independent bone metastasis, were used. Those sublines 

have been modified to express high levels of PSMA [PSMA-positive (+) PC3 PIP] or are 

devoid of target [PSMA-negative (−) PC3 flu]. They were generously provided by Dr. 

Warren Heston (Cleveland Clinic). Cells were grown in RPMI 1640 medium (Corning 

Cellgro, Manassas, VA) containing 10% fetal bovine serum (FBS) (Sigma-Aldrich, St.Louis, 

MO) and 1% penicillin–streptomycin (Corning Cellgro, Manassas, VA). PSMA+ PC3 PIP 

cells were grown in the presence of 20 µg/mL of puromycin to maintain PSMA expression. 

All cell cultures were maintained in an atmosphere containing 5% carbon dioxide (CO2), at 

37.0 °C in a humidified incubator.

Cell Uptake and Internalization

Cell uptake studies were performed as previously described.57 Cells (1 million) were 

incubated with 37 kBq/mL (1 µCi/mL) of each radiolabeled agent in the growth medium in 

6-well plates. To determine specific uptake, cells were preblocked with ZJ43 to a final 

concentration of 10 µM. Cellular uptake was terminated by washing with 1 mL of ice-cold 

PBS. After incubation at 37 °C for 10, 30, and 60 min, cells were washed with binding 

Banerjee et al. Page 9

Bioconjug Chem. Author manuscript; available in PMC 2017 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



buffer, trypsinized using nonenzymatic buffer, and cell-associated activity was determined in 

a γ-spectrometer.

For internalization assays, cells were detached using nonenzymatic buffer, and aliquots of 1 

million cells per tube were incubated with 37 kBq (1 µCi) of each radiolabeled agent per 

milliliter of solution for 10 min, 30 min, and 1 h at 37 °C. Assuming minimal receptor 

endocytosis at 4 °C, the internalization assay was performed only with cells incubated at 

37 °C. At 10, 30, and 60 min intervals the medium was removed and cells were washed once 

with binding buffer followed by a mild acidic buffer (50 mM glycine, 150 mM NaCl [pH 

3.0]) at 4 °C for 5 min. The acidic buffer was then collected and cells were washed twice 

with binding buffer. Pooled washes (containing cell surface-bound 68Ga-labeled agent) and 

cell pellets (containing internalized 68Ga-labeled) were counted in an automated γ-

spectrometer along with the standards. All radioactivity values were converted into 

percentage of incubated dose (%ID) per million cells. Experiments were performed in 

triplicate and repeated 3 times. Data were fitted according to linear regression analysis.

Small-Animal PET Imaging and Analysis

Whole-body PET and CT images were acquired on a SuperArgus PET-CT preclinical 

imaging system (SEDECAL SA4R PET-CT, Madrid, Spain). For imaging studies mice were 

anesthetized with 3% and maintained under 1.5% isoflurane (v/v). PET-CT Imaging studies 

were performed on NOD/SCID mice bearing PSMA+ PC3 PIP and PSMA− PC3 flu tumors. 

After intravenous injection of ~150 µCi (5.55 MBq) of 68Ga-1, 68Ga-2, or 68Ga-DKFZ-

PSMA-11, whole-body PET emission images (two bed positions, 15 min per position) were 

acquired at the indicated (30 min, 1 h, 2 h, and 3 h) time points after injection of radiotracer.

For binding specificity studies, a mouse was subcutaneously administered a blocking dose of 

the known PSMA inhibitor ZJ4337 (50 mg/kg) at 30 min before the injection of 68Ga-2, and 

another mouse was injected with 68Ga-2 alone. A CT scan was acquired after each PET scan 

in 512 projections using a 50 keV beam for anatomic co-registration. PET emission data 

were corrected for decay and dead time and were reconstructed using the three-dimensional 

ordered-subsets expectation maximization algorithm. Data were displayed and analyzed 

using AMIDE software (http://sourceforge.net/amide).

Biodistribution

Mice bearing PSMA+ PC3 PIP and PSMA− PC3 flu xenografts were injected via the tail 

vein with 740 kBq (20 µCi) of 68Ga-1, 68Ga-2, and 68Ga-DKFZ-PSMA-11 in 150 µL of 

saline (n = 4). At 1, 2, and 3 h post-injection, mice were sacrificed by cervical dislocation 

and the blood was immediately collected by cardiac puncture. The heart, lungs, liver, 

stomach, pancreas, spleen, fat, kidney, muscle, small and large intestines, urinary bladder, 

PSMA+ PC3 PIP, and PSMA− PC3 flu tumors were collected. Each organ was weighed, and 

the tissue radioactivity was measured with an automated gamma counter (1282 

Compugamma CS, Pharmacia/LKBNuclear, Inc., Mt. Waverly, Victoria, Australia). The 

percentage of injected dose per gram of tissue (% ID/g) was calculated by comparison with 

samples of a standard dilution of the initial dose. All measurements were corrected for 

decay.
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Data Analysis

Data are expressed as mean ± standard deviation (SD). Prism software (GraphPAD, San 

Diego, California) was used to determine statistical significance. Statistical significance was 

calculated using a two-tailed Student’s t test. A P-value <0.05 was considered significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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(carboxyethyl)benzyl]ethylenediamine-N,N’-diacetic acid)
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Figure 1. 
Structure of 68Ga-labeled PSMA inhibitors.
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Figure 2. 
(Top) PSMA+ PC3 PIP and PSMA− PC3 flu cell binding for 68Ga-1, 68Ga-2, and 68Ga-

PSMA-11 and blocking studies of the agents in PSMA+ PC3 PIP cell after 10 min of 

preincubation in the presence ZJ43 (10 µM). (Bottom) Internalization studies at 37 °C in 

PSMA+ PC3 PIP cells at 10, 30, and 60 min post-incubation. Values are calculated as 

percentage of incubated radioactivity dose bound to 106 cells. Data are expressed as mean ± 

SD (n = 3).
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Figure 3. 
Comparison of selected tissue uptake of 68Ga-1, 68Ga-2, and 68Ga-DKFZ-PSMA-11 in 

male SCID-NOD mice (n = 4) bearing both PSMA+ PC3 PIP and PSMA− PC3 flu tumors: 

(A) PSMA+ PC3 PIP tumor; (B) kidney; (C) salivary gland; and (D) spleen. (*, P < 0.05; **, 

P < 0.01; ***, P < 0.001).
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Figure 4. 
PET-CT images of 68Ga-1, 68Ga-2, and 68Ga-DKFZ-PSMA-11 at 1 h post-injection using 

NOD-SCID male mice bearing both PSMA+ PC3 PIP (right) and PSMA− flu (left) tumor 

xenografts within the upper flanks. PSMA+ PC3 tumor uptake for 68Ga-2 was further 

blocked by injecting ZJ43 (50 mg/kg), 30 min prior to injection of the radiotracer.
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Table 1

Selected Physical Properties of Compounds Studieda

molar mass
(g/mol)

Ki
(nM)

95% CI of Ki
(nM)

HPLC (RP)
retention time (min)

1 1284.4 0.70 0.42–1.16 19.2–19.8b

Ga-1 1352.5 0.33 0.17–0.66 26.8–31.7b

2 1054.2 0.81 0.35–1.89 23.9–24.9c

Ga-2 1120.9 0.38 2.26–6.28 20.8–22.5c

DKFZ-
PSMA-11

947.0 0.03 0.016–0.06 34.5–40.0c

Ga-DKFZ-
PSMA-11

1013.7 N.A. N.A. 14.5–20.0c

ZJ43 304.3 0.31 0.20–0.48 N.A.

a
Compounds 1 and 2 are the unlabeled compounds containing DOTA-monoamide and NOTA-Bn-SCN chelating agents, respectively.

b
Isocratic solution of 80% A and 20% B.

c
Isocratic solution of 85% water and 15% B. Flow rate was 1 mL/min for both methods.
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