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Abstract

Empowered by modern genotyping and large samples, population structure can be accurately 

described and quantified even when it only explains a fraction of a percent of total genetic 

variance. This is especially relevant and interesting for humans, where fine-scale population 

structure can both confound disease-mapping studies and reveal the history of migration and 

divergence that shaped our species’ diversity. Here we review notable recent advances in the 

detection, use, and understanding of population structure. Our work addresses multiple areas 

where substantial progress is being made: improved statistics and models for better capturing 

differentiation, admixture, and the spatial distribution of variation; computational speed-ups that 

allow methods to scale to modern data; and advances in haplotypic modeling that have wide 

ranging consequences for the analysis of population structure. We conclude by outlining four 

important open challenges: The limitations of discrete population models, uncertainty in individual 

origins, the incorporation of both fine-scale structure and ancient DNA in parametric models, and 

the development of efficient computational tools, particularly for haplotype-based methods.

If one assumes humans across the globe are a single randomly mating population, it would 

result in only a 5–15% average error when predicting the proportion of observed 

heterozygotes at a locus. This closeness to an idealized randomly mating population is one 

vestige of how little evolutionary time has passed since the common origin of all humans in 

Africa. The departure from random mating predictions due to population differentiation has 

a classic quantitative measure, called FST, which appropriately takes on values of 5–15% in 

global samples of human populations [1–3]. If one zooms in within continental regions of 

the globe, FST tends to be even lower, regularly taking values below 1%, a threshold which 

we use here informally to define “fine-scale structure”. A triumph of the large datasets 

available to contemporary population geneticists is that they allow fine-scale structure to be 

detected and dissected to reveal population relationships (Figure 1).

The reason large datasets allow fine-scale structure to be dissected is a statistical 

phenomenon [4]. Subtle differences in average pairwise similarity become more apparent as 

the scale of a dataset increases (Figure 2). For principal component analysis (PCA), 

Patterson et al. [5] have argued that structure reveals itself much like a phase change in 

physics; namely if the product of the number of genetic markers (m) and individuals (n) is 

greater than 1/(FST
2) then structure will be evident. The great fortune of human geneticists is 
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that novel technologies have made it affordable to amass datasets large enough to 

characterize even very subtle population structure.

Characterizations of fine-scale population structure are increasingly empowering the study 

of human population history, helping genetics play a role integral with linguistics, 

archaeology, and history in the study of the human past, as first envisioned by Cavalli-Sforza 

and colleagues [6]. Studies of population structure have also allowed the medical genetics 

community to build more robust genome-wide association studies for disease risk [7–9], 

enabled evolutionary geneticists to identify exceptional regions in the genome that have 

undergone local adaptation [10–12], and facilitated the individual-level ancestry assessment 

that is increasingly popular in personalized genomics [13], though not without criticism 

[14].

The most obvious advances in the study of fine-scale structure are the result of increased 

genome-wide single-nucleotide polymorphism (SNP) and sequencing data being collected 

from diverse regions across the world [15–17]. More profoundly, the recent availability of 

genome-wide data from archaeological samples of modern humans (“ancient DNA”, aDNA) 

is revolutionizing our understanding of the processes that generated present-day population 

structure [18]. As one stimulating example, aDNA studies suggest that levels of 

differentiation in Europe may have actually decreased during the late Neolithic period and 

Bronze Age, as at least three major proposed population lineages have intersected through 

time [17,19,20].

In this review, we highlight several of the most exciting advances in analysis methods in the 

past three years. Analysis methods are especially crucial when structure is fine-scale, and as 

we show, there has been extensive progress in numerous directions. To complete a picture of 

recent studies of human population structure, we recommend several other recent reviews 

[21–27]. We also highlight the Peopling of the British Isles Project [28] and two recent 

ancient DNA papers [19,20] as examples from the vanguard of fine-scale structure analysis 

using modern and ancient human data.

Developing and understanding metrics for population differentiation

While Wright’s FST has been a workhorse for describing population structure for decades, a 

novel set of f-statistics have become highly influential since their original publication 

[29,30] because of their utility in studying the recent admixture that is common in human 

history. In the past several years, the use of f-statistics has continued to develop; for 

example, Raghavan et al. [31] developed an ‘outgroup-f3’ statistic to provide a measure of 

similarity that is insensitive to population-specific drift, making it more interpretable than 

FST in many settings. The advent of sequencing data has also made possible a metric that is 

especially sensitive to recent population structure: the estimated time to the most recent 

common ancestor of shared doubleton variants [32]. Doubleton-based metrics are already 

showing their utility to detect fine-scale structure in several large sequencing studies [33–

35].
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Alongside the expansion of new metrics, there is an increasing understanding of the basic 

properties of existing ones. One area of concern is that FST has inconsistent values across 

different types of loci (e.g. microsatellite, SNP array, and sequence data differ by 0.05–0.07 

in several meaningful human examples [36,37] also see [38]). As demonstrated by 

Jakobsson et al. [37], this discrepancy is largely explained by the frequency of the most 

frequent allele at a locus, which differs greatly between marker classes [37]. However, the 

statistical strategy used also has an impact, in particular when rare alleles are present [36]. 

Similar understandings need to be developed for f-statistics. In that vein, one of us [39] 

recently showed how f-statistics can be understood in general coalescent terms, with 

expectations that can be derived under arbitrary parametric population history models. 

Interestingly, the work revealed that the mean number of pairwise differences between 

populations is a better measure of differentiation than the outgroup-f3 statistic.

Refining and expanding models that handle human admixture

Recognizing that simple bifurcating trees are a poor model for human genetic diversity, 

several researchers have developed tree-building methods that take admixture and migration 

into account [29,40–42]. These methods typically build a guide tree and then add migration 

edges to represent recent admixture events. These methods represent a substantial advance 

and they are being used broadly; however, challenges remain with identifiability, exploring 

the space of all possible graphs, robustly selecting the number of migration edges, and 

exploiting tools from similar approaches developed independently in phylogenetics [43,44].

A more longstanding approach to study admixture is the use of global [45] and local 

ancestry models [46], and both have been advanced recently by computational speed-ups. 

When genome-wide SNP data first became available, difficulties in applying the now classic 

Bayesian method for admixture inference (STRUCTURE [45]) occasioned the development 

of fast maximum-likelihood based approaches [47,48]. The past two years have seen the 

return of Bayesian approaches with two new fast approaches that use variational 

approximations [49,50]. Impressively, teraSTRUCTURE [50] handles samples containing 

millions of individuals. Local ancestry approaches have recently been improved by the 

development of fast algorithms that leverage rare variants within ancestries [51] and wavelet 

techniques [52]. Unfortunately, distinguishing local ancestries among weakly differentiated 

source populations remains difficult. For these cases, alternative approaches based on 

admixture linkage disequilibrium, which side-step local ancestry inference, have proven 

fruitful for detecting admixture occurring in the recent past (e.g. within the last three 

thousand years) and suggest that admixture is widespread in human populations [53–55].

Latent factor models, such as sparse factor analysis and PCA, are also applicable for 

inference of admixture [56,57]. For PCA, more efficient algorithms have been implemented, 

allowing application to hundreds of thousands of individuals with reasonable run-times 

[58,59]. Another useful development has been the expansion of Procrustes approaches (used 

to align PCA and geography data [60]) to allow merging of samples with low-coverage 

sequence data into PCAs from heavily genotyped reference panels [61,62]. Novel factor 

models are also being developed that may have advantages for assessing admixed samples 

and controlling structure in association studies [63].
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Putting geography into studies of population structure

Geographic information has been under-utilized in the study of fine-scale structure despite 

its central importance in the process of generating structure. Several recent approaches make 

progress by using Wishart distribution to model genetic similarity as a function of spatial 

distance. In one approach, Bradburd et al. [64] use a covariance model to visualize samples 

in a “geogenetic space”. In homogenous isolation-by-distance scenarios, the geogenetic 

space should mirror the geographic space. Deviations from homogeneity will result in 

adjusted placement of populations in geogenetic space. For example, barriers to migration 

result in larger geogenetic distances between populations. In some respects the methods 

should behave like PCA on spatial data [65], but with less of the sensitivity to uneven 

sample sizes that is typical of PCA [57,65]. Discrete admixture events can be accounted for 

by adding admixture links between sources and targets, in a manner similar to how recent 

tree-based methods add migration edges to model admixture (see above).

A second approach using the Wishart distribution is the EEMS method [66] which uses 

observed pairwise genetic similarities to estimate a map or “surface” of effective migration 

rates. The inferred migration rates are “effective” in that they reflect migration proportions 

scaled by effective population sizes under an equilibrium model. As few empirical systems 

(and especially humans) are at equilibrium, the surfaces should best be interpreted as a tool 

for visualizing patterns of genetic differentiation relative to geographic distance. In closely 

related work, Hanks and Hooten [67] independently develop a Wishart framework much like 

that in EEMS that can test whether a particular environmental variable is predictive of 

migration rates. Two additional exciting advances, not using the Wishart distribution, are a 

method (localdiff [68]) that uses locally computed FST values to visualize barriers, and an 

approach that models FST as a function of the bearing between two populations to study 

anisotropic patterns of spatial differentiation [69].

Extracting signatures of fine-scale structure in haplotype data

A very active and promising arena of research is in the development of haplotype-based 

methods for studying fine-scale structure. Local ancestry models (see above) have long been 

the only haplotype-based approach used to study structure, and haplotypes can be more 

informative for assignment [70,71], but a bevy of methods are being developed that leverage 

haplotypes in novel ways.

Methods using long shared haplotypes (also known as tracts of identity-by-descent, IBD) are 

particularly well-suited for the characterization and interpretation of fine-scale population 

structure [72]. As an example of their power, Ralph and Coop [73] showed that IBD patterns 

in Europe can reveal more subtle structure than simple pairwise SNP similarity. More 

recently Baharian et al [74] use the spatial distribution of long shared haplotypes to estimate 

dispersal rates in the context of the African-American history. These methods have 

exceptional promise, though interpretations can be complicated when shorter tracts are 

considered [75]. A related approach to IBD patterns is embodied in the fineSTRUCTURE 

model [76,77] which uses long shared haplotypes detected through the use of the Li and 

Stephens haplotype-copying model [78] and then processes them through a downstream 
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analysis that includes mixture modeling of copying profiles. This model underlies the 

striking structure revealed in the Peopling of the British Isles project [28].

A second approach has been to focus on full chromosomal haplotype data using approximate 

coalescent models. Using the Sequential Markov Coalescent (SMC) approximation, it is now 

possible to study population divergence using small numbers of genomes [79,80]. As one 

example, Schiffels and Durbin suggest a novel non-parametric approach based on inference 

of cross-coalescent rates through time [80,81]. In related work, a recent approach for 

sampling coalescent genealogies genome-wide [82] is a remarkable achievement but has yet 

to be adapted to explicitly study population structure.

A drawback of most haplotype-based methods is that they are computationally very 

expensive. A major breakthrough is the development of fast and scalable algorithms for 

representing haplotype data in ways that make haplotype similarity evident and easy to 

query. One such algorithm, the Positional Burrows-Wheeler Transform (pBWT, [83]) is 

revolutionary in this regard, and a new extension [84] is also exciting as it links the Li and 

Stephens haplotype-copying model to the pBWT framework and provides approaches that 

can handle unphased data.

Open challenges

Despite all the methodological progress, many fundamental challenges exist for fine-scale 

population structure studies. Many of these challenges stem from the difficulty of 

encapsulating the complexity of human population structure with mathematical models.

On the one hand, many models assume a small number of discrete, temporally continuous 

populations as the units of analysis. This is only an approximation to the structure of human 

populations on the ground, and there is a strong trade-off between the ease-of-analysis 

provided by using a small number of discrete populations and the error induced due to 

model violations. On the other hand, other models are not sufficiently parametric. Many 

available methods focus on summarizing the observed population structure in a form that 

facilitates interpretation, but without explicitly modeling the historical processes that shaped 

these patterns.

As a symptom of this problem, we currently lack a widely accepted generative model for 

human fine-scale data. Put another way, we do not have a clear simulation protocol to 

produce “realistic” human data with fine-scale structure. This hinders applications such as 

testing new methods and evaluating evolutionary models of disease variants in human 

populations. As an example, consider how recent aDNA studies have made clear that fine-

scale structure in Europe is partly driven by temporally dynamic admixture patterns between 

3 ancestral populations [17, 19, 20]; it is unclear from existing publications what pairing of 

simulation protocol and parameters would generate an in silico whole-genome dataset that 

replicates the basic features of European fine-scale structure.

A related persistent challenge is that choices must be made regarding assigning individual 

origins based on sampling location, individual birthplace, or an origin based on parental or 

grandparental ancestry. Given the ubiquity of human movement and admixture, the choice 
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can complicate interpretations and/or result in samples being omitted when origins are 

unclear (e.g. grandparents of differing origins). The problem also arises when assigning 

aDNA samples into analysis units when they might vary by location, cultural context, and 

sampling time. One must always interpret results with the location assignment procedure in 

mind. Ideally, approaches can be developed that more explicitly model the uncertainty in this 

stage of analysis.

Another practical challenge with fine-scale population structure is that analysts must be 

especially cautious regarding model deviations such as ascertainment bias, heterogeneous 

linkage disequilibrium (LD) patterns, and complex mutational processes. For example, even 

after basic LD filtering, PCs can be affected by large blocks of SNPs with complex patterns 

of LD, such as those that arise due to structural variants like the polymorphic 4Mb Chr 8p23 

inversion in Europe (e.g. PC2 in the study of [85]). Such patterns likely pollute the results of 

various methods that assume marker independence as well as haplotype-based methods that 

do not model complex LD patterns due to structural variants. One precaution is to inspect 

the PC loadings and repeat the PCA after removing any genomic regions with exceptionally 

high loadings. An example of a mutagenic process potentially influencing haplotype-based 

approaches is the error-prone DNA-Polymerase Zeta, which may introduce dinucleotide and 

other aberrant mutation patterns [86] that bias analyses when handled as distinct mutations.

A final precaution, and one of broader societal relevance, is that a viewer can become misled 

about the depth of population structure when casually inspecting visualizations using 

methods such as PCA, ADMIXTURE, EEMS or fineSTRUCTURE. For example, untrained 

eyes may overinterpret population clusters in a PCA plot as a signature of deep, absolute 

levels of differentiation with relevance for phenotypic differentiation. This is an ironic 

inverse of what Edwards harshly termed Lewontin’s fallacy [4], and what we might instead 

call Lewontin’s nightmare. To prevent these misinterpretations, first we encourage 

practitioners to make absolute metrics of differentiation clear to audiences (e.g. FST, PCA 

proportion of variance explained). Weak levels of differentiation, as measured by FST, imply 

that neutral quantitative traits will be weakly differentiated as well [3,87]. Second, visually 

displaying the geographic distribution of a manageable number of random markers from a 

dataset can be helpful for students and broader audiences to gain a direct sense of levels of 

population structure. Several resources make this feasible for human genetic datasets (GGV 

browser [88], ALFRED [89,90] and HGDP Selection Browser [91]).

Without any question, the study of fine-scale structure has been an exciting frontier of 

contemporary population genetics, with extensive progress and continued promise. As this 

work continues, we will begin to more fully understand the processes that shape fine-scale 

structure in humans, and have a more full perspective on human origins. Of broader 

relevance, this progress also provides guidance for studying other species with highly 

dynamic population histories, and many of the methods reviewed here are useful for 

applications outside of humans.
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Figure 1. Four methods for assessing population structure using large-scale single-nucleotide 
polymorphism data
A) Ancestry proportion inference using ADMIXTURE. B) Principal components analysis. 

C) Plot of population in ‘geogenetic’ space using SpaceMix. D) Visualization of effective 

migration rates using EEMS (brown = low effective migration; blue = high effective 

migration). Each method is applied to the dataset analysed in [92] after filtering out 

populations with fewer than 10 individuals, where population identifiers are defined on the 

basis of grandparental ancestry. Structure is visible, even though FST-values average 0.004 

between broad geographic regions in Europe [92].

Novembre and Peter Page 12

Curr Opin Genet Dev. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. A large number of loci is required to reveal fine-scale population structure using PCA
Four subsamples with an increasing number of loci were taken from the[93] dataset. Using 

100 loci, Europe appears panmictic, whereas 1,000 loci are sufficient to establish a North-

South cline. With 10,000 and 100,000 loci, fine-scale details are revealed.
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