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Abstract

Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, 

and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, 

BOLD-based fMRI is a rather indirect measure of brain function, confounded by physiology 

related signals, e.g., head or brain motion, brain pulsation, blood flow, intermixed with 

susceptibility differences close or distant to the region of neuronal activity. Even though a plethora 

of preprocessing strategies have been published to address these confounds, their efficiency is still 

under discussion. In particular, physiological signal fluctuations closely related to brain supply 

may mask BOLD signal changes related to “true” neuronal activation. Here we explore recent 

technical and methodological advancements aimed at disentangling the various components, 

employing fast multiband vs. standard EPI, in combination with fast temporal ICA. Our 

preliminary results indicate that fast (TR <0.5 s) scanning may help to identify and eliminate 

physiologic components, increasing tSNR and functional contrast. In addition, biological 

variability can be studied and task performance better correlated to other measures. This should 

increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes 

during scanning may then be recognized as a source of information rather than a nuisance. As we 

are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic 

level, we should be very cautious in the interpretation of neuroscientific findings, in particular 

when comparing different groups (e.g., age, sex, medication, pathology, etc.). From a technical 
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point of view our goal should be to sample brain activity at layer specific resolution with low TR, 

covering as much of the brain as possible without violating SAR limits. We hope to stimulate 

discussion toward a better understanding and a more quantitative use of fMRI.
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Background

Hampered by the inherently low sensitivity, caused by low energy difference in MRI spin 

transitions (ca.10−6eV), and the low speed of data collection in 2D/3D MRI, increasing 

sensitivity was the prime focus for decades. This led to the development of a versatile 

diagnostic imaging technique, based on morphological imaging, using endogenous (e.g., 

based on tissue relaxation times T1, T1ρ, T2, T2*) or exogenous tissue contrast during the 

1980’s. Later on, employing fast gradient-echo imaging techniques, functional imaging 

based on blood-oxygenation [1] and perfusion [2] changes have been developed. However, 

substantially increasing image SNR via stronger static magnetic fields, and the sensitivity of 

multi-element phased-array coils and corresponding accelerated imaging acquisition 

techniques, did not yet increase time series SNR [3] nor, subsequently, contrast in functional 

MRI (fMRI). This is mainly due to non-white physiological noise, varying in different brain 

regions, and interacting with signal reduction due to susceptibility differences between brain 

tissue, cerebro-spinal fluid (CSF), air and bone as well as gross head motion. We are 

convinced, and will demonstrate below, that time has come to trade sensitivity for specificity 

in functional MRI of the human brain.

Owing to the rapid technical developments in magnet and rf-technology, increasing 

sensitivity via the increased field strength of the static magnetic field and the efficiency of rf-

coils, as well as to its increasing value in clinical diagnosis and basic research, magnetic 

resonance imaging (MRI) and spectroscopy (MRS) show a very dynamic course for over 30 

years. Furthermore, a plethora of rf-excitation and readout protocols as well as 

reconstruction algorithms help to employ the still limited tissue magnetization ever more 

efficiently and, thus, to speed up (spectroscopic) imaging techniques. In blood oxygenation 

level-dependent (BOLD) fMRI, developed over 20 years ago (for a review see 4), it was 

quite clear from the beginning that the method may be compromised by artifact signals from 

head motion [5, 6] and physiology (7–14, etc.), leading to a “brain or vein?” discussion [15–

17]. In 1995, Biswal et al. [79] opened up a new field, termed resting-state fMRI, by 

correlating spontaneous (i.e., measured in the absence of any specific task) signal 

fluctuations in different brain areas. Starting from a freely chosen seed-region, “resting-

state” networks were obtained by correlating the time courses of the seed and other regions, 

presumably characterized by very slow signal fluctuations (<0.1 Hz). After the introduction 

of exploratory fMRI analysis [18, 19] model free analysis of spontaneous and task related 

BOLD-signal fluctuations became available [20–23], avoiding rigid modeling of a complex 

biological system. On the other hand, a wide (frequency) range of noise sources might mask 

“true,” i.e., neuronal activity related, connectivity [14, 24–27]. Using short TR single slice 
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echo-planar imaging (EPI), it has been shown that high-frequency fluctuations resulting 

from heart-beat driven physiology may coexist with very slow signal fluctuations, even in 

large arterial and venous vessels [14, 22, 28], pointing to a more complex and intricate 

nature of physiological effects in the brain. These effects are thus not easily to be separated 

from neuronal activity when using common, long TR measurement protocols.

The protocol recommended to optimize sensitivity and specificity in BOLD-based functional 

MRI has been summarized recently [29]: the most important parameters in gradient-echo 

based MR-sequence are echo time TE (inversely depending on field strength to match T2*), 

and repetition time TR (recommended ≥2 s, motivated by the slow hemodynamic response 

function, and to allow full brain coverage, also avoiding T1-related in-flow effects). 

However, using this rather long TR leads to unknown signal contamination by breathing and 

heart-beat related physiological noise, ultimately limiting time-series SNR [3, 14, 24, 25, 

30]. Robinson et al. [31] have shown that in resting-state fMRI a significant amount (i.e., 

≥50%) of high-frequency physiological noise is folded into the very low frequency range 

(≤0.1 Hz), not to be eliminated via a band-pass filter (see also Figure 1). Also in 2009, they 

have discussed in detail challenges and potential solutions particularly focused on fMRI of 

emotions [32], as relevant structures like the amygdalae and the medial-temporal lobe pose 

severe problems in BOLD-based EPI [33]. In order to visualize important anatomical and 

physiological aspects of the human brain relevant to our claim, we show representative 

pictures of the arterial vessel distribution ex vivo (Figure 2A), large venous vessel networks 

in vivo (Figure 2B), and segmented brain structures, i.e., gray matter, white matter and CSF, 

obtained from anatomical scans (Figure 2C). Although vessels are typically not prominent in 

the anatomical scan nor tissue mask, it is hard to imagine that there would be many brain 

voxels (size ≥ 2 × 2× 2 mm3) not contaminated by large arterial pulsations, draining veins or 

susceptibility differences, depending on anatomy (Figures 2A,B,D), or any combination 

thereof [34–36]. This macroscopic complexity level may already help to understand why 

BOLD-based fMRI is performed best in parieto-occipital brain regions (i.e., small magnetic 

susceptibility differences and less brain pulsation), as compared to frontal brain regions 

(increasing magnetic susceptibility differences due to bone-air-tissue borders leading to 

signal dephasing), and temporo-ventral regions like the amygdala (in addition to strong local 

magnetic susceptibility differences, these regions are also influenced by brain stem and 

vessel pulsations in the frequency ranges of 0.13–0.3 Hz and about 1–6 Hz). Intertwined 

with gross, rigid skull motion (even in the submillimeter range) and respiration artifacts, this 

may add substantial physiological noise to the measured signal, that cannot be modeled or 

removed easily when scanning with TR’s of 1–5 s [27].

Therefore, the measured signal in any voxel will be composed of several time varying 

physiological components in the examined region. The predominant signal components 

mainly rely on the chosen MR technique, corresponding also to alterations of the 

investigated physiological target (e.g., change of venous oxygen concentration in BOLD 

imaging). As indicated above, the separation of components truly related to neuronal activity 

from any other effects remains challenging. While in task related fMRI an informative 

framework is provided by the paradigm and timing of the experiment for the identification of 

any specific local brain activation, this framework does not exist for a resting state study. 

Thus the correlation of temporal signal fluctuations in one cerebral region with another 
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region could potentially depict intrinsic regional physiological effects in the human brain 

(e.g., capillary pulse wave pulsation, blood flow, chemical tissue properties, etc.), rather than 

“true” interconnected neuronal activity. Therefore, it is of utmost importance to select MRI 

methods for a resting state experiment in such a way that enables the differentiation of 

neuron-specific effects from basic cerebral physiological function in any connective 

network. This cannot be achieved without a priori knowledge of brain physiology and a 

multiparametric MRI approach.

A common approach, particularly in neuroscience, is to scan data from a number of more or 

less well defined subjects and create group averages. Recently it has been claimed and 

demonstrated that typical group size published might be too low, potentially leading to false 

conclusions [37], misleading the design and power calculation of subsequent studies [38]. 

Still, a strong case can be made that a simple increase of numbers does not effectively 

increase functional contrast-to-noise, at least not as expected. We will demonstrate below 

that this is mainly caused by the low specificity of many published functional MRI studies, 

in particular in magnetically heterogeneous regions, also affected by physiological 

pulsations in the brain, despite attempts to specifically optimize the fMRI protocol [31, 33, 

39–44]. In addition, we will show that the major cause of low specificity might be due to 

strong physiological signals picked up by the measurement technique, particularly in the 

frequency range <0.1 Hz [45], increasing individual noise levels [27], that cannot efficiently 

be reduced by the use of high field strength [3, 46], nor by standard correction algorithms 

[47], or group averaging [48].

Here, we summarize our experience in fMRI, suggest an improved MR-protocol for single-

subject data of high quality, with the potential to remove confounding physiological signals 

from larger vessels, and attempt to stimulate discussion on current limitations and future 

potential in functional MRI.

Materials and Methods

Subjects

Ten healthy subjects (5 females/5 males, mean age = 31.9 year, SD = 8.9 year) were 

recruited at Medical University of Vienna. Exclusion criteria were prior psychiatric or 

neurologic illnesses, as well as the usual exclusion criteria for MR studies. All subjects gave 

written informed consent prior to the scan and the study was approved by the local 

institutional review board.

Data Acquisition

All MRI scans were performed on a 3 Tesla TIM Trio using the standard 32-channel head 

coil and whole-body gradients (Siemens Medical Solutions, Erlangen, Germany).

First, a high-resolution anatomical image was acquired using MPRAGE with 1 × 1× 1.1 

mm3 resolution, and 160 axial slices (TE/TR = 4.21/2300 ms, flip angle 9°, inversion time 

900 ms). Second, BOLD fluctuations at rest were measured with an advanced, low-TR 
multi-band EPI-sequence [49] using 1.7 × 1.7 × 2 mm3 resolution, 2 mm slice gap (matrix 
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size 128 × 128, 32 axial slices, TE/TR = 31/333 ms, flip angle 30°, multiband factor 8, 

bandwith = 1776 Hz/Pixel) collecting 1200 volumes.

For illustration, time-series and image SNR of the multiband sequence (MB4 and MB8, 

respectively) was compared with a standard EPI sequence (TR/TE = 1800/30 ms). For the 

image SNR, the mean of the voxels within a sphere of radius 5 mm in a given region divided 

by the standard deviation of the voxels in a sphere of the same size in the air outside of the 

head was computed for each time point in the dataset, and the mean of these values was 

given as the image SNR. For the time series SNR, for each of the voxels in the 5 mm sphere, 

the mean divided by the standard deviation of all time points was computed, and the mean of 

these values across the voxels in the sphere was given as the time series SNR. For 

comparison purposes, the SNR values of all regions were normalized by the corresponding 

SNR from the standard EPI sequence.

Matching Paradigm

After resting-state measurements, a simple perceptual task previously described by Hariri et 

al. [50] was performed. Three conditions were used in the paradigm, termed “faces,” “IAPS” 

and “forms” hereafter. There were four blocks each of the “faces” and “IAPS” conditions, 

where the images shown to the subjects were standardized emotional faces and unpleasant 

stimuli from the IAPS picture database, respectively. In each condition, three pictures were 

shown to the subject. The picture in the top row represents the target, and subjects are 

required to select which from the two pictures presented in the bottom row is identical to the 

target picture. In each block, six images are presented sequentially for 5 s each. Between 

these blocks, the “forms” reference condition was performed where the task remained the 

same, but emotionally neutral geometric shapes were used instead of pictures. The data was 

acquired with the low TR MB8-EPI sequence as in the resting-state scan, but measuring 

1420 repetitions.

fMRI Preprocessing

All data were preprocessed with a combination of AFNI [51] and FSL [52], using an 

analysis framework in R [53, 54] on Ubuntu Linux (Version 11.10 “Oneiric Ocelot”). 

Anatomical images were skull-stripped and normalized to MNI152 standard space. 

Functional images were corrected for intensity inhomogeneity using a bias field estimation 

by FSL FAST, skull-stripped and realigned to the 500th volume. Subsequently, functional 

images were aligned to the anatomical images in MNI152 standard space and resampled to 2 

× 2× 2 mm3 isotropic resolution, and motion parameters (three translations and three 

rotations) were regressed out using a generalized linear model (GLM).

Independent Component Analysis

After preprocessing, voxel time-series were scaled to mean 0 and standard deviation 1. Time 

concatenated temporal group ICA was performed using R were the step of pre-whitening 

and dimensionality reduction prior to ICA via PCA was computed by an iterative algorithm 

for singular value decomposition (SVD) developed by Baglama and Reichel [55]. The ICA 

itself was computed by the fastICA algorithm [56].
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3D Visualization

The three dimensional visualization of the veins as measured with SWI was done in Slicer 

[57].

Results

When comparing time-series and image SNR of multiband EPI with standard EPI 

measurements (see Figure 3), the most evident difference are the markedly higher SNR 

values of the former, with image SNR from multiband factor 4 to multiband factor 8 

measurements being largely similar. The differences in time-series SNR are less pronounced 

than the differences in image SNR, but broadly, it can be said that the multiband 4 

measurements showed higher time-series SNR than standard EPI, whereas the multiband 8 

measurements had slightly lower time-series SNR. Furthermore, it can be seen that SNR 

increases are more pronounced in the white matter, amygdala and brain stem, and less so in 

the motor cortex.

Results from temporal ICA are shown in Figure 4, with time courses of the theoretical 

BOLD response function (black line in Figure 4, left, top row) modeled by folding the 

boxcar function of the task blocks (red line; a value of 1 corresponds to a faces or IAPS 

pictures block, a value of 0 corresponds to the control condition of geometric shapes) with a 

generic hemodynamic response function. The individual subjects’ BOLD response to the 

stimuli extracted from the temporal ICA component time-series are pictured in Figure 4 row 

2–4 left, and clearly show the inter-individual variability. The corresponding spatial map of 

that tICA component shows increased signal during the faces and IAPS pictures blocks in 

the visual cortex and amygdala regions, as shown in Figure 4 right (yellow-red). Note that 

due to the increased T1-weighting (low TR) in the multi-band EPI sequence, also arterial 

vessels are visible (depicted in blue).

Discussion and Outlook

The improvements in spatial and/or temporal resolution by multiband EPI sequences 

developed in the Human Connectome project [44] make it possible to employ tICA in the 

analysis of fMRI experiments to separate stimulus-related signals from physiological effects 

of brain pulsations, mainly consisting of high-frequency oscillations.

Two major aspects presented here are the improved fMRI data quality achieved with multi-

band as compared to standard EPI sequences, as well as the identification of physiological 

components, with the potential to selectively remove them from the data.

The first of these aspects also means that the use of low-TR multiband EPI entails the 

possibility of sampling different effects of physiological pulsations on MR signal in the 

brain. We would like to reemphasize that at a certain point, when TR is lower than T1 

regional cerebral blood flow contributes stronger to EPI-measurements, which was however 

separated from T2* (BOLD) contributions by the presented tICA analysis. Additionally, we 

found strong evidence that tICA could be useful in separating various highly relevant 

physiological effects on BOLD imaging related to cerebral blood flow. The perfused human 
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brain and arterial vessels are pulsating in a rather complex fashion, where some effects could 

appear more prominently when 1/TR gets near their respective frequency range. It is well 

known that at least 4–6 heart beat cycles are required to support a regular perfusion of the 

brain, obviously depending on cardiac function appearing as heart rate (HR) and heart-rate 

variability (HRV) in functional brain data (power spectra). In addition, respiration rate (RR) 

and respiration-rate variability (RRV) may add to physiological “noise” picked up by the 

fMRI measurement, limiting statistical power in single subjects and group analyses [27, 58]. 

Furthermore, following current theories [59], the brain may not expand in the same manner 

everywhere and, consequently, the induced brain motion is also not homogeneous across the 

whole brain. The major motion component may depend on the brain region and the cardiac 

cycle phase. In BOLD-imaging variations in the tissue blood- and CSF-content in voxels 

adjacent to the ventricles are also known to contribute to the signal observed [60]. Thus 

blood flow, heart beat frequency, consecutive brain pulsation and transmantle stress as well 

as pulsatile CSF-flow and shift, respectively, should be taken into account in the 

interpretation of any resting state analysis.

The acquisition of whole-brain datasets with a low TR enables researchers to use temporal 

ICA on these data, a method that could not be used for standard EPI measurements due to 

convergence issues related to the low number of time points. The combination of low TR 
(i.e.,<500 ms) and ICA leads to a better identification of the task-related HRF, including 

both its spatial extent and its time course—indeed well enough to examine variations in 

amplitude, time-to-peak and shape across the brain and between subjects (c.f. 61–63). When 

applying this method to patient groups, it can thus help to increase specificity and, 

ultimately, the power to detect significant differences. The increased separability of neuronal 

and pulsation signals may be due to the greatly improved data quality in low-TR MB-EPI, 

improving average image SNR plus time series SNR per unit time (Figure 3). Furthermore, 

with increasing image SNR there is great potential to separate physiological noise from 

neuronal signals via ICA, i.e., to significantly increase functional contrast [64]. This is not 

achievable with long TR data [65] or only statistically across a group of young subjects [64], 

where physiological noise cannot be separated adequately with spatial—in contrast to 

temporal—ICA in resting-state data. As Beall and Lowe pointed out, the parallel collection 

of physiologic data via respiration belt and plethysmograph may no longer be required. 

However, given the complex physiological mechanisms, which drive the brain, even in 

resting state, only low TR data may fully account for individual variations in heart rate (e.g., 

arrhythmia) and respiration (e.g., emotion modulated), in particular in patients with or 

without medication.

On a further note, the identification of pulsation-related high frequency tICA components in 

itself may also lead to useful applications in the clinical setting, as a disruption of typical 

oscillation patterns may point to local as well as global vascular and other physiological 

impairments.

Still, before we achieve adequate spatio-temporal resolution in fMRI, we should be 

extremely careful not to misinterpret our data [66] and refrain from over optimistic modeling 

approaches although there are promising ideas [67]. Bringing together basic models 

developed in physiology and whole-brain BOLD maps [68–70], without taking into account 
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permanently ongoing cerebral blood and CSF circulation [34–36, 71] will prevent full 

separation of neuronal coupled function from other physiological effects. For instance, the 

connection seen in Figure 4 between the visual cortex and more anterior regions of the brain, 

including areas around the brain stem and the amygdala, might not necessarily reflect a 

pattern of local neuronal activation, but is more likely caused by signal changes in the 

nearby V. basiliaris (Rosenthal) as seen in Figure 2D (transversal SWI slab) and 

corroborated by many anatomical studies (e.g., 71, Figures 4, 5). Such a connection could 

result in stimulus-correlated BOLD signal fluctuations in venous vessels running close to the 

amygdalae, potentially masking any “true” neuronal activity related BOLD signal in the 

amygdala [72, 73]. As discussed by Turner [17], this may not be a serious limitation in 

cortical areas—in regions like the amygdala or insula, however, this might be the cause of 

inconsistent results concerning left and/or right amygdala activation [74–76]. A more 

detailed study focusing on the amygdalae is currently under way.

Advanced, multiband EPI (available via the Human Connectome Project; 44, 77: nominal 

voxel size of 2 × 2× 2 mm3, and a TR/TE = 100–350/30 ms, with multiband-factor 4–16 and 

GRAPPA 2–3 to cover the whole brain, although high multiband factors and very short TR 
will not allow full brain coverage. We would like to add, however, that this way the Nyquist 

frequency is increased to >1–5 Hz, i.e., faster signal fluctuations due to respiration, heart-

beat, vessel pulsation etc. are now sampled properly and can be identified and eliminated via 

temporal ICA techniques (45; see Figures 1, 4, 6), further increasing functional contrast, 

even in resting-state data.

More improvements are expected rather soon, further reducing current technical limitations. 

However, the most limiting factor is the researcher’s brain itself. Using novel approaches 

and venturing into the mist of brain function, particularly when attempting to improve our 

understanding of our own brains, is a quite challenging task. Kahneman [78], in his treatise 

“Thinking fast and slow,” may provide more hints how to overcome some of the problems. 

As Kahneman points out, “The difficulties of statistical thinking contribute … to a puzzling 

limitation of our mind: our excessive confidence in what we believe we know, and our 

apparent inability to acknowledge the full extent of our ignorance and the uncertainty of the 

world we live in. We are prone to overestimate how much we understand about the world 

and to underestimate the role of chance in events”—this fallacy is particularly relevant in a 

complex and noisy environment like the human brain.
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Figure 1. Comparison of the mean spectral distribution of 12 resting-state networks shown in 
green (i.e., from medial visual, motor, cerebellum, lateral visual, posterior parietal, left-lateral 
fronto-parietal, temporal, medial frontal, default-mode, to limbic lobe, basal ganglia, right 
lateral fronto-parietal and anterior temporal lobe, in descending order of explained variance) 
and various physiological noise components in red.
Experiments were performed at 3T (n = 26), TR/TE = 1000/28 ms (3.3 × 3.9 × 4 mm3 voxel 

resolution) during 5 min, and at 4T 3 (n = 15), TR/TE =2200/33 ms (3 × 3× 3 mm3 voxel 

resolution) during 10 min sessions. For more details see Robinson [31]. Note the high power 

of noise components between 0.01 and 0.1 Hz, not to be eliminated via bandpass filtering, 

and limiting the detection of more resting-state networks or subtle differences between 

networks in group studies.
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Figure 2. Illustrates relevant macroscopic components in BOLD-based fMRI of the brain.
(A) Arterial vessels ex vivo (copyright Gunther von Hagens, Körperwelten, Institut für 

Plastination, Heidelberg, www.koerperwelten.de), (B) MR-venography of venous vessels in 
vivo at 7 Tesla [courtesy Dr. M. Barth; adapted from Koopmans [36]]. (C) Representative 

slice across the brain of a young healthy subject. T1-weighted structural image, segmented 

gray matter mask, segmented deep white matter mask and segmented CSF space (from left 

to right). Note that in contrast to (A,B), vessels are almost invisible. (D) Mean SWI (n = 3, 

left), highlighting brain regions with strong susceptibility differences (dark regions) causing 
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artifacts (e.g., frontal lobe/nasal cavities, temporal lobe/ear canals, veins near the brain stem, 

etc.). MR-venogram (n = 1), visualizing the basal vein of Rosenthal, running next to the 

amygdalae and brainstem.
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Figure 3. Improving image SNR (left) and time-series SNR (right) via faster scanning.
Although SNR per slice or volume is lower at lower TR, SNR per unit time is increasing due 

to more efficient scanning, as compared to TR = 1800 ms. Furthermore, time series SNR is 

also improving, depending however on the brain region or ROI chosen (motor, motor cortex; 

visual, visual cortex; amy, amygdala; wm, white matter; csf, cerebrospinal fluid; bs, brain 

stem). Note that while tSNR is increased compared to standard EPI when using a multiband 

factor of 4, it is however, decreased at a multiband factor of 8.
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Figure 4. Temporal ICA of low TR, multiband EPI fMRI data from three subjects.
Using a strong task (image matching paradigm, block design shown in red), tICA identifies 

the activation map in the visual cortex but also adjacent to the amygdalae and at the fronto-

basis, corresponding to task related time courses as well as strong pulsations (high frequency 

noise). Note also the major draining vein (V. parieto-occipitalis interna connecting to V. 

basalis Rosenthal) following medially the temporal lobe next to the amygdalae.
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