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Abstract

Recent studies have begun to uncover the genetic architecture of educational attainment. We build 

on this work using genome-wide data from siblings in the National Longitudinal Study of 

Adolescent to Adult Health (Add Health). We measure the genetic predisposition of siblings to 

educational attainment using polygenic scores. We then test how polygenic scores are related to 

social environments and educational outcomes. In Add Health, genetic predisposition to 

educational attainment is patterned across the social environment. Participants with higher 

polygenic scores were more likely to grow up in socially advantaged families. Even so, the 

previously published genetic associations appear to be causal. Among pairs of siblings, the sibling 

with the higher polygenic score typically went on to complete more years of schooling as 

compared to their lower-scored co-sibling. We found subtle differences between sibling fixed 

effect estimates of the genetic effect versus those based on unrelated individuals.
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Introduction

Genetics and the social sciences have endured a long and troubled partnership. At the 

beginning of the 20th Century, eugenicists, including the father of modern quantitative 

genetics R.A. Fisher, used their science to promote politics of racism, classism, and 

xenophobia (Tabery 2008). By the end of 20th Century, things were not much better. 
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Publication in 1994 of The Bell Curve was followed by contentious debate over the 

existence of and biological basis for a racial gradient in intelligence (Neisser et al. 1996, 

Devlin, 1997). The 21st Century is off to a better start in the form of international 

collaboration among academic social scientists and geneticists best embodied by the Social 

Science Genetic Association Consortium. The first large-scale endeavor of this group was to 

apply state of the art methods typically used to hunt for genetic causes of common diseases 

to investigate the genetics of educational attainment (Rietveld et al. 2013). They pooled data 

on more than 100,000 individuals from 42 different studies. To the surprise of many in the 

scientific community, they actually found something. Not only were they able to identify 

genetic variants that exhibited robust and replicable associations with educational 

attainment, they were able to construct a genome-wide “polygenic score” for educational 

attainment that predicted, albeit very weakly, how far an individual was likely to progress in 

their educational career (i.e. total years of schooling and/or whether they completed college).

This breakthrough finding raises an important question for social scientists who study 

educational attainment: What does a measure of genetic proclivity towards higher levels of 

educational attainment actually capture? Can we say with confidence that the genetics of 

educational attainment uncovered in Rietveld et al. (2013) operate independently of the 

social circumstances into which a child is born? And, if so, what are the mechanisms? That 

is, what are the personal attributes (e.g., endophenotypes) that develop from a “high 

education” genotype that in turn enable their holders to go farther in their educational 

careers?

To help address these questions, we conducted a sibling fixed effects analysis among 

respondents in the National Longitudinal Study of Adolescent to Adult Health Sibling Pairs 

Study. Differences in siblings’ genotypes arise from a random process similar to a lottery 

(variation in recombination and segregation of alleles during the meiosis that produces 

gametes). Our analysis tested whether the “winners” of within-family genetic lotteries 

completed more years of schooling as compared to their siblings. The use of an independent 

sample of sibling pairs for this type of inquiry provides three important contributions to the 

existing work in this area. First, we find strong evidence that recent discoveries made in 

genetic studies of educational attainment are non-spurious (i.e. not the result of 

environmental confounding) and represent more than the genetic signature of a privileged 

social group or groups. Second, features of children’s environments that promote 

educational attainment are correlated with their genetic endowments; such correlations may 

bias between-family estimates of genetic effects. Third, estimates of genetic influence on 

educational attainment from comparisons of siblings may differ in important respects from 

estimates based on individuals who do not share the same household. We also examined the 

potential bias that could arise if socioeconomic correlates of a person’s genetic inheritance 

are ignored, a question critical to any future translation of genetic discoveries into education 

research. Finally, we examined a putative mechanism or pathway by which this genotype-

education relationship may hold: verbal intelligence as measured by a receptive vocabulary 

test.

The remainder of this introduction is split into four sections. We begin by introducing 

genome-wide data analysis and its application to the study of educational attainment. We 
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then discuss polygenic scoring as an approach to translating results from genome-wide 

analysis into a tool for social science. In particular, we highlight vulnerabilities in polygenic 

scoring methods and ways of addressing them. Finally, we discuss population and social 

stratification that may confound inference and how the sibling-difference may be used to 

bypass these confounding dynamics.

Genome-wide data analysis and its application to the study of educational attainment

Completions of the Human Genome Project and the International HapMap Project have 

given scientists the necessary tools to directly investigate human DNA and its relation to 

various traits and diseases. The current approach favored by geneticists for identifying DNA 

sequence variation associated with complex human traits is the genome-wide association 

study (GWAS). GWAS is an inductive data mining approach in which an outcome of interest 

(known as a phenotype) is analyzed for association with each of a large number of genetic 

variants selected to survey variation throughout the entire genome, most commonly single-

nucleotide polymorphisms (SNPs).1 To date, thousands of genome-wide analyses have been 

conducted on hundreds of traits and diseases, and many discoveries have been made (Welter 

et al. 2014). Most GWAS research falls within the biomedical domain but the Social Science 

Genetics Association Consortium (SSGAC) was formed to apply the methods of GWAS to 

the study of social phenomena. Their first large-scale project was a genome-wide association 

study of educational attainment (Rietveld et al. 2013). That GWAS, which analyzed data 

from more than 100,000 individuals, identified several SNPs that were associated with 

educational attainment even after strict adjustments for multiple hypothesis testing. 

Subsequent analysis has replicated these discoveries (Rietveld et al. 2014). The individual 

genetic variants discovered exhibited only very small effects on educational attainment, 

consistent with findings from GWAS of other complex traits ranging from body mass index 

to schizophrenia. But the results of the GWAS are not limited to the handful of SNPs 

identified. It is possible to combine information from all of the SNPs analyzed in the GWAS 

to calculate a “polygenic score” that summarizes genome-wide genetic predisposition to 

educational attainment.

Polygenic scores as a tool to integrate GWAS results into social science research

Polygenic scores (also known as genetic risk scores) summarize an individual’s cumulative 

genetic predisposition to a particular disease or trait. Scores aggregate information across a 

panel of SNPs according to associations identified in independent GWAS studies. Each SNP 

is scored by counting the number of disease/trait-associated alleles and then multiplying that 

sum by a weight. The same weight may be used for all SNPs or some other value may be 

used, such as the coefficient estimated for the association between the SNP and the disease/

trait in a GWAS. Then, the weighted allele counts are summed across the SNP panel. 

1SNPs are single-letter changes in the human DNA sequence that are present in >1% of the population. An individual’s genotype for a 
SNP includes two “alleles,” one inherited from each parent. Most SNPs involve the substitution of one letter of the A-C-T-G alphabet 
of human DNA for another. So a SNP might be described as A/G if some individuals in the population carried a ‘G’ where most others 
carried an ‘A.’ An individual could carry one A and one G, or two As or two Gs. In some cases, a change in allele results in a 
functional change in the genome. For example, in the case of the SNP rs6265 in the BDNF gene, the substitution of an ‘A’ allele for 
the more common ‘G’ allele results in an amino acid substitution from valine to methionine, in turn resulting in altered production of 
the BDNF peptide (Egan et al., 2003). However, most SNPs do not have a known biological function and the biological significance of 
associations detected in GWAS is usually uncertain.
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Polygenic scores can include all SNPs measured in GWAS or some subset, typically defined 

by a p-value threshold for the GWAS results (for a detailed discussion of polygenic scoring 

methods see Wray et al. 2007, Purcell et al. 2009, Dudbridge 2013). As the number of SNPs 

included in a polygenic score increases, the score’s distribution rapidly approaches 

normality (Plomin et al. 2009). The capacity to integrate information from across the 

genome into a single index and the statistical properties of that index (i.e. continuous and 

normally distributed) have made polygenic scores an appealing tool for the integration of 

genetics in both biomedical and social sciences. For example, previous work has used 

polygenic scores to study the development of obesity, smoking, and asthma (Belsky et al. 

2012; Domingue et al. 2014; Belsky et al. 2013a; Belsky et al. 2013b). The majority of 

polygenic scores can predict only a few percent of the variance in traits of interest. However, 

it is thought that as GWAS samples increase in size along with the density of SNPs 

genotyped, so too will the predictive power of polygenic scores based on GWAS results 

(Conley, 2015). In the case of human height, a trait measured with high precision, GWAS of 

nearly one quarter million individuals recently generated a polygenic score predicting nearly 

30% of population variance (Wood et al. 2014). Even with the small level of predictive 

power they do offer, polygenic scores provide a tool for beginning to pose and answer 

questions about the complex relationships that exist between genetics, environments, and the 

traits and behaviors of interest to the social sciences (Belsky & Israel 2014; Conley et al. 

2015).

Population stratification and ethnic confounding of genome-wide analysis

Substantively, GWAS test for covariance between allele frequencies and a trait of interest. 

When an association is detected, the inference is that the SNP (or, more likely, some other 

DNA sequence variant that is highly spatially correlated with the SNP) causes a biological 

effect that in turn causes variation in the trait of interest. But there are other sources of 

covariance between allele frequencies and traits that can confound associations detected in 

GWAS. A particularly pervasive source of confounding in GWAS is “population 

stratification.” Population stratification is the non-random patterning of allele frequencies 

across global populations (Cardon & Palmer, 2003). These patterns may arise for any 

number of reasons including major events, such as the departure of a select group from the 

African subcontinent, and minor events of social construction, such as the erection of 

national boundaries that restrict contact between groups. The main consequence of 

population stratification for our purposes is that these alleles will be associated with any trait 

that varies systematically between these populations even though the genetic variation may 

have nothing to do with the underlying reasons (which may be environmental) why the trait 

varies between the two groups. To guard against confounding due to population 

stratification, GWAS typically use samples in which the respondents all report the same self-

identified racial background (Cardon & Palmer, 2003).

The challenge of population stratification raises two important considerations for the 

integration of genome-wide data into social science research. First, it highlights the potential 

racial specificity of GWAS findings because the particular SNPs identified in GWAS may be 

differently associated with the true causal loci due to differences in “linkage disequilibria” 

(e.g., Reich et al. 2001). This implies that a particular SNP measured in GWAS may be 
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highly correlated with an unmeasured causal variant in one population, but not in another. 

An important first step for social scientists wishing to incorporate GWAS-derived genetic 

measurements into their own research designs is to evaluate cross-race replication of 

associations (Belsky et al. 2013c; Belsky et al. 2013d; Domingue et al. 2014). This is an 

especially important point because the SSGAC GWAS of educational attainment was 

conducted only in a European-descent sample.

The second consideration raised by the challenge of population stratification is that residual 

confounding may be present even within samples designed to be racially homogenous. 

Subtle, genome-wide allele frequency differences exist within even relatively narrowly 

defined European-descent populations (Nelis et al. 2008). Thus, at a minimum, statistical 

controls for population stratification are needed. The usual approach in the context of a 

GWAS is to estimate principal components from genome-wide SNP data and then use these 

as control variables in regression analysis (Price et al. 2006). Such principal components are 

only estimates, though. Therefore, an ideal control for population stratification is to conduct 

analyses that compare individuals who share the same ancestry, i.e. family-based genetic 

analysis (Laird et al. 2006).

Social stratification and environmental confounding of genome-wide analysis

To the extent that GWAS are able to uncover molecular roots of behavioral phenomena, 

there are important challenges to address in establishing the magnitudes of the effects of 

genetic influences. A primary challenge is that polygenic influences will be correlated 

among family members; any genetic predisposition to social attainment will be shared 

between parents and children. Thus a child’s genetic and social inheritances will be 

correlated (e.g. Boardman et al. 2012). Attempts to quantify genetic effects must therefore 

account for social differences between children. One method is to measure and control for 

features of children’s environments, such as characteristics of their families and 

neighborhoods. But in parallel to the limitations with using principal components to control 

population stratification, such methods depend on the quality and completeness of the 

measurements of children’s environments. An alternative is to conduct within-family 

analysis via sibling fixed effects. Full siblings in a family share—to a large degree—parents, 

housing, neighborhoods, schools, and so on. And as discussed above, their genetic 

differences are essentially randomly assigned. Siblings thus provide ideal controls for 

establishing magnitudes of genetic effects on social attainments.

Here, we test the effects of a polygenic score related to educational attainment derived from 

GWAS in a nationally representative sample of siblings. We then evaluate correlations 

between genetic and social determinants of educational attainment. We next estimate genetic 

effects after controlling for select measured features of children’s social environments. 

Finally, we submit genetic effect estimates to the acid test of a sibling comparison. We 

evaluate whether genetic effects on educational attainment operate in a similar manner 

within families and across children in the population. We also test whether genetic effects 

are accounted for by a common measure of academic aptitude, verbal intelligence.
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Materials

Sample

Add Health is a nationally representative cohort drawn from a probability sample of 80 US 

high schools and 52 US middle schools, representative of US schools in 1994–95 with 

respect to region, urban setting, school size, school type and race or ethnic background 

(n=20,745, aged 12–20 years at Wave 1 in 1994–95). The Wave 3 (2001-2002) and 4 

(2008-2009) data collections included n=15,197 individuals (then aged 18–26 years, mean 

age 22.3 years) and n=15,701 individuals (then aged 24–32 years, mean age 28.9 years) 

respectively. The Add Health study includes an oversample of siblings (Harris et al. 2013). 

The sibling pairs sample was genotyped (via Oragene saliva collection) with the Illumina 

Human Omni Quad chip at Wave 4 of the study (see McQueen et al. 2014 for details). We 

use this genome wide data to construct polygenic scores for study participants.

Patterns of linkage disequilibrium (LD) vary considerably across socially defined racial and 

ethnic groups and this is particularly evident when comparing the correlated genotype 

structures of Europeans to those of African ancestry (Price et al. 2010). Specifically, there is 

more genetic variation among those of African ancestry (Rosenberg et al. 2002; Li et al. 

2008) that reduces LD (e.g., the correlation between neighboring SNPs) and thus creates 

problems for comparing the effects of SNPs across groups, a problem compounded when 

creating genome-wide polygenic scores. We therefore analyzed genetic associations 

separately for European and African Americans.

The 917 European Americans (EA) in our analytic sample are in 386 sibling pairs, twelve 

sibling trios, with an additional 109 singletons. The 677 African Americans (AA) are in 100 

sibling pairs, four trios, with an additional 465 singletons. Table 1 shows characteristics of 

the European- and African-American Sibling Pairs Study participants who provided genetic 

data and constitute our analytic sample. The table also shows characteristics of the full Add 

Health European- and African-American samples for comparison. The European Americans 

in our analytic sample are largely comparable to the full population of EA respondents in the 

Add Health study. The African Americans in our sample are less educated, have less 

educated parents, and score lower on the verbal intelligence measure as compared to all AA 

Add Health participants. The bulk of our analysis is focused on the EA sample because the 

original Reitveld et al. (2013) GWAS was conducted on European-descent individuals. 

Replication of polygenic scores discovered in EA samples among AA samples may be 

compromised because LD differences in the groups leads to less precision among AA 

samples. Accordingly, large-scale GWAS of educational attainment in African Americans 

will be needed to better quantify genetic influences on attainment in this population. 

Nevertheless, in the interest of testing the extent to which findings made in European-

descent individuals replicate in a different population, we conduct several analyses of the 

African American sample. Due to the small number of African American sibling pairs in the 

data, sibling analyses are conducted only in European Americans.
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Measures

Educational Attainment—We measured educational attainment as the highest degree 

completed by the time of interview at Wave 4 when respondents were asked “What is the 

highest level of education that you have achieved to date?”. Response options and their 

numeric values (in parentheses) were: 8th grade or less (8), some high school (10), high 

school graduate (12), some vocational/technical training (13), completed vocational/

technical training (14), some college (14), completed college (16), some graduate school 

(17), completed a master’s degree (18), some graduate training beyond a master’s degree 

(19), completed a doctoral degree (20), some post baccalaureate professional education (18), 

and completed post baccalaureate professional education (19). EA respondents in our 

genetic sample completed 14.2 years of schooling on average (SD=2.2) by Wave 4. Of the 

sibling pairs, 64% varied in their educational attainment (mean difference=1.7 years). AA 

respondents in our genetic sample completed 13.5 years of schooling on average (SD=2.2).

Parental Education—At the first wave of data collection, parents of respondents (over 

90% were females) responded to a question asking “How far did you go in school?” 

Potential responses and their numeric codes (in parentheses) included: 8th grade or less (8), 

more than 8th grade but did not graduate from high school (10), went to vocational school in 

place of high school (10), high school graduate (12), GED (12), vocational school after high 

school (13), attended college (14), graduated college (16), and training beyond college (18). 

EA parents of participants in our genetic sample reported completing 13.5 years of 

schooling on average (SD=2.1). AA parents completed 12.6 years of schooling on average 

(SD=2.2). Participants with more educated parents went on to complete more years of 

schooling (r=0.42 in the EA sample; r=0.32 in the AA samples; see Table 2).

Neighborhood Disadvantage—The Add Health Study used respondents’ residential 

addresses at the time of Wave I data collection to link individuals with data describing the 

US Census block group where they lived. We used contextual variables from this dataset to 

measure the socioeconomic and sociodemographic characteristics of the neighborhoods in 

which Add Health respondents were living at the time of the baseline interview in 

adolescence (see Online Supplement). By design, measured neighborhood disadvantage was 

associated with educational attainment (r=-0.35, for EA respondents), although this 

association was weaker for AA respondents (r=-0.14).

Verbal Intelligence—Verbal intelligence was measured at Wave 1 (when Add Health 

participants were 12-20 years old) via a modified version of the Peabody Picture Vocabulary 

Test (Dunn & Dunn, 1981, 1997), a test of receptive vocabulary (M=103.9, SD=11.1 for EA; 

M=91.6, SD=13.8 for AA). Respondents who scored higher on the vocabulary test went on 

to complete more years of schooling (r=0.36 in both EA and AA samples).

Educational Attainment Polygenic Score—After quality controls (see Online 

Supplement), the genetic database included 1,886 individuals with valid data on 940,862 

SNPs. Polygenic scores for educational attainment were calculated for each Sibling Pairs 

participant using the results of their meta-analysis of GWAS of educational attainment 

(Rietveld et al. 2013). Briefly, SNPs in the Add Health Sibling Pairs genetic database were 
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matched to SNPs with reported results in the GWAS. For each of these SNPs, a loading was 

calculated as the number of educational attainment-associated alleles multiplied by the 

effect-size estimated in the original GWAS. Loadings were then summed across the SNP set 

to calculate the polygenic score. Additional details on the construction of this variable, as 

well as a sensitivity analysis, are included in the Online Supplement. We standardize the 

polygenic score to have M=0, SD=1 separately within the EA and AA samples. Scores were 

normally distributed (Figure S1). The mean sibling difference in polygenic scores in the EA 

sample was 0.8.

Analysis

Our analysis used 3 models to test associations between Add Health participants’ polygenic 

scores and their educational attainments. The youngest participants were aged 24 at the time 

of the most-recent data collection and some may not have completed their education (Figure 

S1 contains a comparison of birth year and educational attainment). All models were 

adjusted for year of birth to account for any differences in educational attainment due to age 

at the time of follow-up. Models 1 and 2 are also adjusted for the first 10 principal 

components estimated from the genome-wide SNP data to account for any population 

stratification in our analytic sample (McQueen et al. 2014).

The first model estimated the association between polygenic score and educational 

attainment in the pooled sample of sibling pairs. Model 1 takes the form

Model 1

The estimate of the genetic effect is denoted “βU,” where the subscript emphasizes the fact 

that the estimate comes from an approach in which the respondents are treated as unrelated 

individuals. The sibling structure of the data was accounted for by clustering standard errors 

within families (Zeileis, 2004), but this does not affect point estimates. Model 1 

approximates the approach being used by many social scientists seeking to integrate genetic 

information into analyses of educational attainment (e.g., Ward et al. 2014; de Zeeuw et al. 

2014).

A limitation to Model 1 is that βU may be biased away from zero due to confounders that 

covary with the genetic score across families (environmental stratification, as discussed in 

the introduction). For example, children share half of their DNA with each parent. Thus, a 

child’s polygenic score will be positively correlated their parents’ scores. If the polygenic 

score is causally related to educational attainment, then children with high scores will tend 

to have better educated parents as compared to children with low scores. As a consequence, 

they are likely to grow up in quite different environments. βU may therefore capture not just 

a genetic effect, but also the effects of environmental advantages that are associated with the 

child’s genotype (i.e. parents with more education and the economic and social resources 

that come with it). The geocoded Add Health contextual data allow us to test this hypothesis 

by fitting a second model that statistically control for differences in adolescents’ 

environments that may be correlated with their polygenic scores. Model 2 takes the form:
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Model 2

where ν and ω adjust for differences between adolescents’ parental and neighborhood 

characteristics. We also consider models where ν and ω are independently constrained to be 

0 (Models 2A and 2B respectively).

A limitation of Model 2 is that it cannot account for unmeasured features of families and 

neighborhoods that are correlated with children’s genotypes. Therefore, we fit a third model 

that utilized the family-structure of the data to generate a sibling fixed effect estimate that 

fully controls for parental genotype and attainments and also for any neighborhood or 

environmental characteristics that may vary across families. Model 3 takes the form:

Model 3

Where IK (i) is 1 if individual i is in family k and 0 otherwise (and one family, k=1, is 

excluded as the reference). This sibling comparison model leverages the genetic lotteries that 

occur within families. Estimates of βW represent the educational advantage enjoyed by the 

sibling who “wins” a hypothetical family’s genetic lottery. Because the estimate is based on 

comparing siblings, any parental,neighborhood, or school factors that are shared by siblings 

in a family are controlled by the design of the model.

Results

Did adolescents with higher polygenic scores complete more years of schooling?

Adolescents with higher polygenic scores went on to complete more years of schooling as of 

the most recent follow-up, when they were in their 20s and 30s. The genetic effect in our US 

sample of EA respondents was small in magnitude, (r=0.18, see Table 2) consistent with 

published estimates from samples in the UK and the Netherlands (Ward et al. 2014, De 

Zeeuw et al. 2014). In years of educational attainment, this correlation is equivalent to a 

predicted increase of 0.41 years for a one SD increase in the polygenic score. In our 

European-descent sample, we detected little evidence that population stratification 

confounds genetic effects as estimated effect sizes for the polygenic score were similar when 

models were fitted without adjustment for population structure: our base Model 1 estimated 

that each standard-deviation increase in an adolescent’s polygenic score forecast their 

completion of over one-third of one year of additional schooling ( , SE=0.08, 

p<0.001, see Table 3). In comparison, having a mother who graduated college was 

associated with an additional 1.7 years of schooling.

We repeated this analysis in the AA Sibling Pairs. The genetic effect was smaller in African 

Americans, but remained statistically significant (r=0.11, p<0.01). In real terms, after 

controlling for population structure, Model 1 suggests that each standard-deviation increase 
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in polygenic score forecast their completion of about one-fifth of one year of additional 

schooling ( , SE=0.09, p=0.02).

Were adolescents’ social environments related to their genetic inheritance?

We next tested the potential for environmental confounding of genetic associations. In the 

EA sample, we did not detect a (significant) relationship between participants’ polygenic 

scores and their mothers’ educational attainments. In contrast, in the AA sample, 

participants with higher polygenic scores tended to have better educated mothers (r=0.12, 

p<0.01). This pattern of findings was reversed when we analyzed genetic associations with 

neighborhood disadvantage. EA participants with higher polygenic scores tended to live in 

more socially advantaged neighborhoods (r=-0.13, p<0.001) whereas AA participants’ 

polygenic scores were not related to the social circumstances of their neighborhoods. These 

findings show that genetic predisposition to educational attainment was socially stratified in 

both whites and blacks, although they suggest differences in the nature of that social 

stratification.

We next tested whether genetic associations with educational attainment could be accounted 

for by measured social environmental differences. We repeated our genetic analysis of 

educational attainment, this time adding statistical adjustments to account for maternal 

education and neighborhood disadvantage. For the EA respondents, adding controls for 

parental education and neighborhood disadvantage one at a time attenuated genetic effect 

estimates by roughly twenty percent (for a model controlling neighborhood disadvantage, 

Model 2A, βU′=0.30, SE=0.07, p<0.001; for a model controlling maternal education, Model 

2B, βU′=0.29, SE=0.08, p<0.001). When both maternal education and neighborhood 

disadvantage were included in the model together, the genetic effect was reduced roughly by 

30% (βU′=0.26, SE=0.07, p<0.001). We repeated this analysis in the AA sample. Because 

neighborhood disadvantage showed no distinguishable association with the polygenic score, 

we focus on Model 2B which adjusts the effect of the polygenic score for parental education. 

After including controls for maternal education in Model 2B, the estimated coefficient for 

the polygenic score was not statistically significant (βU′=0.14, SE=0.09, p=0.12).

Differences between adolescents’ polygenic scores also reflect genetic differences between 

their families. Correlations of polygenic scores between parents and children have been 

estimated as high as r=0.60 (Conley et al. 2015). In our sample, the correlations between EA 

siblings’ polygenic scores is r=0.53. Families with higher polygenic scores could achieve 

higher degrees and acquire the resources to move into more advantaged neighborhoods on 

the strength of their genetic endowments. As a result, interpretation of the attenuation of 

genetic effects from Model 1 to Model 2 is not straightforward. We therefore moved to the 

sibling comparison model, in which adolescents’ social environments are equal by design 

and genetic differences between individuals are randomly assigned by the “lottery” of 

meiosis.
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Within a family, did the sibling with the higher polygenic score achieve higher educational 
attainment?

We expected that our Model 3 sibling fixed effect estimate would be similar to our Model 2 

estimates. Surprisingly, the sibling-difference genetic effect was of nearly the same 

magnitude as the base model estimate ( , SE=0.11, p<0.01). This result suggests 

two things. First, genetic associations with educational attainment are non-spurious, i.e. not 

confounded by social environmental differences that correlate with adolescents’ polygenic 

scores. Second, sibling-based analyses may be subtly different from analysis of unrelated 

samples. We discuss the substance and implications of these differences below.

Do genetic effects operate via influence on verbal intelligence?

Published analyses suggest that genetic influence on educational attainment may be 

mediated by higher intellectual functioning, i.e. children with higher polygenic scores 

complete more schooling because they are cognitively more able (e.g., Rietveld et al. 2013). 

We found evidence to support this hypothesis in our models analyzing unrelated adolescents. 

Our analysis here focused on the subset of 877 EA respondents with data on the modified 

Peabody Picture Vocabulary Test of verbal intelligence in Add Health Wave 1. Adolescents 

with higher polygenic scores did better on the verbal intelligence Test (r=0.14, p<0.001, see 

Table 2). In turn, adolescents with higher verbal scores went on to complete more schooling 

(r=0.36, p<0.001). When we repeated the Model 1 analysis of the association between an 

adolescent’s polygenic score and their educational attainment, this time adding the verbal 

intelligence score as a covariate, the genetic effect was attenuated ( , p<0.001 

compared to , p<0.001). This result suggests that about 1/3 of the genetic 

association with educational attainment is attributable to genetic influence on the 

development of verbal intelligence. However, the statistical test for the difference in 

coefficients fails to reach conventional significance levels.

We next subjected the mediation hypothesis to the rigorous test of the sibling comparison 

model. There was a relatively weak association between the difference in sibling polygenic 

scores and the difference in sibling verbal intelligence (r=0.07, p=0.18). However, the 

difference in sibling verbal intelligence was correlated with differences in attainment 

(r=0.22, p<0.001). When we repeated our analysis of the within-sibling association between 

polygenic score and educational attainment, this time adding Peabody score as a covariate, 

the coefficient was only modestly (and insignificantly) attenuated ( , SE=0.12, 

p<0.01 compared to , SE=0.12, p<0.01). This result suggests that very little of the 

genetic effect on sibling differences in educational attainment is attributable to sibling 

differences in verbal intelligence.

We discuss several plausible explanations for these divergent results based on between- and 

within-family analyses. First, it could be that intelligence score differences between siblings 

contain relatively less information than score differences between unrelated individuals. This 

could occur if there was less true score variance within sibships, If this were true and 

variance due to random measurement error remained constant across the two types of 
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comparisons, then there may be a reduced reliability of the sibling difference score—that is, 

the ratio of signal to noise would be lower for the sibling analysis. It could also be the case 

that sibling analysis captures non-random measurement error, i.e. mean-regressive error 

which may occur if siblings deemphasized their verbal differences (consciously or 

unconsciously) when tested. This would not change the reliability of the family average 

(thus the point estimate for the between family analysis would be unaffected); however, it 

would lead to attenuation bias in the within-family analysis. A final potential explanation is 

that the mechanisms linking genes to educational attainment could be different for unrelated 

individuals compared to siblings. Twin studies suggest that traits other than intelligence 

(e.g., personality) may mediate genetic influences on educational attainment (Krapohl et al. 

2014) and these traits may play a larger role in producing differences between siblings. We 

return to this divergence in results in the discussion.

Sensitivity Analyses

The strength of the sibling analyses is that factors which do not vary across siblings are 

eliminated as potential confounders. One clear difference between siblings, which previous 

studies have related to attainment, is their birth order (Kantarevic & Mechoulan, 2006; 

Conley & Glauber, 2006; Black et al. 2006 ; c.f., Hauser & Sewell, 1985). If birth order were 

also related to a person’s polygenic score, it would represent a plausible confounder. We 

therefore tested this association. A sibling’s birth order was not related to his/her polygenic 

score (r=0.01). When we include a dummy variable for birth order in Model 3, we estimate 

 at Wave 4 to be 0.30 (p=0.01), unchanged from the original estimate of 0.29.

Previous research suggests the possibility that genetic influences on a child’s educational 

attainment may be modified by features of the child’s environment, such as their family’s 

SES (Turkehimer et al. 2003). A previous test of this hypothesis in older cohorts using a 

similar polygenic score found no evidence that genetic effects varied by family SES (Conley 

et al. 2015). As an exploratory analysis, we evaluated the hypothesis in our data by testing 

for an interaction between the polygenic score and maternal educational attainment in a 

modified version of Model 2B. The main effect of the polygenic score was similar to what 

was reported in Table 3, ( , p<0.001). We estimated an interaction between 

parental education and the polygenic score of -0.06 (SE=0.03, p=0.04). The coefficient 

being negative suggests that a child’s polygenic score is less predictive of his/her own 

educational attainment when his/her mother holds a higher degree. Notably, this finding is 

opposite the prediction that would be made based on the original Turkheimer observation, in 

which genetic factors explained more variance in higher SES children. We view this as a 

preliminary result which will need to be verified in the full Add Health cohort once it has 

been genotyped. A comparable model estimated in the AA sample yielded a main effect 

nearly identical to Model 2B ( , p=0.12) and an interaction of 0.01 (SE=0.04, 

p=0.79).

Given the limited sample size, statistical power is a concern. Based on published 

associations between the polygenic score and educational attainment, we expected an effect 

size of at least r=0.1. We have better than 80% power to detect such an effect in the EA 

Domingue et al. Page 12

AERA Open. Author manuscript; available in PMC 2017 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sample. Power for the sibling-comparison analyses is somewhat lower (about 60%, 

additional details available in the Online Supplement). Therefore, our results should be 

interpreted as contributing to the evidence base on the nature of genetic associations with 

educational attainment, but needing replication in additional samples.

Discussion

We investigated a recently published genetic algorithm to predict educational attainment 

using genome-wide genetic data from the National Longitudinal Study of Adolescent to 

Adult Health (Add Health) sibling pair files (McQueen et al. 2014). We found that a 

polygenic score produced with this algorithm was predictive of educational outcomes in our 

sample of US adolescents born during the 1970s and 1980s and followed-up through the first 

decade of the 21st Century. Add Health respondents with higher polygenic scores completed 

more years of schooling as compared to peers with lower scores. Each standard deviation 

difference in polygenic score predicted roughly one-third of one year’s difference in 

completed schooling by the end of follow-up (e.g., a moderate effect size). This estimate 

may be a lower bound of how much variation in educational attainment can be predicted 

with a polygenic score. Twin studies estimate that approximately 40% of the variation in 

educational attainment is attributable to genetic factors (e.g., Branigan et al. 2013). The 

SSGAC estimates that the variance in educational attainment explained by their polygenic 

score will grow as their GWAS sample size increases; Rietveld et al. (2013) estimate that 

15% of the variance in attainment might be predicted with a polygenic score derived from a 

GWAS on one million respondents.

Our sibling comparison analysis extends prior work (Rietveld et al. 2014; Conley et al. 

2015) to a contemporary, nationally representative US sample. We further show, for the first 

time, clear evidence for socio-geographic patterning of polygenic scores in the contemporary 

United States. It is not entirely surprising that the genetic similarities of parents and children 

are reflected in their respective educational attainments (Krapohl & Plomin, 2015; Conley et 

al. 2015). But our data also show that patterning of polygenic scores extends to the 

neighborhoods in which children live. Neighborhoods can be important facilitators of or 

impediments to children’s social attainments (e.g. Chetty et al. 2015a, b). Future research 

should investigate neighborhoods and other macro-social factors as potential pathways 

through which familial genetic endowments influence children’s outcomes. Ultimately, the 

substance of genetic differences between neighborhoods implied by our analysis remains 

uncertain. Our observations here represent only a first illustration of how novel genome-

science methods can begin to integrate biological science with research on social attainment 

and mobility.

A further contribution of our study is to identify an important difference in estimates of 

genetic effects obtained from between-family analysis and within-family analysis. In our 

between-family analysis, genetic effects were substantially attenuated when we included 

controls for family and neighborhood social advantage. This result suggests that, for 

educational attainment, social advantages are correlated with genetic advantages. This 

complicates the causal models social scientists use when they study socioeconomic gradients 

in education, particularly in light of evidence that childhood social advantage and 
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educational attainment share genetic roots (Krapohl & Plomin, 2015). In any event, the 

within-family analysis does not have this problem due to the shared sibling environment. In 

the within-family analysis that also controlled for socioeconomic differences between 

individuals, genetic effects were nearly identical to unadjusted estimates from between-

family analysis. We also see discrepancies in the mediation analyses: Verbal intelligence 

appears to mediate about 1/3 of the genetic association with educational attainment in 

analyses of unrelated individuals, but is a weaker mediator of genetic effects identified in the 

within-family analysis. So why do the two approaches yield such different results?

The explanation we favor is that families constitute heavily controlled laboratories for 

testing genetic effects. Out in the “wild” of between family analyses, variance in educational 

attainments is mostly accounted for by structural features of the social environments 

children grow up in—their parents’ education, the kinds of neighborhoods in which they 

live, and the schools they attend. These powerful social forces are silenced within families. 

This is generally regarded as a strength of within-family analysis. But in our case it may 

require a subtle reinterpretation of results. Because so much is similar for siblings, small 

differences in their genetic makeup have the opportunity to stand out. We know that medical 

treatments sometimes show large effects in carefully controlled trials, but prove less 

effective when implemented in field settings where there is more variation in treatment 

context (Rothwell, 2005). In the same way, a genetic difference measured by polygenic 

score could have larger consequences for a pair of siblings, who share most other 

determinants of educational outcomes, than for a pair of unrelated individuals. Some have 

referred to this pattern as a “social distinction” process in which particular social 

environments, specifically those in which background social noise in minimized, enable us 

to distinguish the signals from small genetic associations (Boardman, Daw, and Freese, 

2013). It may also be the case that family environments function to magnify differences 

between siblings. Parents respond to observed differences in their children by making 

different investments in them (Conley, 2004), potentially magnifying a genetic difference of 

modest consequence. Siblings, seeking to differentiate themselves from one another, may 

form identities that track them toward more or less educationally enriching activities and 

associations, again, with the consequence of magnifying a genetic difference of initially 

modest consequence.

We acknowledge limitations. First, our data are right censored. Some Add Health 

participants may not have completed their educational careers by the time of the most recent 

Wave 4 interview. Continued follow-up of the cohort is needed. Second, our data are left-

censored. Add Health began when participants were well along their adolescent educational 

careers. We were therefore unable to observe pre-schooling characteristics but also unable to 

observe all possible educational transitions (e.g., we have left and right censoring). Third, 

cognitive assessment in Add Health at baseline was limited to the modified Peabody Picture 

Vocabulary test. It is possible that the genetic influence measured in the polygenic score 

affects other facets of general cognitive ability not measured in this test of verbal 

intelligence. Finally, the Add Health Study used school-based cluster sampling, providing a 

highly attractive setting for investigating the role of schools in modifying/contextualizing 

genetic influence on educational outcomes (e.g., through use of school-level fixed effects). 

The sibling pairs sample is not large enough to take advantage of this design, and therefore 
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schools are omitted from our analysis. We do analyze characteristics of children’s families 

and neighborhoods. Analysis of schools will be a priority when the genetic data on the full 

Add Health sample become available.

Conclusion

Twin studies have been the traditional approach for understanding the connection between 

genes and outcomes such as education, but they do not tell us about the biological 

underpinnings of these connection. Although we must emphasize that this age of integrative 

genetic research is only just entering its second decade, study of molecular genetic data has 

begun to offer evidence providing information about why certain types of genetic variation 

lead to variation in mental ability. At this point we attempt to answer a key question: What is 

the relevance of such genetics research to education research? At the present time, the 

predictive power of the polygenic score is clearly too weak to have “clinical” value and we 

are skeptical that even increased predictive power would make the score useful as the basis 

for intervention. But we do think this line of inquiry offers opportunities for study of (1) how 

the genetic predisposition towards attainment comes to fruition and (2) how environments, 

often in the role of policies, combine with biology to influence outcomes. We discuss these 

two opportunities in turn.

There are numerous reasons that certain individuals experience educational success. Some 

individuals have more raw ability in the various cognitive domains required to continue in 

education. Some individuals have psychological characteristics that contribute while others 

have social skills that lead to increased educational attainment. Genes are linked to all of 

these personal attributes. Here, we have tested one natural pathway (verbal intelligence) 

through which the genetic predisposition towards educational attainment may act, but we are 

limited in our ability to test other pathways. The full Add Health sample is currently being 

genotyped. When this process is complete, we hope to test additional pathways. Alongside 

the study of these mediating pathways, incorporating genetics into education research also 

provides an additional point of leverage for studying the translational pathways through 

which increased educational attainment may translate into more distal life course outcomes 

such as improved health and labor force participation.

One important pathway through which a genotype may translate into increased attainment 

involves the possibility that one’s genotype evokes a particular environment (i.e., evocative 

gene-environment correlation). This perspective suggests that genotype is associated with 

observable traits that may, for example, affect a counselor’s decision about class scheduling, 

a teacher’s perception of student ability or effort, or even the likelihood that a particular 

student will befriend certain people (Boardman et al. 2012). All of these factors may then 

have influences on the years of educational attainment. If this is the case, it does not change 

the fact that genotype is related to educational outcomes but it suggests that the cause has 

more to do with the environment in which one resides than the production of specific 

proteins that directly enhance one’s ability to succeed in school.

A second area of relevance to educational research of genetic inquiry is an increased 

understanding of how environments shape outcomes. As an example of how this might 
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work, consider smoking. There is evidence to suggest that genes became a more important 

determinant of smoking behavior after the 1964 publication of the Surgeon General’s 

warning (Boardman 2010, Boardman et al. 2011). If those who still smoke have a different 

biological relationship with tobacco (as indicated by genetics) than smokers from previous 

generations, then this suggests that modern cessation efforts might need a new focus as 

compared to previous efforts aimed at those with a weaker genetic inclination towards 

smoking.

One might similarly consider the composition of those who enter college in 2015 compared 

to the composition of those who entered college in the mid-1960s. It is increasingly 

normative for nearly all students in the US to consider college attendance with 68% of high 

school graduates attending college in 2013 compared to only 45% in 1965 (US Bureau of 

Labor Statistics 2015). As such, it is possible that the relative contribution of genetics to 

educational attainment may have changed. This increased access to education may increase 

or decrease the relative contribution of genes to educational differences in the population. 

For example, 100 years ago, a remarkably select group of adults were able to attend and 

matriculate from college. Thus, social factors related to family resources and institutional 

connections placed great limits on who was able to obtain higher education. As such, small 

genetic associations may not have differentiated between individuals in this context. As 

social controls were removed, it is possible that the selection into college was not random 

but initiated primarily among those with higher polygenic scores which would enable 

genetic variation in the population to contribute to phenotypic variation (e.g., education).

Of course, there are almost assuredly scenarios that would decrease the relevance of the 

polygenic score. The introduction of compulsory schooling, universal preschool, and the GI 

bill are all interventions that have possibly changed the association between the polygenic 

score and attainment. Whether the genetic association with attainment is increasing or 

decreasing, the larger point is that a consideration of genetics can help us understand the role 

of environment, including policy interventions. In particular, a consideration of genetics may 

allow for understanding of response heterogeneity and, more broadly, could help us to 

understand why policies may (or may not) be generating the desired policy objective. 

Although such research is just beginning, Fletcher (2012) provides a useful example in 

which he demonstrates that the smoking behavior of certain individuals may be less sensitive 

to changes in the tax rate as a function of genotype.

In closing, this paper adds to the ample evidence to suggest that children’s educational 

attainments are influenced by their genes (e.g., Branigan et al. 2013). However, it is 

becoming increasingly clear that just as biology plays a role in shaping social outcomes such 

as education, the social environments in which humans are placed play a role in shaping 

their biology. For example, recent research suggests that chronic poverty plays a role in 

shaping brain structure (Noble et al. 2015). Children’s educational environments are among 

the most important social exposures that modern humans experience. Thus, we believe that 

just as genetics can offer new tools to education researchers, education researchers have 

important expertise to bring to genetic studies. Specifically, there is a need to identify which 

aspects of the educational environment matter, when in development they matter most, and 

whether there are specific children who may be more or less sensitive to these environments.
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Table 2

Correlations between educational attainment, polygenic score, and other key variables in EA and AA samples.

EA Respondents AA Respondents

Correlation with W4 
education

Correlation with 
Polygenic Score

Correlation with W4 
education

Correlation with 
Polygenic Score

Years of Education at W4 0.18*** 0.11**

Verbal Intelligence 0.36*** 0.14*** 0.36*** 0.15***

Years of Maternal Education 0.42*** 0.05 0.32*** 0.12**

Neighborhood Disadvantage -0.35*** -0.13*** -0.14*** 0.00

Polygenic Score 0.18*** 0.11**

Note:

+
p<0.1;

*
p<0.05;

**
p<0.01;

***
p<0.001
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