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Effects of precursor solution composition
on the performance and I-V hysteresis of
perovskite solar cells based on
CH3NH3PbI3-xClx
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Abstract

Precursor solution of CH3NH3PbI3-xClx for perovskite solar cells was conventionally prepared by mixing PbCl2 and
CH3NH3I with a mole ratio of 1:3 (PbCl2:CH3NH3I). While in the present study, CH3NH3PbI3-xClx-based solar cells were
fabricated using the precursor solutions containing PbCl2 and CH3NH3I with the mole ratios of 1:3, 1.05:3,
1.1:3, and 1.15:3, respectively. The results display that the solar cells with the mole ratio of 1.1:3 present higher power
conversion efficiency and less I-V hysteresis than those with the mole ratio of 1:3. Based on some investigations, it is
concluded that the higher efficiency could be due to the smooth and pinhole free film formation, high optical
absorption, suitable energy band gap, and the large electron transfer efficiency, and the less I-V hysteresis may be
attributed to the small low frequency capacitance of the device.
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Background
Organometal halide perovskite solar cells (PSCs) have
attracted much attention over the last several years due
to their outstanding properties, such as large absorption
coefficient, high electron-hole diffusion length, and high
charge carrier mobility [1–6]. The power conversion
efficiency (PCE) has increased from 3.8 to 22% [7]. The
typical architectures of PSCs mainly contain electron
transporting layer (ETL)/perovskite/hole transporting
layer (HTL) (n-i-p) and HTL/perovskite/ETL (p-i-n)
structures [8]. In the CH3NH3PbX3 (X = I, Br, Cl) family, a
mixed halide perovskite CH3NH3PbI3-xClx (MAPbI3-xClx)
has been proved a large diffusion length (~1 μm), which
could be applied for planar heterojunction solar cells with
improved device performance [9, 10]. Some groups have
reported the results of the MAPbI3-xClx-based solar cells
[11–13], in which the highest PCE is 19.3% [14].

The precursor solution of MAPbI3-xClx is convention-
ally prepared by mixing PbCl2 and CH3NH3I with a
mole ratio of 1:3 (PbCl2:CH3NH3I). While there was no
or only trace amount of Cl to be detected [15, 16]. Some
studies have been performed to investigate the role of Cl
in the MAPbI3-xClx film formation [17, 18]. A widely
accepted opinion is that Cl ion in organometal halide
perovskite can boost the mobility of excitons and the
charge carrier transport [19–21]. A few groups have
fabricated MAPbI3-xClx solar cells using the precursor
solutions containing excess PbCl2 to investigate its effect
on the performance of solar cells based on the I-V meas-
urement with single scan direction [18, 21–23]. It has
been reported that hysteretic effects were observed dur-
ing the I-V measurement of the perovskite solar cells
[24]. I-V hysteresis could lead to an over- or underesti-
mation of the PCE if it is not considered. Up to now,
there are few reports to investigate the effects of excess
PbCl2 on the PCE and I-V hysteresis of MAPbI3-xClx
solar cells by considering the hysteretic effect.
Therefore in the present study, MAPbI3-xClx-based

solar cells were fabricated using the precursor solutions
containing different mole ratios of PbCl2, and CH3NH3I.
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I-V measurements were carried out with reverse scan
(RS) and forward scan (FS). The photovoltaic parameters
were obtained from the I-V curves averaged with RS and
FS. Based on the measurements, the effects of excess
PbCl2 on the PCE and the I-V hysteresis of the solar
cells were investigated. One of the novelties of this work
is that the photovoltaic parameters were obtained by an
average of RS and FS to improve the accuracy of data.
The other is the observation and investigation of the
effect of excess PbCl2 on I-V hysteresis.

Methods
Materials preparation
Methylammonium iodide (CH3NH3I) was synthesized with
a method reported in the literature [25]. The perovskite
precursor solutions (40 wt%) were obtained by mixing
PbCl2 and CH3NH3I (MAI) in anhydrous N,N-Dimethyl-
formamide (DMF) at 60 °C with the mole ratios of 1:3,
1.05:3, 1.1:3, and 1.15:3 (PbCl2 to MAI), respectively.

Solar cell fabrication
Perovskite solar cells with a structure of n-i-p were
fabricated. FTO-coated glass substrate (~15 ohm/sq,
NPG, Japan) was patterned and cleaned with detergent,
acetone, 2-propanol, and ethanol for 15 min by sonic-
ation. Then the substrate was treated by oxygen plasma
for 20 min. A hole-blocking layer of compact TiO2 was
deposited by spin-coating, a mildly acidic solution of
titanium isopropoxide (Aladdin reagent) in ethanol
(350 μl in 5 ml ethanol with 0.013 M HCl) at 2000 rpm
for 30 s and annealed at 500 °C for 30 min. A mesopo-
rous TiO2 layer composed of commercial TiO2 paste
(Dyesol 18NRT, Dyesol) diluted in ethanol (1:3.5, weight
ratio) was then deposited on the top of compact layer by
spin-coating at 5000 rpm for 30 s. After drying at 125 °C,
the TiO2 films were annealed at 500 °C for 30 min. The
perovskite precursor solution was spin-coated on the
mesoporous TiO2 film at 2000 rpm for 45 s in an
argon-filled glove box. The sample was dried on a
hotplate for 60 min at 110 °C. The hole-transporter
layer was formed by spincoating a spiro-OMeTAD
solution at 2000 rpm for 45 s. Finally, a gold layer
with the thickness of 80 nm was deposited on top of
the device by thermal evaporation in air.

Characterization
X-ray diffraction (XRD) patterns were carried out on a
DX-2700 diffractometer. UV-vis absorption spectra were
performed on a UV–vis spectrophotometer (Varian Cary
5000). Morphologies and microstructures were obtained
by a scanning electron microscope (SEM, JEM-7001 F,
JEOL). Photocurrent-voltage (I-V) curves were carried
out with a Keithley 2440 Sourcemeter under AM
1.5 G illumination with 100-mW/cm2 intensity from a

Newport Oriel Solar Simulator. The active area of the
device was 0.1 cm2 determined with a mask. Steady-state
photoluminescence (PL) and time-resolved photolumines-
cence (TRPL) spectra were collected using a fluorometer
(FLS 980E, Edinburgh Photonics). Capacitance-frequency
measurements were performed under a forward bias of
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Fig. 1 XRD patterns of MAPbI3-xClx films with different mole ratios at
the range of (a) 10-60 degree, (b) 11-14 degree, and (c) 15-20 degree
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0.6 V under 1 sun illumination conditions using an
electrochemical workstation (RST5200, Zhengzhou Shiruisi
Instrument Co., Ltd.) with the frequency range from 0.1 to
1000 Hz. The electrochemical impedance (IS) measure-
ments were carried out with an electrochemical worksta-
tion (CHI660e, Shanghai CHI Co., Ltd.) in the frequency
range from 0.1 to 100 kHz, in which an alternative signal
with 5 mV magnitude was applied.

Results and discussion
Figure 1 shows the XRD patterns of MAPbI3-xClx films
with different mole ratios. Three main diffraction peaks
at about 14.2°, 28.6°, and 43.1° are ascribed to (110),
(220), and (330) lattice planes of halide perovskite with a
tetragonal structure [26]. This indicates that the per-
ovskite films with tetragonal structure are formed. A
weak peak located at 12.7° for the sample with the ratio
of 1.1:3 (Fig. 1b) can be assigned to the (001) diffraction
peak of PbI2 [10]. The peak at about 15.6° for the
samples with the mole ratios of 1.1:3 and 1.15:3 (Fig. 1c)
can be assigned to the (110) diffraction peak of
CH3NH3PbCl3 [18]. This agrees with the previous
reports that Cl incorporation in an iodide-based struc-
ture was only at low concentration, and phase separation
readily occurred with increased concentration [22, 27].
The PbI2 phase appeared for the sample with the mole
ratio of 1.1:3 and then disappeared for that with the
mole ratio of 1.15:3 (Fig. 1b). While the CH3NH3PbCl3
phase appeared in both the samples with the mole ratios
of 1.1:3 and 1.15:3 (Fig. 1c). This is in accord with the
reported MAPbI3-xClx film growth process [23]. As a
nucleation center, PbCl2 induces the nucleation of PbI2.
PbI2 acts with MAI to form the perovskite film and
exhausts the available Pb ions to form CH3NH3PbCl3.
Figure 2a shows the UV-vis absorption spectra of

MAPbI3-xClx films with different mole ratios. The
absorption intensity increases firstly, and then decreases
with the increase of mole ratio, which is the strongest at
the mole ratio of 1.1:3. Figure 2b shows the absorption
spectra of MAPbI3-xClx films at the range from 730 to
800 nm. The absorption edge is obtained by extrapolat-
ing from the absorption of direct transition [28]. The

band gap of MAPbI3-xClx can be estimated from the
absorption edge to be 1.573, 1.580, 1.598, and 1.596 eV
for MAPbI3-xClx with the mole ratio of 1:3, 1.05:3, 1.1:3,
and 1.15:3, respectively.
Figure 3 shows the SEM images of the MAPbI3-xClx

films with different mole ratios. It is observed that some
needle-like crystals for the film with the mole ratio of
1:3 (Fig. 3a). The films with the mole ratios of 1.05:3 and
1.15:3 become smooth and cover all the substrate with
some small pinholes (Fig. 3b, d). At the mole ratio of
1.1:3, the pinholes disappeared and the substrate was
fully covered by the MAPbI3-xClx film (Fig. 3c). Accord-
ing to the previous reports [23, 29], PbCl2 colloids in the
precursor solution act as heterogeneous nucleation sites
for the perovskite film formation. When excess PbCl2
was introduced, the heterogeneous nucleation sites
increased rationally, which possibly enhanced the
morphology eventually. As the amount of PbCl2 further
increased, the grain size of the perovskite film slightly
increased, and the surface becomes mother.
Figure 4a shows the PL spectra of MAPbI3-xClx films

with different mole ratios on FTO substrate. The
peak at ~780 nm could be from the emission of
MAPbI3-xClx [9]. The PL intensities of the films with
the mole ratios of 1.05:3, 1.1:3, and 1.15:3 are higher
than that of 1:3. The TRPL spectra of MAPbI3-xClx
films with different mole ratios on FTO substrate are
shown in Fig. 4b. The TRPL curve was fitted with an
exponential diffusion model, and the exciton lifetime
is 58, 79, 67, and 177 ns for the perovskite film with
the mole ratio of 1:3, 1.05:3, 1.1:3, and 1.15:3, respect-
ively. The exciton lifetimes of the films with the mole
ratio of 1.05:3, 1.1:3, and 1.15:3 are longer than that
of that of 1:3. The higher PL intensities could be due
to their longer exciton lifetimes [30, 31]. The
enhanced exciton lifetime indicates the reduced

recombination in the MAPbI3-xClx films. To investi-
gate the charge transfer between MAPbI3-xClx film
and TiO2, the PL spectra of FTO/TiO2/MAPbI3-xClx
samples were performed and shown in Fig. 4c. Compared
with the PL spectra of FTO/MAPbI3-xClx (Fig. 4a), there
is a quenching effect when the MAPbI3-xClx layer contacts
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Fig. 2 UV-vis absorption spectra of MAPbI3-xClx films with different mole ratios at the range of (a) 400-800 nm, and (b) 730-800 nm
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with TiO2 film, which is due to the electron injection from
MAPbI3-xClx to TiO2. The charge transfer efficiency can
be estimated by the PL intensity ratio of FTO/TiO2/
MAPbI3-xClx to FTO/MAPbI3-xClx, which is 0.25, 0.21,
0.19, and 0.24 for the perovskite films with the mole ratio
of 1:3, 1.05:3, 1.1:3, and 1.15:3, respectively. The PL
intensity ratio of the sample with the mole ratio of 1.1:3 is

smaller than the others, which indicates a more efficient
electron transfer to TiO2. This could be due to a
stronger interfacial coupling at the interface [32].
Perovskite solar cells were fabricated using the precur-

sor solutions with different mole ratios with a structure of
FTO/c-TiO2/mp-TiO2/MAPbI3-xClx/spiro-oMeTAD/Au.
Figure 5 shows the photovoltaic parameters of the solar

A

3 μm

B

3 μm

C

3 μm

D

3 μm

Fig. 3 SEM images of the MAPbI3-xClx films with the mole ratio of (a) 1:3, (b) 1.05:3, (c) 1.1:3, and (d) 1.15:3
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Fig. 4 a PL and b TRPL spectra of FTO/MAPbI3-xClx samples. c PL spectra of FTO/TiO2/MAPbI3-xClx samples
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cells, which were obtained from 20 pieces of devices for
each of precursor solutions. The short current (Jsc), open
voltage (Voc), fill factor (FF) and power conversion effi-
ciency (PCE) were obtained from I-V curves averaged with
reverse scan (RS) and forward scan (FS). These parameters
are listed in Table 1. With the increase of mole ratio, the
parameters of the solar cells were firstly increased, and
then decreased. The solar cells with the mole ratio of 1.1:3
present an enhanced performance. Compared with those
of solar cells with the mole ratio of 1:3, the Voc, Jsc, FF, and
PCE of the solar cells with the mole ratio of 1.1:3 were
increased to 0.88 V, 19.7 mA/cm2, 65%, and 11.3% from
0.76 V, 18.1 mA/cm2, 61.9%, and 8.8%, respectively.
Figure 6 shows the current density-voltage (I-V)

curves of the best solar cells using the precursor solu-
tions with different mole ratios. It was found that the de-
gree of I-V hysteresis depends on the precursor
composition. This phenomenon was always observed in

our experiments. I-V hysteresis index (HI) is defined by
the following equation [33],

hysteresis index ¼ JRS 0:8V ocð Þ−JFS 0:8V ocð Þ
JRS 0:8V ocð Þ

where JRS(0.8Voc) and JFS(0.8Voc) stand for the photocur-
rent density at 80% of Voc for the RS and FS, respect-
ively. The calculated hysteresis index values are 0.164,
0.085, 0.019, and 0.066 for the I-V curves with the mole
ratio of 1:3, 1.05:3, 1.1:3, and 1.15:3, respectively. With
the increase of mole ratio, the hysteresis degree first
decreases, and then increases. At the mole ratio of 1.1:3,
the hysteresis index value is the smallest. The high PCE
of 11.55% with less I-V hysteresis was obtained using the
precursor solution with the mole ratio of 1.1:3.
To get an insight into the enhanced performance and

less I-V hysteresis of the solar cells with the mole ratio
of 1.1:3, some investigations were performed. Based on
the energy band gaps calculated from the absorption
spectra (Fig. 2) and the literature [33], the energy band
diagrams of TiO2, MAPbI3-xClx, and Spiro-OMeTAD are
shown in Fig. 7. The conduction band offset between
MAPbI3-xClx and TiO2 is the largest for the mole ratio
of 1.1:3 due to its wide band gap, which might be one of
the reasons to present a higher voltage [28]. Moreover,
the larger conduction band offset might contribute to its
increased current density, because the band offset has

DC

A B

Fig. 5 Photovoltaic parameters of the solar cells using the precursor solutions with different mole ratios. a Isc, b Voc, c FF, and d PCE. The data
were obtained from 20 pieces of devices for each of precursor solutions

Table 1 Photovoltaic parameters of perovskite solar cells as a
function of different mole ratios of PbCl2 and MAI

PbCl2:MAI Voc (V) Jsc (mA/cm2) FF (%) η (%)

1:3 0.76 ± 0.01 18.1 ± 0.2 61.9 ± 1.6 8.8 ± 0.1

1.05:3 0.82 ± 0.02 19.3 ± 0.3 64.0 ± 1.5 9.3 ± 0.2

1.1:3 0.88 ± 0.01 19.7 ± 0.1 65.0 ± 0.5 11.3 ± 0.2

1.15:3 0.85 ± 0.01 18.5 ± 0.2 61.5 ± 1.5 9.3 ± 0.3
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been proved to be a driving force for charge transfer
between conduction bands in the heterojunction [34, 35].
This speculation was confirmed by the photolumines-
cence (PL) results.
Hysteretic effects during I-V measurements have been

observed in perovskite solar cells. It has been proposed
that the slow decay process of the capacitive charging or
discharging current during voltage sweep induces the non-
steady state photocurrent and I-V hysteresis [33, 36, 37].
The non-steady state photocurrents could be due to the
capacitance at low frequency (0.1 ~ 1 Hz) resulting from
electrode polarization at perovskite/electrode interfaces
[33]. To understand the I-V hysteresis of the solar cells with
different precursor compositions, the capacitance of the

devices were directly measured with an electrochemical
workstation. Figure 8 shows the dependence of capacitance
on frequency. The low frequency capacitance (CLF) is ob-
served near 10−1 Hz. With the increase of the mole ratio,
CLF decreases firstly, and then increases, which is the smal-
lest at the mole ratio of 1.1:3. The smaller CLF indicates the
less polarization which could be the origin of the I-V
hysteresis [33]. The variation of CLF with the mole ratio
agrees with the I-V hysteresis tendency shown in Fig. 4.
To investigate the reason of capacitance decrease, the

impedance spectra of the solar cells were measured.
Figure 9a shows the Nyquist plots of the cells based on

Fig. 6 Current density-voltage (I-V) curves of the best solar cells using the precursor solutions with different mole ratios
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Fig. 7 Schematic of the energy band diagrams of TiO2, MAPbI3-xClx,
and Spiro-OMeTAD.

Fig. 8 Capacitance-frequency plots of the solar cells directly measured
from an electrochemical workstation
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the different mole ratios, in which the symbols are the
experimental data and the solid lines are the fitting
results. There are two RC arcs contained in the plots.
Figure 9b shows the equivalent circuit used to fit the
data. The high-frequency RC element could be ascribed
to the contact resistance (Rco) at the interfaces, while the
low-frequency element may be attributed to the recom-
bination resistance (Rrec) and chemical capacitance (Cμ)
of the device, and the Rs is a series resistance [38]. The
parameters obtained by fitting are listed in Table 2. The
Rco (10.6 Ω) of solar cells based on precursor solution
with mole ratio of 1.1:3 is smaller than that of the other
precursor solution. This indicates that the perovskite
film with the mole ratio of 1.1:3 provides better contact
with electron transporting layer and hole transporting
layer than the other perovskite film. Thus, the decreased
capacitance of the solar cells with the mole ratio of 1.1:3
could be due to the better contact of perovskite film
with ETL and HTL [39].

Conclusion
The solar cells based on MAPbI3-xClx were fabricated
using the precursor solutions containing the mole ratio
of 1:3, 1.05:3, 1.1:3, and 1.15:3. I-V curves were obtained
by both reverse scan and forward scan, from which the
photovoltaic parameters were calculated by taking the
average of them. The results displayed that the solar
cells with the mole ratio of 1.1:3 present higher PCE and
less I-V hysteresis. To get an insight into the results,
some investigations were performed. The higher PCE
could be due to the smooth and pinhole-free film forma-
tion, high optical absorption, suitable energy band gap,
and the large electron transfer efficiency. The less I-V
hysteresis may be attributed to the small low frequency
capacitance of the device.
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