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Abstract

Purpose—To develop a new computer-aided diagnosis (CAD) scheme that computes visually 

sensitive image features routinely used by radiologists to develop a machine learning classifier and 

distinguish between the malignant and benign breast masses detected from digital mammograms.

Methods—An image dataset including 301 breast masses was retrospectively selected. From 

each segmented mass region, we computed image features that mimic five categories of visually 

sensitive features routinely used by radiologists in reading mammograms. We then selected five 

optimal features in the five feature categories and applied logistic regression models for 

classification. A new CAD interface was also designed to show lesion segmentation, computed 

feature values and classification score.

Results—Areas under ROC curves (AUC) were 0.786±0.026 and 0.758±0.027 when to classify 

mass regions depicting on two view images, respectively. By fusing classification scores computed 

from two regions, AUC increased to 0.806±0.025.

Conclusion—This study demonstrated a new approach to develop CAD scheme based on 5 

visually sensitive image features. Combining with a “visual aid” interface, CAD results may be 

much more easily explainable to the observers and increase their confidence to consider CAD 

generated classification results than using other conventional CAD approaches, which involve 

many complicated and visually insensitive texture features.
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I. Introduction

Mammography is the most popular imaging modality for population-based breast cancer 

screening. However, due to the large heterogeneity of the suspicious breast lesions (e.g., soft 

tissue masses) and random overlapping of the dense fibro-glandular tissues, accurate 

classification of suspicious breast masses detected on the mammograms is a quite difficult 

task for radiologists in reading and interpreting screening mammograms. As a result, 

although the cancer detection yield of screening mammography is typically less than 0.5 to 

1%, the recall rates often reach 10% or higher in current clinical practice [1]. Thus, the 

majority of recalls and/or biopsies are proved to be benign. The higher false-positive recall 

rates add anxiety with potentially long-term psychosocial consequences and physical harms 

to many cancer-free women who participate in screening mammography [2]. Hence, 

improving specificity of breast cancer screening has high clinical impact. For example, since 

studies have shown that digital breast tomosynthesis (DBT) might help reduce recall rates by 

16 to 30% as comparing to digital mammography [3], developing, optimizing and testing 

new DBT technology has attracted extensive research interest recently [4, 5]. However, 

adding a new imaging test, such as DBT, may increase radiation dose, screening costs and 

imaging reading time.

In order to help radiologists improve diagnostic specificity by reducing false-positive recall 

rates, developing and using computer-aided diagnosis (CAD) schemes is also an approach 

that has been attracting extensive research interest in the last two decades [6]. The goal of 

developing CAD based classification schemes is to analyze each suspicious lesion detected 

by radiologists on the mammograms and compute a likelihood score of the lesion being 

malignant, which aims to assist radiologists in making more accurate recall decisions. 

Unlike the commercially available CAD based detection schemes of mammograms, which 

detect and cue locations of the suspicious lesions on mammograms [7], developing CAD 

based classification schemes to classify between malignant and benign lesions still faces 

multiple challenges in both technical development and clinical application. In this article, we 

only discuss CAD based classification schemes.

Table 1 summarizes several most representative CAD schemes reported in the literature 

[8-15], which include size of training/testing datasets, lesion segmentation methods, type of 

the selected image features, machine learning classifiers, and classification performance 

levels namely, the areas under the receiver operating characteristic (ROC) curves (AUC). 

From these previously reported results, CAD schemes could yield promising performance of 

classifying between mammographic masses compared to the high false-positive recall rates 

in current clinical practice. However, previous studies have shown and discussed that 

without providing an intelligible reasoning process, radiologists are typically reluctantly to 

accept any recommendations generated by CAD schemes using a “black-box” type approach 

in the scheme's decision-making process [16, 17]. In most of the previous CAD schemes, (1) 

the meaning of the majority of the computed image texture features are unexplainable to the 

human vision system or the variations of those features are also insensitive to the human 

eyes, and (2) the working mechanisms of the machine learning classifiers (e.g. artificial 

neural networks) are very complex and thus the relationship or correlation between the 

image features and the phenotypes of cancer development is also difficult to be 
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understandable. As a result, no CAD based classification scheme is currently used in clinical 

practice.

To potentially increase radiologists' confidence in accepting mass classification results made 

by CAD schemes, we in this study, developed and tested a new CAD concept and scheme 

that only uses 5 simple but visually sensitive image features, which are routinely evaluated 

by the radiologists in reading and interpreting mammograms, as well as a simple and 

explainable linear classifier (i.e. logistic regression). Using this new CAD scheme and the 

accompanying image display (“visual aid”) tool, the classification logic and decision 

reasoning can then be better understandable by the human observers. The detailed 

experimental procedures and study results, along with the discussion, to test our hypothesis 

are presented in the following sections of this article.

II. Materials and Methods

2.1 A testing image dataset

From the retrospectively collected de-identified full-field digital mammography (FFDM) 

image data in our laboratory, we assembled a reference dataset for developing and testing a 

new proposed CAD scheme in this study. The dataset includes FFDM images acquired from 

301 women who were recalled by the radiologists during the original image reading and 

interpretation due to the detection of suspicious soft tissue masses on the mammograms. The 

biopsy was performed on each suspicious mass and the pathological reports indicated that 

152 masses were malignant and the remaining 149 masses were benign. In addition, each 

lesion involved in this dataset was detectable in both craniocaudal (CC) and mediolateral 

oblique (MLO) view images. The center locations of all masses were previously marked by 

the radiologists on the corresponding digital mammograms.

2.2 Overview of CAD scheme

Figure 1 shows the flowchart of developing the proposed CAD scheme. In reading a 

mammogram, if a suspicious mass region is detected, an observer (a radiologist) clicks the 

seed point around the center of the lesion in the image display workstation. CAD scheme 

first applies a modified region-growing based algorithm to segment the mass region from the 

background. Subsequently, 14 features describing five visually sensitive characteristics of 

segmented lesions (i.e. size, shape, contrast, homogeneity and spiculation) are calculated and 

extracted. In CAD development stage, in order to identify an optimal approach to represent 

each of 5 visually sensitive features, student t-tests are then performed to select one optimal 

feature computation method in each of the five features groups. Lastly, a logistic regression 

classifier is trained to fuse the information from the five optimal features and generate a 

likelihood score indicating the probability of malignancy.

2.3 A lesion segmentation algorithm

The first step of our CAD scheme is to segment the suspicious mass region depicting on the 

mammogram. By comparing a large number of previously developed algorithms for 

segmenting breast masses depicting on mammograms [18], we modified a unique region 

growing technique that was reported in a previous study [19] and develop a new mass 
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segmentation algorithm implemented in our new CAD scheme. Specifically, an initial 

growth seed was placed at the mass center location (μx, μy), which had been marked by the 

radiologists. Based on the a priori knowledge that breast masses tend to be compact and 

convex, a two-dimensional Gaussian function centered at the seed point (μx, μy) with 

variance σ2 was used to limit the pixels far away from the seed point. A Gaussian-constraint 

image was generated by the multiplication of the original image and the Gaussian function. 

Subsequently, a conventional region growing algorithm was applied on the Gaussian-

constraint image to define the mass region. The region growing algorithm starts from the 

initial seed point and grows iteratively according to some similarity criterions. Here we 

included a parameter t to define the criterion: the candidate pixel is included in the mass 

region if and only if the pixel value is greater than the following threshold:

(1)

Where Ī is the average pixel gray value inside the current segmented mass region and t is the 

predefined parameter.

The next step is to determine the two parameters (σ and t) involved in the algorithm. σI and 

tj are denoted as candidate values for σ and t, which are sampled from a predefined range. A 

two-dimensional grid search method was used to apply every possible pair (σI, tj) in the 

region growing algorithm to define a segmented mass region, and then compute the cost 

function of the specific pair. The cost function is defined as:

(2)

where circ is the standard deviation of the distances from the boundary pixels to the center 

pixel, which is used to measure the circularity of the segmented region; grad is the average 

gradient vector magnitude of the boundary pixels, which is used to measure the sharpness of 

the segmented boundary; and w is a predefined weighting factor which was determined by 

subjective evaluation based on our experimental results. The cost function is constructed 

based on the a priori information that the mass region tends to have a circular shape and a 

sharp boundary. Finally, the (σI, tj) pair generating the smallest cost function was considered 

as the parameter to segment the mass region. The segmentation results are not quite sensitive 

to the selection of weight factor w; simple averaging (i.e. w=1) can get satisfactory results.

This algorithm was first applied to segment each suspicious mass region. Since a previous 

comprehensive review study [18] has shown that no breast mass segmentation algorithm is 

perfect or always superior to others, the automated segmentation result of each lesion was 

visually inspected. Manual correction was applied to adjust parameters used in the region 

growing algorithm or directly modify part of the mass boundary contour, if significant error 

was observed, which typically happens in approximately less than 15% of mass regions. 

Hence, this is an interactive CAD scheme to maintain high accuracy and reliability in 

computing image features. The similar mass segmentation scheme has been used and 
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successfully tested in an interactive CAD workstation to process and analyze the suspicious 

mammographic masses queried by radiologists [20].

2.4 Quantitative image feature computation

After mass region segmentation, we investigated and computed a set of image features that 

are easily caught by (or sensitive to) human eyes and routinely evaluated (or rated) by the 

radiologists in reading and interpreting mammograms. These features are computed to 

characterize mass size, shape, contrast, homogeneity and spiculation. Since different image 

features can be defined to represent each of these mass characteristics, we first computed a 

number of image features using different definitions or methods in each category. We then 

analyzed the correlation and compared their discriminatory power to select one optimal 

feature to represent each of these five mass characteristics. The following are brief 

descriptions of the computed features.

1. Mass size—We computed 3 image features in this category. The first one is the mass 

area, which is computed by automatically counting the total number of pixels inside the 

segmented mass region, and then multiplying the pixel size (or spatial resolution of 

mammogram). In addition, since in clinical practice, radiologists use the radial length of the 

lesion to measure mass size (based on RECIST guidelines [21]), we computed the second 

feature that is the normalized mean radiant length computed by the mean radial length divide 

by the total number of pixels inside the mass region, and the third feature that is the 

maximum radial length.

2. Mass shape—Radiologists typically rate mass shape into round, oval, or irregular. To 

quantify these ratings, we computed two most commonly used shape-related features [22]. 

The first one is a shape factor ratio defined as P2/A, where P and A are the perimeter and 

area of a lesion region, respectively. The second one is a radiant length coefficient of 

variation. Using the radial length (ri) that is the distance between the mass center and pixel 

(i) located at the mass boundary, this feature is defined as the coefficient of variation of ri, 

which can be computed by standard deviation of ri divided by mean value of ri.

3. Mass contrast—In order to compute the contrast related features, different types of 

mass outside surrounding area can be selected, which will have different impact on the 

computational results [23]. In this study, we used the method reported by te Brake et al [24] 

to define the mass surrounding area. First, a morphological dilation operation with a 

spherical kernel of size 0.6R was performed on the segmented mass region, where R is the 

mean radial length (r̄) of the mass region. Then the pixels inside the dilated region but 

outside the mass region were labelled as “outside surrounding area.” Figure 2 shows an 

example of the outside surrounding area that was used to compute the contrast features. 

Next, three contrast related features were defined and computed. The first one is computed 

by the difference between the average pixel values inside the segmented mass region and its 

surrounding (outside) area. The second one is computed based on a distance measure 

between the two pixel intensity histograms, which can be computed as:
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(3)

Where I is denoted as the set of pixels in the mass region, O is denoted as the set of pixels in 

the outside surrounding area. The last contrast related feature is computed based on the 

average gradient vector magnitude of the boundary pixels, which is related to the sharpness 

of the boundary.

4. Mass homogeneity—The degree of mass density heterogeneity phenotypes contains 

biologically important tumor development patterns including the degree of tumor stiffness 

variation and necrosis. To quantify mass density homogeneity, we computed four features. 

These are 1) standard deviation of pixel intensities inside the mass region. 2) Kurtosis of 

pixel intensities inside the mass region. 3) Average local pixel intensity fluctuation in the 

mass region as defined in our previous study [22], where the local pixel intensity fluctuation 

of a pixel is defined as the maximum absolute difference between the pixel intensity and the 

intensity of pixels inside a 5×5 square kernel centered at that pixel. 4) Standard deviation of 

the local pixel intensity fluctuation inside the segmented mass region.

5. Mass speculation—The degree of mass boundary spiculation is another primary 

characteristic indicating mass malignancy. In this study, we used two radial edge-gradient 

analysis based features to measure the spiculation of a segmented mass. First, a 3×3 mean 

filtering was performed on the mammogram as a preprocessing step. A morphological 

dilation and erosion operation was then applied to the segmented mass region, respectively. 

The difference between the dilated and eroded image was extracted as the “lesion boundary 

area.” For each pixel inside the lesion boundary area, the maximum gradient at that pixel and 

the radial direction from the mass center to the boundary pixel were computed, respectively. 

Next, the “radial angle” was obtained by the angle between the two vectors (i.e. maximum 

gradient and radial direction). The radial angles of all pixels in the lesion boundary were 

collected to form a radial angle histogram. Based on the a priori knowledge that if a mass 

boundary is not spiculated, the radial angle histogram will tend to be compact and 

accumulate near 0°, we extracted the kurtosis of the distribution as the first spiculation-

related feature. Then the number of pixels whose radial angles were between 60° and 120° 

or -60° and -120° were counted as “spiculated” pixel number. The spiculated pixel number 

divided by total pixel number inside the mass boundary area was calculated as the second 

feature. Figure 3 shows two examples of radial angle histograms, where the first one is from 

a less-spiculated mass and the second one is from a spiculated mass.

In summary, a total of 14 image features were computed to quantify and represent 5 types of 

mass characteristics. All values in each of 14 image features were normalized with mean 

equal to zero and standard deviation equal to one. Figure 4 shows an example of the 

Spearman's correlation matrix of 14 features, which was generated using all segmented mass 

regions depicting on the CC view images. The figure shows that the features belonging to 

the same feature group typically have higher correlation coefficients. Selecting an optimal 

feature in each mass characteristic group can reduce the redundancy of corresponding 
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features and increase the robustness of the classifier developed in the following step. Hence, 

our goal in the next step is to identify 5 optimal features (one for each mass characteristic).

2.5 Classification and evaluation

The last step of our CAD scheme applies a machine learning model to classify the lesion by 

generating a likelihood score of the segmented mass region associating with a malignant 

mass based on 5 optimally selected image features (one in each category as discussed in 

section 2.3). In order to make reasoning and internal relationship (or linkage) of the 

classifier easy explainable or understandable, we trained and implemented a logistic 

regression classifier into the CAD scheme. Logistic regression is a relatively simple “linear” 

classifier because its output is only determined by the linear combination of the selected 

features. The working mechanism of the logistic regression classifier is transparent to the 

users as the optimized weights of the linear combination can reflect how the features 

contribute to the classification process.

Next, we embedded the feature selection process into a leave-one-case-out (LOCO) training 

and testing method to evaluate classifier performance, which enables to minimize both 

feature selection and classifier training/testing bias due to the limited image dataset [25]. 

The logistic regression based classifier was built using publically available R project for 

statistical computing (https://www.r-project.org/). Specifically, in each training and testing 

cycle of the LOCO, 300 cases were arranged as the training set. Using these 300 cases, the 

scheme identified one optimal feature with highest discriminatory power among all the 

features in the same mass characteristic group. For this purpose, a Student's t-test was 

performed with the null hypothesis that the mean of feature values in the benign case group 

is identical to that in the malignant case group. The p-values of the t-test for all features in 

the same feature group were computed and ranked. The feature with smallest p-value was 

selected as an optimal (or “best representative”) feature of this lesion characteristic group. 

The classifier was then trained using the five selected features (one in each feature group) 

over the training dataset of 300 cases. The trained classifier was applied to the remaining 

case (testing case) to compute a classification score. The classification scores range from 0 

to 1, indicating the probability of the mass regions associated with malignant masses. This 

procedure was iteratively performed 301 times using different training and testing datasets. 

As a result, each of 301 cases in our dataset was used as a testing case once and obtained a 

classification score. Subsequently, the classification scores of all cases were processed by a 

publically available receiver operating characteristic (ROC) curve fitting program based on 

the use of a maximum likelihood data analysis method (ROCKIT, http://

www.xray.bsd.uchicago.edu/krl/roc_soft.htm, University of Chicago). AUC was used as the 

performance assessment index to evaluate the performance of our CAD scheme.

Since FFDM images are two-dimensional projection images and the image features 

computed from the same mass depicting on the CC and MLO view images may not be the 

same due to difference of overlapping breast tissue, we trained and tested two sets of logistic 

regression based machine learning classifiers using the image features computed from the 

segmented mass regions depicted on either CC or MLO view mammograms, respectively, in 

this study. The AUC values of two classifiers were also separately computed and evaluated. 
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Finally, we applied and tested a simple fusion method to combine two classification scores 

of the same lesion depicted on two CC and MLO view mammograms [26]. Thus, we 

generated a mass-based classification score for all 301 lesions in our dataset. The mass-

based classification performance level (AUC) was also computed and compared with the 

AUC values generated using a single mass region depicting on either CC or MLO view 

mammograms.

Finally, in order to make the decision-making process more transparent to the users, we also 

designed a graphic user interface (GUI). In this way, GUI will display the seed point inside 

the mass region by marked or clicked by the user, automatically segmented mass boundary 

contour, the computed feature values, and the classification score. The examples of this 

interface can be found in the following Results section of this article.

3 Results

Based on the CAD-generated mass segmentation results, the average size of benign masses 

was 10.37±16.39 mm2 for MLO views and 9.13±18.12 mm2 for CC views, while the 

average lesion size of benign masses was 13.69±11.15 mm2 for MLO views and 

11.94±12.20 mm2 for CC views. The results indicated that (1) the differences between the 

malignant mass sizes and benign mass sizes are not statistically significant in CC view 

images of our testing dataset (p = 0.115); while the malignant masses are significantly larger 

than benign masses in MLO view images (p=0.041), and (2) due to the projection difference, 

the size of a mass may be different in CC and MLO view images. Figure 5 shows an 

interface of our CAD scheme displayed on the computer workstation with two examples. 

One includes a benign mass region and one depicts a malignant mass region. For each 

detected (or queried) suspicious mass region, our CAD scheme provides the observers (e.g., 

radiologists) the segmented mass boundary contour, 5 normalized values in 5 image feature 

categories to show the quantitative levels of computed mass size, shape, contrast, 

homogeneity and spiculation, as well as the classification score (the probability of being 

malignant).

Table 2 summarizes the frequency of the image features selected in the LOCO training and 

testing process using segmented regions from either CC view or MLO view. It indicates that 

except one feature in Spiculation category of CC view images, the exactly same (or 

consistent) combination of 5 optimal features were selected (i.e. feature 1, 4, 6, 9 and 14) in 

all 301 LOCO training and testing cycles. Table 3 summarizes and compares the 

discriminatory power (or AUC value) of using each of the 5 most frequently selected mass 

characteristic features. The results show that all of these 5 visually sensitive features can 

make contribution to classify between the malignant and benign mass regions with the AUC 

values that are significantly greater than a random guess (AUC = 0.5). Figure 6 displays and 

compares two ROC curves generated using the logistic regression classifiers that integrate 

the 5 selected image features and LOCO training/testing using the mass regions segmented 

from the MLO and CC view mammograms respectively. The AUC value of 0.758 with 95% 

confidence interval of (0.702, 0.808) was obtained from the classifier using MLO view 

mammograms and it is significantly greater than the AUC values obtained from each of the 

five single optimal features using MLO view mammograms shown in Table 3. For the 
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classifier using CC view mammograms, AUC = 0.786 with 95% confidence interval of 

(0.732 0.833); it is significantly greater than the AUC values obtained from four of the five 

single optimal features (i.e. feature 1, 4, 9, 14) using CC view images and the difference is 

not significant for the remaining one (i.e. feature 6). Two AUC values (i.e. obtained from the 

classifier using MLO and CC view mammograms respectively) were not statistically 

significantly different (with a 2-tailed p-value of 0.370 computed using ROCKIT program). 

The results show that using a simple machine learning classifier enables to further increase 

the classification performance than using a single image feature (Table 3).

Table 4 includes two confusion matrices of the classification results of two classifiers that 

were trained/tested using MLO and CC view images when applying a threshold of 0.5 (at the 

middle point in the range of the classification scores) to divide between malignant and 

benign case groups. The results show that applying the new CAD scheme to our testing 

dataset, 70.1% (211/301) of the mass regions depicted on either MLO view image or CC 

view images were correctly classified.

Table 5 summarizes and compares the classification performance levels (AUC values) of 

applying 3 simple and direct fusion methods to combine the classification scores of two 

mass regions depicted on CC and MLO view mammograms. It shows that by using the 

average classification score between two mass regions, the fused mass-based classification 

performance level yielded a “best” AUC = 0.806±0.025. It is significantly higher than the 

AUC value yielded using a logistic regression based classifier optimized using the mass 

regions depicted on MLO view images (with the computed 2-tailed p = 0.006); while the 

difference between AUCs obtained by average fusing and by using logistic regression 

optimized by the CC view mammograms are not statistically significant (p = 0.344).

4 Discussion

This study is part of our continuing effort to develop and evaluate computer-aided 

quantitative image feature analysis schemes to assist predicting cancer risk [27], improving 

tumor detection [28] and diagnosis [29, 30], and assessing patient prognosis or treatment 

efficacy [31-33]. Among them, developing a more effective CAD tool to assist classifying 

between malignant and benign soft breast tissue masses is also important to help increase 

efficacy of screening mammography. Although great research effort has been made in 

developing CAD schemes aiming to better classify suspicious mammographic masses, due 

to the difference between human vision and computer vision, the confidence level of 

radiologists to accept or consider the classification results generated by the “black-box” type 

CAD schemes is quite low [16, 17] because classification accuracy is not the only objective 

in many machine learning applications whereas interpretability is also an important one [34]. 

In order to help solve this application problem, we in this study explored a new approach to 

develop and test CAD scheme. Although a large number of texture features can be computed 

from mammograms and applied to develop CAD schemes, these features are typically not 

visually sensitive or easily explainable to the observers. The new CAD scheme presented in 

this study uses 5 simple and visually sensitive image features. Using these image features, 

we aim to mimic and quantify 5 important characteristics of mammographic masses, which 

are routinely used by radiologists to interpret or assess the likelihood of a detected 
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suspicious breast mass being malignant. The potential advantage of this new approach is not 

limited to only increasing the confidence of radiologists on the CAD results as these features 

are visually sensitive and understandable, but also eliminates the inter-observer variability in 

rating these features.

Although we cannot directly compare the classification performance of our CAD schemes 

with the performance levels of previously reported CAD schemes (e.g., Table 1) due to the 

use of different testing image datasets, we demonstrated the feasibility of applying a new 

CAD scheme optimized using a set of simple and visually sensitive image features to yield a 

comparable performance level of the CAD schemes that are optimized using much more 

complicated texture features and machine learning classifiers (i.e., artificial neural 

networks). In this way, under a comparable CAD performance level, using our CAD scheme 

can provide radiologists not only a classification score, but also the segmented mass 

boundary contour along with 5 quantitative image features that are routinely visually 

assessed or rated in the current clinical practice (as shown in Figure 5). This is a new “visual 

aided” CAD based classification approach, which enables us to provide radiologists with a 

new computer-assisted mammogram reading and interpretation environment in future 

observer performance studies, which is always an important task in medical imaging reading 

and diagnosis field [35].

In our study, we also compared the classification performance levels using different image 

feature sets and classifiers. First, we tested another feature selection method using a non-

parametric (or Wilcoxon) rank sum test and re-evaluated the logistic regression classifier 

using the same LOCO training and testing method. The results showed that AUC values of 

0.758±0.027 and 0.736±0.028 were obtained from the MLO and CC view image based 

classifier, respectively. Comparing to the AUC values yielded using the Student's t-test based 

feature selection (as shown in Figure 6), we observed when using Wilcoxon rank sum test 

based feature selection, the classifier that was trained and tested using MLO view images 

yielded the same classification performance (p = 1.0) as the same features were selected. In 

contrast, different features were selected using the Wilcoxon rank sum test for the classifier 

trained and tested using CC view images, which yielded a significantly lower performance 

(p = 0.02). This indicates that overall, using Student's t-tests outperformed Wilcoxon rank 

sum tests for the feature selection tasks in this study.

Second, we also evaluated two logistic regression classifiers that were trained and tested 

using a total of 14 features (as shown in Table 2) from the mass regions depicting on either 

MLO or CC view images, respectively. The results show that AUC values of 0.730±0.029 

and 0.776±0.026 were obtained using the two MLO and CC view image based classifiers 

that were trained and tested using the same LOCO cross-validation method embedded with 

feature selection. Statistically significant differences were detected between the logistic 

regression classifier using all 14 features and the 5 optimal features computed from the mass 

regions from MLO view images (p< 0.05); while for CC view images, the AUC value 

obtained using the 14 features based classifier was lower than using the optimal features 

based classifier, but the difference is not significant (p = 0.48). This indicates that removing 

redundant image features may potentially improve classifier performance and robustness of 

the classifier in future tests using new independent image datasets.
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In addition, we have made a number of new observations from our study results. First, in 

medical image processing, many different methods or formulas can be used to compute and 

quantify the same category of features (i.e., contrast and spiculation). In this study, we tested 

several different methods to compute or quantify the 5 categories of mass features. The 

comparison results show that using one optimal feature in each of the 5 categories can yield 

better classification performance level compared to using all 14 extracted features, which 

indicates that the non-optimal or redundant features can be filtered out and removed by the 

Student's t-test based feature selection method. Therefore, we demonstrated that an optimal 

feature with highest discriminatory power in one category might be easily selected by 

applying a simple Student's t-test based feature selection method and can potentially 

improve the performance level of the classifier. Second, since mammograms are two-

dimensional projection images, the image features computed from two mass regions 

depicting on CC and MLO view images may have substantial variation, which also affects 

the two classification scores. Hence, using a fusion method to combine the two classification 

scores yielded from two mass regions to generate a final mass-based classification score also 

has potential to significantly increase the classification performance level compared to using 

a single mass region based scheme.

In summary, we developed a new CAD scheme for classification between malignant and 

benign mammographic mass regions using 5 visually sensitive image features and a 

straightforward logistic regression model based classifier. We demonstrated that by more 

closely mimicking how the radiologists classify mammographic lesions, a new and simple 

scheme can yield a comparable classification performance as compared to other previously 

developed and reported schemes (e.g., Table I). Meanwhile, due to its simplicity and more 

transparent reasoning of the feature selection and case classification process, using this new 

CAD scheme has potential to help increase radiologists' confidence to accept or consider the 

CAD-generated classification results. However, despite the encouraging study results, this is 

a preliminary study with a number of limitations. First, this study only used a relatively 

small image dataset, which may not represent general breast masses in a diverse screening 

mammography practice. Thus, performance and robustness of the CAD scheme needs to be 

further tested using new larger and more diverse image databases. Second, this is only a 

technology development study with a proposed new CAD based classification method. How 

to use this new CAD scheme and GUI method to help increase radiologists' confidence in 

CAD generated classification results and improve their decision-making in classifying 

between malignant and benign masses (i.e., reducing false-positive recalls) needs to be 

tested in future observer performance studies. Therefore, more research work is still needed 

to optimize and test the performance and robustness of this new type of CAD scheme.
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Figure 1. 
Flowchart of the proposed CAD scheme.
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Figure 2. 
An example of a suspicious mass (a) and computed mass outside surrounding area (b), 

where the gray area is the outside surrounding area and the white area is the segmented mass 

area.
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Figure 3. 
Example of radial angle histogram of two mammographic masses where (a) shows a less-

spiculated mass with its radial angle histogram (b); while (c) shows a spiculated mass with 

its radial angle histogram (d).
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Figure 4. Spearsman's correlation coefficients matrix of all 14 extracted features using the 
segmented masses from CC view mammograms
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Figure 5. Illustration of CAD interface with two mass segmentation examples, the quantitative 
characteristic feature rating and a classification score for one benign mass (a) and one malignant 
mass region (b)
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Figure 6. 
Two ROC curves of two classifiers trained and tested using the mass regions segmented 

from CC and MLO view images. The AUC values are 0.786±0.026 and 0.758±0.027, 

respectively.
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Table 2
Frequency of features computed from the segmented mass regions using the MLO and 
CC view mammograms selected as “optimal features” by t-tests

Feature group Feature ID Feature Name Frequency of selection

MLO CC

Size 1 Norm mean of RL 301/301 301/301

2 Maximum RL 0/301 0/301

3 Mass area 0/301 0/301

Shape 4 Shape factor 301/301 301/301

5 RL coefficient of variation 0/301 0/301

Contrast 6 Average intensity difference 301/301 301/301

7 Distance based contrast 0/301 0/301

8 Average gradient magnitude 0/301 0/301

Homogeneity 9 Pixel standard deviation 301/301 301/301

10 Pixel kurtosis 0/301 0/301

11 Local pixel fluctuation mean 0/301 0/301

12 Local pixel fluctuation STD 0/301 0/301

Spiculation 13 Radial angle kurtosis 0/301 1/301

14 Spiculated pixel ratio 301/301 300/301
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Table 3
Summarization of AUC values and corresponding 95% confidence intervals (CI) when 
using each individual feature which is most frequently selected to classify between 
malignant and benign mass regions in our testing dataset

View Feature Feature Name AUC 95% CI for mean

MLO 1 Norm mean of RL 0.655 (0.592, 0.713)

4 Shape factor 0.577 (0.513, 0.640)

6 Average intensity difference 0.657 (0.594, 0.7167)

9 Pixel standard deviation 0.582 (0.517, 0.644)

14 Spiculated pixel ratio 0.634 (0.570, 0.694)

CC 1 Norm mean of RL 0.666 (0.603, 0.724)

4 Shape factor 0.589 (0.525, 0.652)

6 Average intensity difference 0.761 (0.705, 0.811)

9 Pixel standard deviation 0.583 (0.519, 0.646)

14 Spiculated pixel ratio 0.603 (0.538, 0.664)

J Xray Sci Technol. Author manuscript; available in PMC 2018 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 23

Table 4
Two confusion matrices of prediction results for classifying mass regions segmented from 
MLO and CC view images, respectively

MLO view CC view

Prediction Benign Malignant Benign Malignant

Benign cases 99 50 104 45

Malignant cases 40 112 45 107
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Table 5
Comparison of mass-based classification performance levels using 3 fusion methods to 
combine classification results generated by two classifiers using CC and MLO view 
images

MAX MIN Average

AUC 0.775 0.805 0.806

Standard deviation 0.027 0.025 0.025

95% Confidence Interval for AUC (0.720, 0.823) (0.753, 0.850) (0.754, 0.851)
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