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We model light-scattering cross sections of concentrated aqueous mixtures of the bovine eye lens
proteins γB- and α-crystallin by adapting a statistical-thermodynamic model of mixtures of spheres
with short-range attractions. The model reproduces measured static light scattering cross sections, or
Rayleigh ratios, of γB-α mixtures from dilute concentrations where light scattering intensity depends
on molecular weights and virial coefficients, to realistically high concentration protein mixtures like
those of the lens. The model relates γB-γB and γB-α attraction strengths and the γB-α size ratio to
the free energy curvatures that set light scattering efficiency in tandem with protein refractive index
increments. The model includes (i) hard-sphere α-α interactions, which create short-range order and
transparency at high protein concentrations, (ii) short-range attractive plus hard-core γ-γ interactions,
which produce intense light scattering and liquid-liquid phase separation in aqueous γ-crystallin
solutions, and (iii) short-range attractive plus hard-core γ-α interactions, which strongly influence
highly non-additive light scattering and phase separation in concentrated γ-α mixtures. The model
reveals a new lens transparency mechanism, that prominent equilibrium composition fluctuations can
be perpendicular to the refractive index gradient. The model reproduces the concave-up dependence of
the Rayleigh ratio on α/γ composition at high concentrations, its concave-down nature at intermediate
concentrations, non-monotonic dependence of light scattering on γ-α attraction strength, and more
intricate, temperature-dependent features. We analytically compute the mixed virial series for light
scattering efficiency through third order for the sticky-sphere mixture, and find that the full model
represents the available light scattering data at concentrations several times those where the second
and third mixed virial contributions fail. The model indicates that increased γ-γ attraction can raise
γ-α mixture light scattering far more than it does for solutions of γ-crystallin alone, and can produce
marked turbidity tens of degrees celsius above liquid-liquid separation. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4974155]

I. INTRODUCTION

Mammalian eye lens cytoplasm contains concentrated
aqueous mixtures of three principal globular proteins, the α-,
β-, and γ-crystallins, which differ substantially in size and
interactions. Eye lens transparency is sensitive to changes
in attractive or repulsive crystallin interactions. Excluded-
volume interactions between α-crystallins lead to short-range
order that is fundamental to lens transparency.1–3 Short-range
γ-crystallin attractions cause intense light scattering and phase
separation.4–10 Interactions between different γ-crystallin
subtypes produce non-monotonic dependence of phase bound-
aries on subtype composition.8 γ-α mixtures have phase sep-
aration characteristics that are not simple combinations of
those of the individual α- and γ-crystallins,11 and γ-α size
disparity as well as short-range γ-α attractions play roles in
this behavior.12,13 In particular, γ-α mixture phase boundaries
depend non-monotonically on γ-α interaction strength.12–14
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Interactions between γ- and β-crystallins set their ternary
liquid-liquid phase boundaries, tie lines, and light scatter-
ing.15 Interactions of crystallins with many other lens pro-
teins and with cell membranes, and many post-translational
modifications and mutations can also sensitively affect trans-
parency.16–18

The sensitivity of transparency to crystallin interac-
tions is illustrated by the fact that single mutations of γ-
crystallin can dramatically change phase boundaries and cause
cataract,19 and by findings that either a reduction or an increase
of just (1/2)kBT in attractive interactions between α- and
γ-crystallins can lead to phase separation and opacifica-
tion.12,13 An increase in γ-α attraction has been found to
result from a single-point, cataractogenic mutation of human
γD-crystallin, and is implicated in the molecular origins of that
cataract.20

The variety of lens protein interactions, the exquisite sen-
sitivity of transparency to molecular properties, and the mul-
ticomponent, concentrated nature of the lens cytoplasm are
challenges for understanding the degree to which given molec-
ular changes affect the scattering of light. Taken together,
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present findings about the influence of altered crystallin
interactions on lens transparency suggest that congenital
cataracts will eventually be identified that arise from muta-
tions that alter any of the six pairwise interactions between
α-, β-, and γ-crystallins. Furthermore, typical lens cytoplasm
protein concentrations are several times those at which single-
particle properties such as molecular weight, or even two- and
three-particle properties such as second and third virial coeffi-
cients, are adequate to quantitatively model light scattering, as
we show below. In view of these complexities, building useful
statistical-mechanical models of the underlying lens protein
mixture light scattering, liquid structure, and thermodynam-
ics is essential for understanding the molecular origins of lens
transparency.

In this work we build a model of the liquid structure and
thermodynamic susceptibilities of mixtures of two types of
eye lens proteins that can have short-range attractions. For
simplicity, we represent the proteins by spheres that have dif-
ferent diameters and pairwise, infinitely short-range, “sticky”
attractions. The sticky-sphere mixture model we use was orig-
inally developed with use of the Percus-Yevick closure of the
Ornstein-Zernike relations of liquid-state theory21 by Baxter,
Barboy, Perram, Smith, and Tenne.22–25 Further developments,
use of other closures, and related molecular simulations have
been studied since by many researchers.26–39 A model like the
one we detail below, that used the Percus-Yevick closure, has
previously been successfully used to represent turbidity data
of colloid mixtures.40

Here we apply the formulation of Barboy and Tenne23,25 to
model light scattering efficiency data from concentrated aque-
ous mixtures of the bovine eye lens proteins γB-crystallin and
α-crystallin.11 Model parameters are chosen to be consistent
with data on γ- and α-crystallin structure and interactions,
and include hard-sphere α-α interactions, hard-sphere plus
short-range attractive γ-γ interactions that lead to liquid-liquid
phase separation, and hard-sphere plus short-range, attractive
γ-α interactions. The present model complements the neutron
scattering, molecular dynamics, and perturbation theory work
previously applied to this system.12–14

Use of a sticky-sphere mixture light scattering model
for γ-α mixtures was suggested by previous findings: (i) A
single-component sticky-sphere model successfully represents
static light scattering data from concentrated γB-crystallin
solutions;9 (ii) the sticky-sphere model closely represents low-
angle neutron scattering41 from concentrated γB-crystallin
solutions; (iii) when sticky interactions are turned off, the
sticky-sphere mixture model reproduces the analytic Percus-
Yevick results for hard-sphere mixtures,22,42,43 which is rel-
evant because a Percus-Yevick hard-sphere liquid structure
model can fit light scattering, small-angle X-ray scattering,
and neutron scattering fromα-crystallin solutions;44 (iv) sticky
spheres provide a convenient representation of the tuned short-
range attraction between α- and γ-crystallins that is needed
for stability at high concentrations;12–14 and (v) the sticky-
sphere model can potentially incorporate all 6 types of effective
short-range interactions between protein molecule pairs in
quaternary mixtures of an aqueous buffer with α-, β-, and
γ-crystallins, albeit with the restriction to spherical models of
molecular shapes.

We have used the sticky sphere model to provide a use-
ful quantitative representation of the observed Rayleigh ratio
data while recognizing that sticky spheres of equal diame-
ter, in this model, have been shown to have a thermody-
namic instability.26 In Ref. 26, the potential roles of both
orientation-dependent interactions and size polydispersity in
possibly ameliorating the consequences of this instability are
discussed. While the present formulation of the model is that
of a strictly bidisperse system, in this connection it may be
relevant that the α-crystallin studied here is inherently polydis-
perse (e.g., Refs. 44 and 45), and that the γ-crystallins exhibit
orientation-dependent interactions (e.g., Ref. 46).

We also do not expect that the Percus-Yevick closure
version of the model used here will extend to give a robust rep-
resentation of the underlying liquid-liquid phase boundaries11

found in γB- andα-crystallin mixtures. This expectation arises
because the Percus-Yevick single-component version of the
sticky-sphere model shows quite different predictions for the
critical volume fraction for phase separation, depending on
whether the compressibility, pressure, or energy routes to the
equation of state are used;47 similar considerations apply to the
mixture version.25 In this context, the light scattering model
here is studied for conditions that range from at least sev-
eral degrees C to many tens of degrees away from phase
separation.11

The paper is organized as follows. In Section II A we
review the relationship between the free energy and the
efficiency of light scattering from an isotropic liquid mix-
ture, and illustrate the principal features of this relationship
geometrically. In Section II B we summarize relevant parts
of the Barboy-Tenne version of the sticky-sphere mixture
model, and introduce a compact algebraic formulation. In
Section II C we describe the analysis and numerical meth-
ods we have used for finding the needed spatial correlation
function parameters (the “λs”) from stickiness parameters (the
“τs”). In Section II D we find an expression for the excess
Rayleigh ratio of aqueous protein mixtures that results from
combining the multicomponent sticky-sphere mixture model
with refractive index properties. In Section III A we describe
our choice of model parameters and relate them to the molec-
ular properties of α- and γB-crystallin. In Section III B we
model the needed refractive index increments in concentrated
γB-α mixtures in terms of their measured low-concentration
refractive index increments. In Section III C we compare
the overall model with the concentration-, composition-,
and temperature-dependence of light scattering from α- and
γB-crystallin mixtures.11 In Section IV A we use the model to
analyze the role of the near-orthogonality of prominent com-
position fluctuations to refractive index gradients in producing
very low light scattering intensity in concentrated γB-α mix-
tures, at body temperature. In Section IV B we use the model
to further identify free energy contributions to light scattering
in the region that is concentrated in γB-crystallin, but dilute in
α-crystallin, and where an interesting temperature dependence
of the light scattering intensity occurs.11 In Section IV C we
explore the extent of the dilute solution realms within which
light scattering can be well-represented with use of the γB and
α-crystallin molecular weights and the second and third virial
coefficients. In Section V, we use the model to study potential



055101-3 Bell et al. J. Chem. Phys. 146, 055101 (2017)

molecular origins of increased or decreased light scattering,
relevant to lens transparency, by varying molecular parameters.
We discuss prospects for extending the work and conclude in
Section VI.

II. THEORY
A. Light scattering from isotropic fluid mixtures

Light is scattered because of spatial variations in the opti-
cal polarizability of a medium. Within the eye lens, some
polarizability variations result from spontaneous, local equi-
librium fluctuations of molecular concentrations; the present
work focuses on modeling the magnitude of such fluctuations
in single-phase concentrated lens protein mixtures. Cytoskele-
tal components, cell membranes, and gaps between fibre cells
represent other important sources of light scattering in the lens
that are not considered in this work.

In fluid mixtures, the second composition derivatives of
the free energy set the amplitude of local concentration fluctua-
tions that scatter light. Smaller values of the second derivatives
of the free energy correspond to lower free energy costs of
spontaneous fluctuations, and thus to more intense light scat-
tering. In particular, for the fluid mixtures of interest here, the
Rayleigh ratio ∆R(0) in excess of that from solvent, which
measures the efficiency of forward scattering of light, can be
written as48,49

∆R(0) =

(
π2kBT

λ4

)
∇ρε

T · Hρ[G/V ]−1 · ∇ρε

=

(
π2kBT

λ4

)
‖ ∇ρε‖

2
(

cos2θ1

λH1
+

cos2θ2

λH2

)
(1)

in which λ is the vacuum wavelength of the incident and scat-
tered light, Hρ[G/V ] is the Hessian matrix of second partial
derivatives of the Gibbs free energy G per unit volume V, with
respect to the number densities of the components {ρ1, ρ2}, and
Hρ[G/V ]−1 is its inverse,∇ρε is the gradient of the dimension-
less dielectric coefficient ε with respect to number densities,
at the incident light wavelength, λH1 and λH2 are the eigenval-
ues of Hρ[G/V ], and θ1 and θ2 are the angles between ∇ρε
and the eigenvectors of Hρ [G/V ] belonging to λH1 and λH2,
respectively. In the derivation of Eq. (1) from the form given
by Kirkwood and Goldberg,48 we assume that the molecu-
lar volumes are constant and additive, as detailed in Ref. 49.
Eq. (1) is written for two macromolecular components 1
and 2; the multicomponent version has a completely analogous
form.

The first expression for ∆R(0) in Eq. (1) shows the rela-
tionship between scattering intensity and second composition
derivatives of the free energy. Note that the proportionality
of ∆R(0) to the inverse of the Hessian matrix means that
smaller second derivatives correspond to more intense scat-
tering. The second expression for ∆R(0) in Eq. (1) illustrates
in more detail how the amount of light scattered depends on
the dielectric gradient orientation, relative to the eigendirec-
tions of the Hessian. For example, if the dielectric gradient is
nearly parallel to the most prominent composition fluctuation
directions, that is, along the eigendirection corresponding to
the smaller of the eigenvalues, say, λH1, then cos2(θ1) = 1
while cos2(θ2) = 0 and more light will be scattered, while

less would be scattered if a dielectric gradient of the same
magnitude were instead along the eigendirection for the larger
eigenvalue, λH2. These considerations turn out to be important
for understanding the light scattering from concentrated γ-α
mixtures.

The relationships expressed in Eq. (1) are illustrated in
Figures 1 and 2. In each, a succession of surfaces, from a model,
regular solution free energy g at the top, to the corresponding
excess Rayleigh ratio R at the bottom, calculated according
to Eq. (1), are plotted above the ternary composition triangle.
In each of the three panels in the two figures, the functions g
and R are identical, while the composition being considered
changes from panel to panel.

We introduce the relevant geometry by considering Fig. 1,
for which the highlighted composition is near a vertex of the
composition triangle. The Hessian matrix H[g] determines the
local shape of the second-order part g(2) of g, which is shown
as the green surface displaced vertically down from that of
the full g itself. In turn, g(2) determines the nature of sponta-
neous, thermally driven composition fluctuations within given
regions of space in a physical sample at that composition. The
corresponding probability density function is represented by a
blue surface, just under the green surface. Because the actual
width of such probability density functions also depends on
the volume of the portion of the sample under consideration
(see, e.g., Ref. 50), the blue surfaces are representative in the

FIG. 1. Relationships among the Gibbs free energy, the dielectric gradient,
and the scattering of light: The upper surface, labeled g, is the graph of a
model free energy for a ternary mixture, plotted above the ternary composition
triangle. The lower surface, labeled R, is the graph of a function proportional
to the Rayleigh ratio given by Eq. (1). The intermediate surfaces illustrate
Eq. (1), which details how spontaneous, thermally driven local fluctuations in
composition, together with the dielectric gradient, determine the amount of
light that is scattered. At the concentration of the vertical dashed red line, the
green surface, which has been displaced for visibility, is the local, second-order
Taylor series approximation to the free energy, as specified by the Hessian
matrix H[g]. The blue surface, which is also displaced, is proportional to the
corresponding Gaussian probability density function for local composition
fluctuations, whose variance-covariance matrix is proportional to the inverse
of H[g]. The boundary of the pink surface is a level curve of the Gaussian.
The red arrow ∇ε points in the direction of the dielectric gradient vector,
while the orange ray labeled êmin/λmin points in the direction of the minimum
eigenvector of H[g], and is weighted by the reciprocal of the corresponding
eigenvalue, in accordance with Eq. (1). The vector êmax/λmax is shown by the
black arrows, which are perpendicular to êmin.
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FIG. 2. Two different ternary compositions, equidistant in temperature and
composition from liquid-liquid phase separation, can give rise to dramatically
different light scattering efficiencies, high (in (a)), and low (in (b)). The con-
trast can be understood via Eq. (1) as illustrated here. In (a), the green, blue, and
pink surfaces, as defined in Figure 1, illustrate that the most prominent local
composition fluctuations have a significant component along the chosen ∇ε,
leading to relatively intense light scattering, shown by the height of the blue
dot on the Rayleigh ratio surface. In (b), although the prominent local fluctua-
tions are exactly as intense as in (a), they are nearly perpendicular to the same
∇ε, and far less light is scattered, shown by the lower blue dot. As described
below, the present model indicates that prominent fluctuations closely perpen-
dicular to ∇ε occur in concentrated mixtures of γ- and α-crystallins, while a
situation like that in (a) occurs near the γ-crystallin/buffer axis.

sense that regardless of that volume, they nevertheless show
the appropriate aspect ratio of the contours of constant proba-
bility density. The shape of a selected contour is shown by the
pink ellipse, underneath the blue surface. Clearly, the ellipse
in Fig. 1 is nearly circular. Because, as noted above, the angles
θ1 and θ2 between the Hessian eigenvectors and the dielectric
gradient vector∇ε are key to determining the Rayleigh ratio in
Eq. (1), as are the corresponding reciprocal eigenvalues 1/λH1

and 1/λH2, Fig. 1 indicates each Hessian eigenvector, weighted
by the reciprocal of its eigenvalue, by orange and black arrows,
along with a red arrow depicting ∇ε.

Unlike Fig. 1, Fig. 2 considers compositions near liquid-
liquid phase separation. It shows that two different ternary
compositions, equidistant in temperature and composition
from liquid-liquid phase separation, can give rise to dramati-
cally different light scattering efficiencies, high (in Fig. 2(a))
and low (in Fig. 2(b)). To show this, the free energy model g
in Figs. 1 and 2 was selected to have equal phase separation
temperatures on the near binary axis that extends between x
= 0 to x = 1 for y = 0, and on the diagonal axis that extends
between (x, y) = (1, 0) and (0, 1). The compositions for which
fluctuations are depicted in panels (a) and (b) of Fig. 2 are
in precisely equivalent locations, relative to their neighboring
binary critical points.

Why is the scattering higher for the composition in panel
(a) of Fig. 2, but lower for the composition in panel (b),
despite their equivalent proximities to a nearby critical point
for liquid-liquid phase separation? The key consideration is
the relationship between the direction of prominent compo-
sition fluctuations and that of ∇ε. Although the composition
fluctuations have the same magnitude in the two cases, the
directions of the prominent fluctuations, determined by the
Hessian eigenvector with minimum eigenvalue, are not the
same; in each case they are predominantly along the neighbor-
ing binary axis direction. As a result, the fluctuations shown
in panel (b) are more nearly perpendicular to ∇ε, and much
less light is scattered. We will find in Section IV B that
conditions qualitatively similar to those depicted in panel
(a) of Fig. 2 occur in concentrated solutions of γB- and
α-crystallins, in which γB is concentrated, but α is dilute. The
situation in panel (b), on the other hand, is similar to that ana-
lyzed in Section IV A at high overall protein concentrations,
near 300 mg/ml, within which both γB- and α-crystallin are
concentrated.

B. The sticky-sphere mixture model

We work from an analytic model of the local struc-
ture of fluid mixtures of spherical molecules with hard cores
and tunable short-range attractions.25 We adapt the model
to capture key properties of mixtures of two prominent eye
lens proteins, α- and γ-crystallin. Although theories of the
dielectric response relate it as well to local fluid struc-
ture,21,51,52 here we instead use measured index of refrac-
tion increments for γ-crystallin and α-crystallin in Eq. (1)
as input to a model Lorenz-Lorentz relation, as detailed in
Section III B.

The sticky-sphere mixture model evolved from the stud-
ies of hard spheres with infinitely short-range attractions by
Baxter and colleagues.22,47,53,54 Baxter discovered a factor-
ization of the Ornstein-Zernike relations for the structure of
a disordered fluid that applies in the case in which the direct
correlation function is assumed to vanish beyond a finite radial
separation.53 Baxter applied the factorization to study systems
of hard spheres with infinitely short-range attractions,47,54

and generalized the factorization to apply to mixtures of
molecules assumed to have spherically symmetric pairwise
potentials.22

To represent sticky-sphere mixtures, Barboy,23 Perram
and Smith,24 and Barboy and Tenne25 applied Baxter’s mul-
ticomponent factorization to a set of Mayer f-functions, fij(r),
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constructed to model infinitely short-range attractions between
sphere types that can have a variety of diameters. The Mayer
f-function, the difference between the Boltzmann factor of
the intermolecular potential energy and unity, is the central
building block for models of how intermolecular potentials
uij(r) affect correlations of molecular positions in liquids (see,
e.g., Ref. 21). Here r is the radial separation between the cen-
ters of spheres of types i and j. In the sticky-sphere mixture
model

fij(r) ≡ e−uij(r)/kBT − 1

=

(
dij

2τij

)
δ−(dij − r) + (H−(r − dij) − 1), (2)

in which uij(r) is the intermolecular potential at center-to-
center distance r between species i and j, dij =

1
2 (dii + djj)

is the smallest center-to-center distance between species i and
j, that have diameters dii and djj, respectively, δ−(x) is the
asymmetric Dirac delta function, and H−(x) is the asymmetric
Heaviside step function, which is 0 for x < 0 and 1 for x ≥ 0.
Through the function H−(r−dij), Eq. (2) expresses the fact that
the centers of spheres of types i and j cannot come closer than
dij. The term (dij/2τij)δ−(dij − r) represents infinitely short-
range attractions that can be modulated by varying τij, for each
pair of sphere types. Thus, the parameters τij = τji are recipro-
cal measures of the strength of the attractive interactions; they
measure stickiness.

The value τij = ∞ corresponds to hard-sphere interactions
between components i and j, and the resulting Percus-Yevick
hard-sphere model is capable of modeling the light, X-ray, and
neutron scatterings from α-crystallin solutions.2,3,12,14,44,55

Progressively smaller values of τij increase the coefficient of
the Dirac delta function in Eq. (2), and thus correspond to
increasingly attractive interactions. Ultimately, low enough
values of the τij correspond to separation of the mixture into
more than one phase, as is found experimentally for pure
γ crystallin solutions,4,5,7,9 as well as in mixtures of γ with
α-crystallin.11,20 In the pure component case, the compress-
ibility equation of state in the Percus-Yevick approximation
predicts separation into more than one phase23 for values
of τii < 2 −

√
2 ' 0.586. In addition, the recently found

implications of short-range γ-α attractions for phase sepa-
ration12,13 can be represented in the present model by suit-
able values of an inter-species τij. It is important to note
that in the context of building successful models of physi-
cal systems, the τij can be functions of temperature, as was
found in light scattering studies of pure bovine γB-crystallin
solutions.9

C. Obtaining spatial correlation function parameters
from stickiness parameters

While the consequences of Eq. (2) can be approached
through other liquid-state theory approaches34,35 as well as
through simulation,33,56 here we use the Barboy and Tenne ver-
sion of the model,23,25 which makes use of the Percus-Yevick
closure of the Ornstein-Zernike equations.21 In that version,
it turns out that the liquid-structure, thermodynamic and light
scattering predictions of the model are expressed in terms of
parameters, the λij, that are related to the τij by the following

set of coupled quadratic equations:

πdij

12(1 − ξ3)

∑
k

ρkd2
kk(λik − 6)(λjk − 6) − τijλij

=
9dijξ2

(1 − ξ3)
−

6d2
ij

diidjj
, (3)

in which the sum is over species k, ρk is the number of k-type
spheres per unit volume, and the quantities ξl are moments of
the distribution of sphere sizes given by

ξl =
π

6

∑
k

ρk(dkk)l. (4)

That is, to use the model for a given set of stickiness parameters
{τij}, one needs to solve Eqs. (3) to find the corresponding set
{λij} that applies at each composition and temperature of the
mixture; then one is in a position to explore scattering and
thermodynamic predictions. Note that because Eqs. (3) remain
the same when the indices i and j are interchanged, they imply
that λij = λji. Appendix A shows that Eqs. (3) can also be put
into the form of a quadratic matrix equation,

Y2 + τ ◦ Y = B + τ ◦ C, (5)

where Y, τ, B, and C are defined there, and where A ◦ B
is the Schur (Hadamard) matrix product defined by (A ◦ B)ij
= AijBij. Appendix B details the numerical methods we have
used for solving Eqs. (3) or equivalently Eqs. (5), and for
selecting the appropriate root.

In this paper we apply the sticky-sphere mixture model to a
two-protein component mixture, γ-crystallin, or species 1, and
α-crystallin, species 2. Consistent with the hard-sphere-like
scattering properties of concentrated α-crystallin solutions,2

we take τ22 = ∞ in Eq. (2). Under these circumstances, we
show in Appendix B that Eqs. (3) then imply that λ22 = 0, and
reduce to the following two equations that relate τ11 and τ12 to
λ11 and λ12:

π

12
d11

1 − ξ3
(ρ1d2

11(λ11 − 6)2 + ρ2d2
22(λ12 − 6)2) − τ11λ11

=
9d11ξ2

1 − ξ3
− 6, (6)

π

12
d12

1 − ξ3
(ρ1d2

11(λ11 − 6)(λ12 − 6) − 6ρ2d2
22(λ12 − 6))

− τ12λ12 =
9d12ξ2

1 − ξ3
−

6d2
12

d11d22
. (7)

In Appendix B, we show that the solution of Eqs. (6) and (7) can
be further reduced to the solution of a fourth-order polynomial
in λ11 − 6, given by

(λ11 − 6)4 + D3(λ11 − 6)3 + D2(λ11 − 6)2

+ D1(λ11 − 6) + D0 = 0, (8)

where the Di are also defined in Appendix B, where we also
discuss our method of solving this equation. With use of
each value of λ11 resulting from a solution of Eq. (8), the
corresponding value of λ12 can be obtained as detailed in
Appendix B.
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D. Light scattering intensity in the sticky-sphere
mixture model

To calculate the predictions of the sticky-sphere mixture
model for the intensity of the scattered light, one needs to eval-
uate integrals of functions qij(r); each such integral is an entry
in Q, a matrix that can be used to compute the Hessian matrix
in Eq. (1). The needed relationships are derived in Appendix C.
First, the Gibbs free energy of the three-component mixture
of aqueous solvent, γ-crystallin and α-crystallin is shown to
be analogous to the Helmholtz free energy of the hypotheti-
cal two sticky-sphere component mixture. The Hessian of the
intensive Gibbs free energy then corresponds to a matrix of
chemical potential derivatives of the two-component system,
as follows:

Hρ

[
G
V

]
=



∂µ(2)
1

∂ρ1

∂µ(2)
1

∂ρ2

∂µ(2)
2

∂ρ1

∂µ(2)
2

∂ρ2



(9)

in which µ(2)
1 and µ(2)

2 are chemical potentials in the two-
component system, related to the chemical potentials in
the three-component mixture with solvent as detailed in
Appendix C. Barboy and Tenne25 obtain



∂µ(2)
1

∂ρ1

∂µ(2)
1

∂ρ2

∂µ(2)
2

∂ρ1

∂µ(2)
2

∂ρ2



=
1
β

√
ρ−1QT Q

√
ρ−1, (10)

in which ρ is the diagonal matrix of number densities. The
matrix Q is shown in Appendix C to have the entries

Qij = δij + xj

√
ρi

ρj

*
,
1 + γijlij +

∑
k

xkγik lik+
-

, (11)

in which δij is the Kronecker delta, γij = dii/djj, lij = 3 − λij,
xi =

φi
1−ξ3

, and in turn φi =
π
6 ρid3

ii, the volume fraction of the
i-type spheres. It follows that Q has the form

Q =
√
ρX−1(I + XL ◦γ)(I + XU)X

√
ρ−1, (12)

in which

ρ =



ρ1

ρ2
. . .


, X =



x1

x2
. . .


,

L =



l11 l12 · · ·

l12 l22 · · ·

...
...

. . .


, U =



1 1 · · ·
1 1 · · ·
...

...
. . .


,

γ =



1 d11
d22

d22
d11

1
. . .



=



1 γ12

γ21 1
. . .


. (13)

The full multicomponent excess Rayleigh ratio for a
sticky-sphere mixture system can now be obtained by sub-
stituting the expressions given in Eqs. (9), (10), and (12)

into Eq. (1),

λ4∆R(0)

π2kBT
= ∇ρε

T · Hρ[G/V ]−1 · ∇ρε

= ∇ρε
T · β
√
ρQ−1

(
Q−1

)T√
ρ · ∇ρε. (14)

In the case of the two sticky-sphere components in the
present model, it is shown in Appendix C that Q can be written
as

Q =



1 + x1J11

√
x1x2

γ3/2
12

J12

γ3/2
12

√
x1x2J21 1 + x2J22


, (15)

where the J ij are given by

J11 = 1 + l11 + x1l11 + x2l12γ12,

J12 = 1 + x1l11 + (l12γ12)(1 + x2),

J21 = 1 + x2l22 + (l12/γ12)(1 + x1),

J22 = 1 + l22 + x2l22 + (x1/γ12)l12.

(16)

For this two-component case, with use of Eq. (15), we find

Hρ

[
G
V

]−1

=
β

(det Q)2

√
ρ

[
a b
b c

]
√
ρ, (17)

where

a = (1 + x2J22)2 +
x1x2

γ3
12

J2
12,

b = −
√

x1x2 *
,

J12

γ3/2
12

(1 + x1J11) + γ3/2
12 J21(1 + x2J22)+

-
,

c = (1 + x1J11)2 + γ3
12x1x2J2

21. (18)

The determinant of Q takes the remarkably simple form

det Q = (1 + x1 + x2)(1 + l11x1 + l22x2 + (l11l22 − l2
12)x1x2).

(19)

Eqs. (8) and (17)–(19) provide the sticky-sphere mixture
model expressions needed for evaluating the excess Rayleigh
ratio, Eq. (1).

For comparison with experimental data, it is convenient
to express Hρ[G/V ]−1 in terms of dimensionless variables. To
do so we define a dimensionless, intensive Gibbs free energy

g̃ =
v̄0G

VkBT
(20)

and use the volume fractions φ1 = ρ1 v̄1 and φ2 = ρ2 v̄2, where
v̄0, v̄1, and v̄2 are the partial molecular volumes of the solu-
tion associated with single molecules of water, γ, and α
crystallin, respectively; note that x1 = φ1/(1 − (φ1 + φ2)) and
x2 = φ2/(1 − (φ1 + φ2)). It is shown in Appendix D that

Hρ

[
G
V

]−1

=
v̄0

kBT



1
v̄1

0
0 1

v̄2



[
Hφ[g̃]

]−1


1
v̄1

0
0 1

v̄2


(21)

in which the entries of Hφ[g̃] are the second derivatives of
g̃ with respect to the volume fractions. The corresponding
expressions for Hφ[g̃] and Hφ[g̃∗], where g̃∗ = (v̄1/v̄0)g̃, will
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be useful in the analysis below and are given by

1
v̄0

[
Hφ[g̃]

]
=

1
v̄1

[
Hφ[g̃∗]

]
=



c
ρ1 v̄1

2

−b
√
ρ1ρ2 v̄1 v̄2

−b
√
ρ1ρ2 v̄1 v̄2

a
ρ2 v̄2

2



=



c
φ1 v̄1

−b
√
φ1φ2 v̄1 v̄2

−b
√
φ1φ2 v̄1 v̄2

a
φ2 v̄2



. (22)

Because refractive index increments are commonly
reported in terms of derivatives of the index of refraction n
with respect to the mass per unit volume of the solutes, we
express ∇ρε in terms of the mass per unit volume concentra-
tions c1 = ρ1m1 and c2 = ρ2m2, in which m1 and m2 are the
masses of single molecules of γ- andα-crystallin, respectively.
Using ε = n2, we have

(∇ρε)T =

(
∂(n2)
∂ρ1

,
∂(n2)
∂ρ2

)
= 2n

(
m1

∂n
∂c1

, m2
∂n
∂c2

)
. (23)

By substituting the expressions from Eqs. (21) and (23)
into Eq. (1), and defining a dimensionless refractive index
gradient vector by

∇ñ =
1

2nv̄1
∇ρε =

(
m1

v̄1

∂n
∂c1

,
m2

v̄2

∂n
∂c2

)
, (24)

we obtain

∆R(0) =

(
4π2n2 v̄0

λ4

)
∇ñT ·

[
Hφ[g̃]

]−1
· ∇ñ (25)

Because g̃, φ1, φ2, and ∇ñ are each dimensionless, the factor
v̄0/λ

4 in Eq. (25) clearly shows that ∆R(0) has the required
dimensions of inverse length.

Two convenient, alternative forms of the Rayleigh ratio
will be used in the analysis below. First, if a dimensionless
free energy is obtained by multiplying by a volume different
from v̄0, for example, g̃∗ = v̄1G/VkBT , Eq. (25) still holds but
with g̃ replaced by g̃∗ and v̄0 replaced by v̄1. In particular, we
shall use the following dimensionless scattering intensity∆R̃∗,
obtained from Eq. (25), for further analysis of the scattering
both near the γ-crystallin axis and for concentrated mixtures
of α with γ:

∆R̃∗ =
λ4∆R(0)

4π2n2 v̄1 |∇ñ|2
= ξT ·

[
Hφ[g̃∗]

]−1
· ξ (26)

in which θ is the angle between ∇ñ and the γ-crystallin axis,
along which φ2 = 0, and ξ = (cos θ, sin θ) is the unit vector
in the direction of ∇ñ. Specializing to the context of the cur-
rent model, noting that Hφ[g̃∗]−1 = (v̄0/v̄1)Hφ[g̃]−1, and using
Eqs. (17) and (21), we have

∆R̃∗ = ξT ·
[
Hφ[g̃∗]

]−1
· ξ

= ξT ·
1

(det Q)2

[
ρ1 v̄1a

√
ρ1ρ2 v̄2b

√
ρ1ρ2 v̄2b ρ2(v̄2

2/v̄1)c

]
· ξ

=
1

(det Q)2

[
ρ1 v̄1a cos2θ +

√
ρ1ρ2 v̄2b sin 2θ

+ ρ2(v̄2
2/v̄1)c sin2θ

]
. (27)

Second, another instructive form of ∆R̃∗, one closely con-
nected with the concepts illustrated by Figs. 1 and 2, can
be obtained in a form like the one appearing in the last
line of Eq. (1), by re-expressing the right-hand side in the
orthogonal curvilinear coordinate system that is created by the
eigendirections of the Hessian matrix49

∆R̃∗ =
cos2θ+
λ+

+
cos2θ−
λ−

, (28)

where λ+ and λ− are the maximum and minimum eigenvalues
of Hφ[g̃∗], respectively, and θ+ and θ− are the angles between
their respective eigendirections and ξ. Thus, if the smaller
eigenvalue of the Hessian approaches 0, much light could be
scattered, unless θ− is close to π/2. We will use Eq. (28) below
in analyzing light scattering in concentrated γ-αmixtures with
the sticky-sphere mixture model.

III. MODEL OF LIGHT SCATTERING FROM AQUEOUS
γB AND α CRYSTALLIN MIXTURES
A. Molecular parameters for γB and α-crystallin

To apply the sticky-sphere mixture model predictions for
light scattering given in Eq. (27) to mixtures of the eye-lens
proteins γB-crystallin (species 1) and α-crystallin (species 2),
we need to adopt suitable values of the diameters d11, d22,
and d12, the attractive interaction parameters τ11, τ12, τ22, as
well as the refractive index increments. The values of both
the attraction and the size parameters were chosen to give
a good fit to the principal features of previously reported11

light scattering data on γB-crystallin and α-crystallin mix-
tures, replotted in Figure 3, while also being compatible
with previous work. In the following paragraphs we describe
these parameters; the values adopted in this work are listed in
Table I. As stated in Ref. 11, the static light scattering mea-
surements being modeled here were obtained from aqueous
solutions containing 0.1M sodium phosphate buffer, pH 7.1,
with fresh 20 mM dithiothreitol (DTT) added to minimize
dimerization of γB-crystallin, and 0.02% sodium azide as a
preservative. Because some of the previous work made use of
D2O in small-angle neutron scattering experiments, it is also
important to note that the water used for the measurements
reported in Ref. 11 was entirely H2O, a fact not explicitly
stated in Ref. 11. We note the use of closely related, yet differ-
ing buffer conditions in each of the comparisons with previous
work below.

For d11, d22, and the corresponding veff values, we use
values similar to those adopted in Ref. 12 and described there;
briefly, d11 corresponds to the diameter of a sphere with
the volume of one molecule of γB-crystallin. With use of
the value for γB-crystallin5 of veff = 0.71 cm3/g, typical of
globular proteins, together with the known molecular weight
MW ,γ of bovine γB-crystallin, 20 993 g/mol,58 one obtains
d11 = 36.2 Å. However, the sticky-sphere model light scat-
tering predictions can be written so that the diameter values
enter in terms of ratios, and so we take d11 = 1 in Table I. d22

corresponds to a diameter consistent with small-angle X-ray
and neutron scattering data for α-crystallin. The present value
d22 = 4.33 (in units of d11), slightly smaller than the corre-
sponding value 4.53 in Ref. 12, provided for a better fit to the
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FIG. 3. The present model quantitatively reproduces several features of the
excess Rayleigh ratio ∆R of concentrated and dilute mixtures ofγ and α crys-
tallin. Each panel shows ∆R vs. weight/volume concentrations cα and cγ ,
measured (points)11 and calculated (surfaces and curves) from the model.
(a): Modeled γ-α scattering at 37 ◦C is concave down at relatively low
(75 mg/ml green) and intermediate (150 mg/ml yellow) concentrations, and
concave up at higher concentrations at body temperature (300 mg/ml pur-
ple), in approximate agreement with experiment. (b): Temperature depen-
dence of scattering at 300 mg/ml; purple points and curve repeat 37 ◦C
data and model from (a). 25 ◦C (pink) and 15 ◦C (orange) data and model
curves show intense scattering near the γ-crystallin binary axis as phase
separation is approached; note that at 37 ◦C ∆R decreases as α-crystallin
is added to concentrated γ-crystallin solutions, while at 15 ◦C ∆R at first
increases as α-crystallin is added. In (c) ∆R data (points) and model (sur-
faces and curves) are plotted vs. cγ and cα . Red curve: α-crystallin ∆R rises
quickly at low cα due to its large molecular weight. At higher cα , liquid
packing constrains molecule positions and suppresses concentration fluctu-
ations, slowing and reversing the increase of ∆R with cα .2,3 Blue curve:
γ-crystallin∆R rises at low cγ at about 1/40 the rate shown byα, because of its
much smaller molecular weight. However, at higher cγ , ∆R from γ-crystallin
solutions is comparable to that from α. The surfaces in (c) show that the
model predicts γ-α mixtures to have sharply increased ∆R at high protein
concentrations.

TABLE I. Molecular parameters used in the model, discussed in the text.

γB- α- α-γ
Quantity crystallin crystallin interaction

(dij)a 1 4.33 2.67
MW(g/mol) 2.1 × 104 7.9 × 105

τij
b

37 ◦C 0.99 ∞ 6.4
25 ◦C 0.88 ∞ 6.4
15.1 ◦C 0.75 ∞ 6.4
(∂n/∂c)0 (cm3/g) 0.21 ± 0.004c 0.165 ± 0.005d

veff (cm3/g)e 0.71 1.52

aMinimum hard-core center separation (dimensionless).
bStickiness parameters (attractions ∝ 1/τij).
cFrom Ref. 57.
dReference 59.
eEffective volume per unit mass (see text).

Rayleigh ratio data of Ref. 11 being modeled. d12 is the dis-
tance of closest approach of the centers of the different size
model hard-sphere cores, and is therefore given by d12 = (d11

+ d22)/2. Whereas actual bovine α-crystallin preparations are
typically polydisperse (see, for example, Ref. 44), here we
use a value for MW ,α that is typical of the molecular weight
of the bovine α-crystallin preparations of the present type,
790 000 g/mol.

The values of the attraction parameters, τ11(T ), τ22, and
τ12, were chosen to give a good fit to the principal features of
the light scattering data reported previously in Ref. 11, while
also being consistent with (i) the nearby liquid-liquid phase
separation of these aqueous γB crystallin solutions,11 (ii) the
weak attractions between γB and α-crystallin found in pre-
vious work, that modeled and simulated small-angle neutron
scattering data from concentrated γB and α crystallin mix-
tures in D2O,12–14 and (iii) the fact that hard-sphere models
have long been found to provide good fits to X-ray and neu-
tron scattering data for α-crystallin.2,3,12–14,44,55 Accordingly,
we take τ22 = ∞, for which α-α interactions are hard-core. We
now discuss the attraction parameters τ11(T ) and τ12 in more
detail.

The adopted, temperature-dependent values of τ11(T ) cor-
respond to an increasingly strong, attractive effective potential
as temperature decreases. Although there are only three tem-
peratures for τ in Table I, their compatibility with the nearby
liquid-liquid upper consolute point is illustrated by the fact that
a linear fit to the three τ values vs. temperature intersects the
upper consolute critical point τ value for the compressibility
route to the equation of state, τc = 2 −

√
2, appropriate for the

definition of τ used here, at �1 ◦C, not far from the critical tem-
perature of 1 ◦C–2 ◦C observed in the H2O, DTT-containing
phosphate buffer used (see Fig. 3 of Ref. 11).

The resulting, approximate rate of change of τ11 with tem-
perature is a factor of 1.7 larger than that found by Fine et al.9,57

in their sticky-sphere model for solutions of γB-crystallin. This
may be due to the fact that the buffer used for obtaining the
data analyzed here, previously published in Ref. 11, contained
20 mM dithiothreitol, as noted above, unlike the buffer used
for the high concentration measurements analyzed in Ref. 9.
Both buffers used H2O.
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We converted the values of τ11(T ) into effective square
well depths, to compare with previous analyses of γ-crystallin
phase diagrams.10,46 To do so, we equated second virial coef-
ficients of sticky-sphere and square-well models; as derived
below in Eq. (48), for the sticky-sphere model the mixed or
pure second virial coefficients are

B(p, f )
ij (T )(sticky-sphere model) =

2π
3

d3
ij

(
1 −

3
2τij

)
. (29)

The square-well model second virial coefficients are

B(p, f )
ij (T )(square-well model)

=
2π
3

d3
ij(1 − (e−uij/kBT − 1)((1 + λij)

3
− 1)), (30)

in which uij is the square well depth beyond its inner wall, dij

is the radial separation between centers when the inner, hard-
core walls are in contact, and (1+λij)dij is the radial separation
of the centers at the outer wall of the square-well. The quantity
(1+ λ) used here and below, and in Ref. 12, corresponds to the
quantity λ in Ref. 10.

By equating the expressions for B(p,f )
ij in Eqs. (29) and (30),

one finds that the effective square well depth corresponding to
given values of τij and λij, (ueff,ij)/kBT , is

ueff,ij

kBT
= log *.

,
1 +

3

2τij

(
(1 + λij)

3
− 1

) +/
-

, (31)

and τeff,ij for given square-well parameters is

τeff,ij =
3

2
(
(1 + λij)

3
− 1

) (
euij/kBT − 1

) . (32)

With use of Eq. (31) and λij = 0.25, corresponding to the
square-well widths used in both Refs. 10 and 12, the val-
ues of τ11 from Table I yield ueff/kBT values of 0.95, 1.03,
and 1.13 for T = 37 ◦C, 25 ◦C, and 15 ◦C, respectively. A
linear fit to the corresponding ueff values as a function of
temperature intersects the critical value reported in Table I
of Ref. 10 for λ= 0.25, ueff,c/kBTc = 1.27, at T = − 0.8 ◦C,
which is again compatible with the experimental T c of 1 to 2
◦C for the solutions modeled here. We note that the coexistence
curve measurements7 analyzed in Ref. 10 were obtained in an
H2O-based phosphate buffer like the one used in Ref. 11, but
without added DTT.

Second, we find that the values of τ11(T ) found here are
compatible with the analysis of the phase diagram of a closely
related protein, bovine γIIIb-crystallin, one of those also ana-
lyzed in Ref. 10, in terms of a model of orientation-dependent
protein interactions.46 Eq. (2) of Ref. 46, which we state here
for convenience in Eq. (33), models an effective, temperature-
dependent square-well potential depth, εeff(T ), in terms of (i)
the depth ε of small attractive potential well patches on a cen-
tral sphere and (ii) the fraction a of the area of the central
sphere covered by those patches

εeff(T ) = 2kBT ln

[
a exp

(
ε

2kBT

)
+ (1 − a)

]
. (33)

The values ε = 9kBTc and a = 0.01, again with use of λ = 0.25,
provided for a good fit to the γIIIb-crystallin phase diagram,46

a phase diagram quantitatively quite similar7 to that of bovine

γB-crystallin,4 the protein used for the data modeled here;11

note that at the time of Refs. 4 and 7, bovine γB-crystallin
was called bovine γII-crystallin. With use of ε = 9 and a =
0.01 in Eq. (33), and using T c = 2 ◦C appropriate here, we
find εeff/kBT values of 0.85, 0.97, and 1.09 for T = 37 ◦C,
25 ◦C, and 15 ◦C, respectively. These compare well with
the corresponding values 0.95, 1.03, and 1.13 of ueff/kBT
found above to correspond to the present values of τ11(T );
changes in either a or ε of only about 10% are sufficient to
bring εeff(T ) and ueff into agreement. Thus the present val-
ues of τ11(T ) are compatible with this previous analysis of
γ-crystallin phase diagrams in terms of orientation-dependent
interactions.

The value of τ12 = 6.4 that provided for a good fit to the
observed Rayleigh ratio data also corresponds to an effective,
square-well γ-α attraction strength not far from that previously
found to provide a good match between molecular dynam-
ics and small-angle neutron scattering data on concentrated
γ-α mixtures.12–14 However, it should be noted that D2O was
used as the water portion in the aqueous buffer for the exper-
iments analyzed in Ref. 12, whereas H2O was used for the
experiments of Ref. 11 modeled here, and as a result the
effective protein-protein interaction strengths can be expected
to be slightly different. Again using Eq. (31), together with
the present value λγα = 0.094, we find ueff,γα = 0.57kBT ,
close to the value 0.70kBT in Ref. 12; the latter value may
be found by dividing the dimensionless value of uαγ = 0.55
found in Table I of Ref. 12 by the dimensionless temper-
ature T ∗ = 0.7875 used for the simulations discussed there.
Whereas in principle τ12 might depend on temperature, we did
not include such a dependence in order to reduce the number of
parameters.

B. Refractive index model

We now consider the refractive index increments needed
for use in Eq. (25). Reference 57 reports data showing that
for bovine γB-crystallin, ∂n/∂cγ = 0.211± 0.004 cm3/g; here
we have converted from the volume fraction units used in
Ref. 57 to the present weight/volume units using the par-
tial molecular volume 0.71 cm3/g for γB-crystallin.5 There
is a range of reported values of ∂n/∂c in the literature for
α-crystallin. Recent measurements of the refractive index
of bovine α-crystallin solutions that were prepared in the
same manner as that for the data analyzed here,11 and ana-
lyzed with use of the same UV extinction coefficient, found
∂n/∂cα = 0.165 ± 0.005 cm3/g.59

These available measurements were taken for the respec-
tive pure protein solutions, and we do not have data for
the index of refraction, n, over the entire concentration and
composition range for which light scattering efficiency data
were obtained. Therefore, we adopt a model for the index of
refraction of the mixtures, by using the measurements of the
refractive index increments of γB- and α-crystallin just stated
to construct a model for the optical-frequency polarizability
of their concentrated mixtures.

Many models for the indices of refraction of liquids and
liquid mixtures, as functions of concentration and composi-
tion, have been studied experimentally and theoretically.52,60,61

In the case of a single-component gas, the Lorentz-Lorenz
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relationship takes the form52

n2 − 1

n2 + 2
= ρ(Ar + Br ρ + Cr ρ

2 + · · · ). (34)

In Eq. (34), ρ denotes the number density and Ar , Br , and Cr

are called the refractivity virial coefficients, and are related to
various aspects of the polarizability of the molecules.52 Mea-
surements of the first, second, and some third and fourth-order
terms have been carried out for some gases.62,63 However, rel-
evant to the system being analyzed here, measurements of
the index of refraction of aqueous γB-crystallin solutions57

showed their refractive indices to remain close to linear as a
function of γB-crystallin concentration up to concentrations of
nearly 300 mg/ml, which are close to the maximum concen-
trations used in the data we analyze here. Such a dependence
can be accommodated by using only the first-order term in
molecule number density in Eq. (34).

Even so, a number of forms are in use for represent-
ing the corresponding Lorentz-Lorenz relationships for fluid
mixtures,60,61 even in the context of an assumed first-order
dependence of expressions closely related to that in Eq. (34)
on number density. Each of these models comes close to rep-
resenting measured refractive indices, while refractive index
increments are more difficult to represent accurately.60,61 We
adopt the following model, essentially one of those studied in
Refs. 60 and 61 and termed there the Lorentz-Lorenz mixing
rule, in which we assume that the optical polarizability per unit
volume of the mixture is linear in the number densities of each
of the molecules

n2 − 1

n2 + 2
=

1
3

(ρwγw + ρ1γ1 + ρ2γ2). (35)

In Eq. (35) the number densities and polarizabilities of the
water, γB-crystallin, and α-crystallin molecules are denoted
by ρw and γw, ρ1 and γ1, and ρ2 and γ2, respectively,
the molecular polarizabilities γi are defined as the ratios of
the average molecular dipole moment to the permittivity of
vacuum, ε0, times the applied field at that molecule, as in
Section 4.5 of Ref. 64, and SI units are used. We model the
polarizabilities γi(ω) as fixed quantities, independent of con-
centration. Note that in Eq. (35) each of the γi(ω) has the
dimensions of volume, and is often nearly proportional to the
volume of that molecule (see, e.g., Appendix C of Ref. 51).
Thus Eq. (35) effectively models the optical-frequency polar-
izability of the protein-water mixture as a linear function of
the respective volume fractions, the form in which it is written
in Refs. 60 and 61.

We now re-express Eq. (35) in terms of the mea-
sured, low concentration refractive index increments of aque-
ous γB-crystallin and α-crystallin solutions. Noting that 1
= ρwΩw + ρ1Ω1 + ρ2Ω2, in which Ω1, Ω2, and Ωw are the
partial molecular volumes of γB-crystallin, α-crystallin, and
water, respectively, the number density of water can be rewrit-
ten in the form ρw = (1/Ωw)(1 − ρ1Ω1 − ρ2Ω2). Also, the
refractive index of pure water, nw , is given in the model by
(n2
w −1)/(n2

w +2) = (1/3)(γw/Ωw). With use of these relation-
ships for ρw and nw, together with ρ1 = c1/m1 and ρ2 = c2/m2,

Eq. (35) becomes

n2 − 1

n2 + 2
−

n2
w − 1

n2
w + 2

=
1
3

[
c1

m1

(
γ1 − γw

Ω1

Ωw

)
+

c2

m2

(
γ2 − γw

Ω2

Ωw

)]
. (36)

At the same time, to linear order in c1 and c2, n and the
refractive index increments also satisfy

n = nw

(
1 +

c1

nw

dn
dc1

���0 +
c2

nw

dn
dc2

���0

)
. (37)

When Eq. (37) is substituted into Eq. (36), again to linear order
in the concentrations one obtains

6nw
[
c1

(
dn
dc1

)
0
+ c2

(
dn
dc2

)
0

]

(n2
w + 2)

2

=
1
3

[
c1

m1

(
γ1 − γw

Ω1

Ωw

)
+

c2

m2

(
γ2 − γw

Ω2

Ωw

)]
. (38)

Therefore, because of the identity of the coefficients of c1 and
c2 on both sides of Eq. (38), the model of Eq. (35) implies
that each of the low concentration refractive index increments
of γB and α-crystallin is related to the relevant molecular
polarizabilities by(

dn
dci

)
0
=

(n2
w + 2)

2

18nwmi

(
γi − γw

Ωi

Ωw

)
. (39)

The relationships represented by Eq. (39) now put us in a posi-
tion to rewrite Eq. (36) for the mixture refractive index, at
both low and high concentrations, in terms of the measured,
low-concentration refractive index increments as follows:

n(c1, c2)2 − 1

n(c1, c2)2 + 2
=

n2
w − 1

n2
w + 2

+
6nw

[
c1

(
dn
dc1

)
0
+ c2

(
dn
dc2

)
0

]

(n2
w + 2)

2

≡ f (c1, c2). (40)

Therefore, in terms of the function f defined in Eq. (40), the
mixture model for the polarizability in Eq. (35) finally results
in the following model for the index of refraction n(c1, c2) as
a function of composition:

n(c1, c2) =

√
1 + 2f (c1, c2)
1 − f (c1, c2)

. (41)

The corresponding model for the refractive index increments
as functions of composition can be found by differentiating
both sides of the first line of Eq. (40) with respect to either ci.
This gives(

dn
dci

)
(c1, c2) =

(n(c1, c2)2 + 2)
2

(n2
w + 2)

2

nw
n(c1, c2)

(
dn
dci

)
0
, (42)

in which n(c1, c2) is given by Eq. (41).
In this work we use Eqs. (41) and (42), which we have

just shown to follow from the polarizability mixture model
of Eq. (35), to calculate n2 and the concentration-dependent
values of dn/dci. These in turn are needed to find the Rayleigh
ratio using Eqs. (24) and (25), to compare the sticky-sphere
mixture model with the data.

In this context, it is interesting to note that the compli-
cations represented by Eqs. (41) and (42) can at first seem
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unwarranted, because, with use of the parameters given in
Table I, the linear form for the refractive index given by Eq. (37)
is actually very close to the more complicated dependence
given by Eq. (41), deviating by at most 0.1%, even for solu-
tions that have protein concentrations of 300 mg/ml. However,
at the same time the refractive index increments calculated with
use of Eq. (42) deviate much more strongly at high concen-
trations from their low concentration values, by 3%–4% at the
same concentrations. As a consequence, because the refractive
index increments enter quadratically into Eq. (25), the use of
Eq. (42) instead of the strictly constant values of the refractive
index increments in Eq. (37) changes the predicted Rayleigh
ratio by 6%–8% at 300 mg/ml. Because of this sensitivity,
it would be useful to obtain very accurate measurements of
the indices of refraction of the concentrated protein mixtures,
so as to be able to refine the present refractive index model,
represented by Eq. (35).

C. Comparison of model with experiment

With use of the parameters and index of refraction model
presented above, we find that the sticky-sphere mixture model
can quantitatively reproduce several key features of the excess
Rayleigh ratio observed from concentrated and dilute mix-
tures of γ- and α-crystallin.11 Figure 3 shows the excess
Rayleigh ratio ∆R of aqueous mixtures of α- and γ-crystallin
vs. weight/volume concentrations cα and cγ, calculated from
the sticky-sphere mixture model using the parameters detailed
above in Sections III A and III B. Away from the binary γB-
water and α-water axes, the most prominent feature of the
scattering is a pronounced valley in the high concentration
scattering, which the model reproduces (panel (c)). Second,
the model reproduces the temperature-dependent α/γ com-
position dependence of the Rayleigh ratio at high protein
concentrations (panel (b)). Third, the model reproduces the

concave-down dependence of the Rayleigh ratio on compo-
sition at lower concentrations (panel (a)). Below, we use the
model to analyze the molecular sources of these interesting
features of the scattering in more detail.

IV. ANALYSIS OF LIGHT SCATTERING IN SPECIFIC
REGIONS IN THE COMPOSITION TRIANGLE
A. Scattering from concentrated γ-α mixtures

Here we study the origin of the pronounced “valley” in
the scattering intensity from γ-α mixtures near total protein
concentrations of 300 mg/ml, which is apparent from the blue
surface and purple curve of Fig. 3(c). In Fig. 4, we study this
reduction in scattering in the context of Eqs. (1) and (28), which
describe how the intensity of the scattered light depends on
the magnitude of local composition fluctuations and to what
extent fluctuations are aligned with the dielectric gradient;
these factors are illustrated in Fig. 2.

The three panels in Fig. 4 show how the light scatter-
ing contributions associated with the minimum and maximum
Hessian eigenvalues depend on protein concentration and com-
position at τ11 values of (a) 0.99 (37 ◦C), (b) 0.88 (25 ◦C), and
(c) τ11 = 0.75 (15.1 ◦C). In each panel, the area of each of the
colored pie charts is proportional to the total excess Rayleigh
ratio at that composition, while the red and blue sector areas
are proportional to the parts of that Rayleigh ratio associated
with the minimum and maximum Hessian eigenvalues, respec-
tively, according to Eq. (28). The purple, yellow, and green
diagonal lines are drawn at total protein concentrations of 300
mg/ml, 150 mg/ml, and 75 mg/ml, respectively, the concentra-
tions of the mixtures for which the Rayleigh ratio is modeled
and displayed in Fig. 3. In particular, compositions along the
purple diagonal are approximately in the middle of the light
scattering valley in Fig. 3(c).

FIG. 4. Temperature dependence, via τ11, of ∆R̃∗ contributions in Eq. (28); 37 ◦C (a); 25 ◦C (b); 15.1 ◦C (c). Red arrows show the minimum Hessian
eigenvector directions, êmin, and are plotted with lengths proportional to 1/λmin. Small blue rectangles at each composition are aligned along the directions of
êmax , perpendicular to êmin, and their lengths are proportional to 1/λmax . Black arrows show∇ε directions, and black crosshairs show directions perpendicular to
∇ε. Pie chart areas are proportional to ∆R̃∗, and show scattering associated with êmin (red) and êmax (blue). In all three panels, êmin can be nearly perpendicular
to ∇ε, and as a result prominent composition fluctuations can scatter little light. At 37 ◦C, the prominent “valley” in scattering at 300 mg/ml, apparent from the
blue surface and purple curve of Fig. 3(c), corresponds to compositions on the purple lines in (a)–(c); 150 and 75 mg/ml mixtures are shown by yellow and green
lines, respectively. For most of the two-protein mixtures at 300 mg/ml, êmin is closely perpendicular to ∇ε, and less light is scattered than for higher or lower
compositions. In panel (c), especially at concentrations higher than 300 mg/ml, 1/λmin increases, êmin and ∇ε are less perpendicular, and much more light is
scattered.
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For most of the two-protein mixtures along the purple
diagonal line in Fig. 4, êmin is closely perpendicular to∇ε, and
there is relatively little scattering, most of which may be asso-
ciated with the maximum Hessian eigenvector. Hence those
pie charts are small and mostly blue. For example, consider
the pie charts for a volume fraction of γ-crystallin just above
0.1, and a volume fraction of α-crystallin close to 0.23. There,
the angle between∇ε and êmin is very close to 90◦, and the scat-
tering associated with the maximum eigenvalue (blue) almost
completely accounts for the modeled intensity, at both 37 ◦C
and 25 ◦C. This occurs despite the fact that 1/λmin is about
10 times larger than 1/λmax, as can be seen from the ratio of
the lengths of the red arrow and the small blue rectangle. In
contrast, if one traverses the valley from lower to higher con-
centrations, the minimum eigenvector rotates counterclock-
wise, and crosses the direction perpendicular to the dielectric
gradient.

That is, the more intense scattering on either side of
the scattering valley, which appears in Fig. 4 in the form of
larger colored pie charts on either side, can be associated with
a transition in the alignment of the prominent composition
fluctuations, from being closely aligned with the α-crystallin
axis at lower volume fractions to becoming more parallel to
exchanges of γ- with α-crystallin, at volume fractions above
those of the valley. In this connection it is interesting to note
that along the yellow and green lines in each of the panels
of Fig. 4, there is more light scattering than for compositions
along the higher concentration, purple line, even though the
values of 1/λmin are smaller at the lower concentrations. This
is because the prominent fluctuation directions along the yel-
low and green lines, shown by êmin, are no longer well-aligned
with the perpendicular to ∇ε.

Another important feature of Fig. 4 is that as the temper-
ature is lowered, following the sequence of panels (a) to (b) to
(c), the light scattering intensity increases dramatically for the
high-volume fraction mixtures of γ and α-crystallin. Indeed,
the light scattering increase for the highest volume fractions
far exceeds that on the γ-crystallin axis. This greatly increased
light scattering is consistent with the approach of the mixtures
towards a liquid-liquid phase separation boundary that can be
highly elevated in the mixtures, many 10s of ◦C above the phase
separation temperature of γ-crystallin alone.11 Note also that

the only parameter that changes between the panels of Fig. 4 is
τ11, the γ-γ stickiness parameter. Thus the scattering increase
with temperature underlines the importance of γ-γ attraction
strength in controlling light scattering from high concentration
γ-α mixtures.

Figure 5, constructed in a similar manner to Fig. 4 with
use of the same symbol meanings, explores the role of γ-α
attractions in producing light scattering from their mixtures,
by varying τ12 instead of τ11; for each panel, τ11 = 0.88, cor-
responding to 25 ◦C. In panel (a), τ12 = 0.8. Such a strong γ-α
attraction gives rise to very prominent scattering at relatively
low overall protein concentrations, peaking at overall protein
volume fractions of 0.075–0.15, as shown by the large red cir-
cles in that region. An increase in scattering with increasingly
strong γ-α attraction strength corresponds to the previous iden-
tification of a cataractogenic mutation that appears to act by
increasing α-γ attractions.20

In panel (b) of Fig. 5, the γ-α attraction strength has been
reduced by increasing τ12 to the value 6.4, and the low concen-
tration scattering peak in panel (a) has been largely suppressed.
Fig. 5(b) is the same as Fig. 4(b), and is included to illustrate
both the transition and the connection with the τ values used
to model the experimental data in Fig. 3. Note that decreas-
ing the γ-α attraction strength is associated with a marked
counterclockwise rotation of the minimum eigenvectors of the
Hessian, towards the direction perpendicular to ∇ε, as shown
especially in the transition from Fig. 5(a) to Fig. 5(b). Thus,
for example, for mixtures near the γ axis, along the purple line
in Fig. 5(b), less light is scattered than for the τ12 = 0.8 of
Fig. 5(a), even though the values of 1/λmin there are larger for
τ12 = 6.4 in panel (b).

In panel (c) of Fig. 5, τ12 has been increased to 12, a
value that corresponds to very little attraction between γ- and
α-crystallin. In panel (c), scattering at high volume fractions
is greatly increased, very much like that which happens when
γ-γ attractions are increased, as was shown Fig. 4(c). Note
that a similar progression of the pattern of light scattering
upon going from low to high values of τ12 may also be seen
by following the progression in Fig. 9 from panel (c) to (a)
to (d) there, although the graphs in Fig. 9 are computed for
T = 37 ◦C. In Fig. 5(c), the very long red arrows at high concen-
tration correspond to small values of λmin that are associated

FIG. 5. Light scattering intensity contributions vs. α-γ
attraction strength, from strong (τ12 = 0.8, in (a)) through
Fig. 3 value (τ12 = 6.4, in (b)), to weak (τ12 = 12, in
(c)). As α-γ attractions weaken, the minimum Hessian
eigenvectors (red arrows) rotate counterclockwise relative
to ∇ε (black arrows), and can become perpendicular to
∇ε in (b) and (c), dramatically reducing light scattering
(see Eqs. (1) and (28)). Light scattering efficiency (colored
circle areas) changes from peaking at low concentrations,
in (a), to high concentrations, in (c); thus the peak light
scattering intensity is nonmonotonic as a function of γ-α
attraction strength, consistent with previous findings.12–14

Symbols as in Fig. 4; fixed τ11 = 0.88 corresponds to T
= 25 ◦C (Table I).
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with exchange of protein species. That is, the free energy
is very gently curved in that direction, corresponding to the
tendency of mixtures of different size particles to be near
instability towards segregation by size.

Thus Fig. 5 shows that the value of τ12 that models the
experimental data well is in a range for which light scattering is
much lower than what could occur in the presence of stronger
or weaker α-γ attractions. This finding of a nonmonotonic
behavior of the Rayleigh ratio as a function of α-γ attraction
strength is consistent with the results of the perturbation-theory
and molecular dynamics findings presented previously.12–14

B. Scattering from concentrated γ/dilute α mixtures

The Rayleigh ratio of sufficiently concentrated bovine
γB-crystallin solutions is lowered by adding small amounts
of α-crystallin near body temperature, at fixed overall protein
concentration, but is raised by such additions at lower temper-
atures, as shown in Fig. 3(b). A qualitative rationale for this
contrast was given in Ref. 11. Here we use the sticky-sphere
model to study this contrast more quantitatively, and to do so
we also supplement the previous analysis to allow for differ-
ent refractive index increments and partial specific volumes
for each protein.

As described in Ref. 11, near the γ-crystallin axis the
sources of light scattering can be conveniently divided into
four terms, that give the magnitudes of (i) the on-axis scatter-
ing, (ii) the change in scattering that would otherwise occur
because of the larger molecular weight of α-crystallin, (iii)
scattering that can be associated with changing proximity to
phase separation, and (iv) a reduction in scattering associated
with prominent fluctuations that are nearly perpendicular to
the dielectric gradient, like those described in Section IV A
above. Because the first contribution refers to scattering in the
absence of α-crystallin, the temperature dependence of the
change in scattering because of added α must result from a
changing balance between the latter three contributions. As
in Ref. 11 we start with the asymptotic form of the chemical
potential for solutions in which γ-crystallin can be dilute or
concentrated, but α-crystallin is dilute65

g̃∗
(
φ1, φ2 << 1, T

)
=
v̄1G (φ1, φ2 << 1, T )

VkBT

=

(
v̄1

v̄2

)
φ2 ln φ2 + r (φ1, φ2, T ) , (43)

where we assume that r (φ1, φ2, T ) can be expanded in a Taylor
series in φ1, φ2, and T near φ2 = 0. Note that r will not have
such an expansion at (i) φ1 = 0, (ii) right at φ1 = φ1,c, the
critical point for γ-crystallin/water liquid-liquid phase sep-
aration,5,6 nor (iii) at any critical points that have φ2 , 0.
However, the light scattering data we analyze in this section
are for φ1 , 0 and were taken under conditions well away
from critical loci.

By substituting the expression for g̃∗ (φ1, φ2 << 1, T ) in
Eq. (43) into that for ∆R̃∗ in Eq. (26), then expanding in a
Taylor series in φ2 about φ2 = 0, for fixed φ1 and T, and
assuming that the dielectric gradient direction θ does not vary

with φ2, one obtains

∆R̃∗
(
φ1, φ2 << 1, T

)
= cos2θ/r20 + (sin2θ) (v̄2/v̄1) φ2

+ (cos2θ)
[(

(v̄2/v̄1)r2
11 − r21

)
/r2

20

]
φ2

− (sin 2θ) (v̄2/v̄1) (r11/r20) φ2 +O(φ2
2)

(44)

in which rij =
[
∂i+jr/(∂φ1)i(∂φ2)j

]
(φ1, 0, T ).

The origin of the terms in a simplified form of Eq. (44)
has been discussed in Ref. 11; we summarize briefly here for
convenience. The binary axis term, cos2θ/r20(φ1, 0), is the
scattering cross section on the γ-crystallin axis. Note that it
becomes large near a binary system thermodynamic spinodal,
defined by r20 = 0.

The second, dilute component molecular weight term,
(sin2θ) (v̄2/v̄1) φ2, would be the only additional term in ∆R̃∗ of
a dilute α-crystallin sample in buffer. It is proportional to the
number density ρ2 of α-crystallin multiplied by the square of
its volume, v̄2, because v̄2φ2 = ρ2 v̄

2
2 , or alternatively, it is pro-

portional to the weight/volume concentration of α-crystallin
times its molecular weight, just as in dilute solution. The fac-
tor of 1/v̄1 results from the normalization adopted here for the
dimensionless quantity ∆R̃∗; see Eq. (26).

The third and fourth terms in Eq. (44) become prominent
at higher concentrations of γ-crystallin, φ1. The third, phase-
separation approach term, (cos2θ)

[(
(v̄2/v̄1)r2

11 − r21

)
/r2

20

]
φ2,

reflects changing proximity of a thermodynamic spinodal tem-
perature T sp to the fixed measurement temperature,11 as φ2

increases from 0. Sufficiently close to Tsp(φ1, φ2), it is pos-
itive if T sp approaches T upon increasing φ2, and negative
otherwise. The magnitude of either effect increases near T sp,
because of the factor 1/r2

20.
In the fourth, ternary mixture fluctuation-direction term,

−(sin 2θ) (v̄2/v̄1) (r11/r20) φ2, the local saddle-like part of the
free energy is proportional to r11(φ1, 0, T ). If r11 is positive, the
free energy is concave up in directions 0 < θ < π/2, and thus
suppresses local concentration fluctuations in those directions,
because they cost more in free energy. If the dielectric gradient
vector is also in the first quadrant, as it is for γ-αmixtures (see,
e.g., Figs. 4 and 5), the fluctuation-direction term decreases the
light scattering intensity.

It is very interesting to note that the fluctuation-direction
term, like the phase-separation approach term, increases in
magnitude near the binary spinodal, because of the factor
1/r20; r20 approaches 0 at the thermodynamic spinodal for
liquid-liquid phase separation on the γ-crystallin/buffer axis.
Thus, the fact that eye-lens γ-crystallins are near conditions
for liquid-liquid phase separation, which leads to very intense
light scattering when γ-crystallin is the only protein compo-
nent in solution, at the same time amplifies a contribution that
reduces light scattering intensity, when α-crystallin is added.
This is a striking way in which the mixture properties are not
simple combinations of those of the components.

In Figures 6(a) and 6(c) we show representative plots of
the contributions of the three mixture terms on the right-hand
side of Eq. (44) while Fig. 6(b) is a contour plot of the resulting
derivative of the Rayleigh ratio along lines of constant protein
weight/volume concentration.
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FIG. 6. The sticky-sphere mixture model shows a delicate balance of the
d(∆R̃∗)/dφ2 contributions in Eq. (44). Blue and red points show concen-
trations and temperatures of ∆R measurements near the γ-crystallin axis.11

Panels (a) and (c): d(∆R̃∗)/dφ2 contributions of the α-crystallin molecular
weight term (purple), approach to phase separation term (green), fluctua-
tion direction term (orange), and the negative of the sum of the molecular
weight and phase separation approach terms (dashed purple and green). Panel
(a): 0.75 < τ11 < 0.99 at cγ = 300 mg/ml; the dashed red curve shows
d(∆R̃∗)/dφ2. Panel (c): 70 mg/ml < cγ < 350 mg/ml at τ11 = 0.99, cor-
responding to T = 37 ◦C; the blue curve shows the overall sum. Panel (b):
contours of d(∆R̃∗)/dxα (see text) vs. cγ and τ11, with negative (blue) and
positive (red) regions. Dashed lines in panel (b) correspond to the paths of
panels (a) and (c).

In panels (a) and (c), the vertical coordinate shows the con-
tributions of the molecular weight (purple), phase-separation
approach (green), and fluctuation-direction terms (orange) to
∂∆R̃∗/∂φ2 at fixed φ1, and evaluated at φ1 = 0. The nega-
tive of the sum of the molecular weight and phase-separation
approach terms is shown by the dashed purple and green curve.
In panel (a) the contributions are plotted vs. τ11, and thereby
vs. temperature, at cγ = 300 mg/ml. In panel (c) the same
contributions are plotted vs. cγ at body temperature.

The proximity of the orange curves to the dashed green
and purple curve in Figs. 6(a) and 6(c) illustrates that in the
present model, the positive molecular weight and phase separa-
tion approach terms in Eq. (44) are quite remarkably balanced
by a negative fluctuation-direction term. We now describe
these contributions in more detail. In panel (a), the molecu-
lar weight term, shown in purple, is positive and independent
of τ11, while the phase-separation approach term, shown in
green, is also positive but increases upon decreasing τ11, cor-
responding to the approach to liquid-liquid phase separation
on the binary γ-crystallin axis. The fluctuation-direction term,
shown in orange, is negative and its magnitude also increases
with decreasing τ11. This corresponds to an increasing sup-
pression of overall protein concentration fluctuations, with a
concomitant amplification of composition fluctuations. It is
interesting that although the phase separation approach term
is proportional to 1/r2

20, while the fluctuation-direction term’s
magnitude is instead proportional to 1/r20, the presence of the
molecular weight term enables the fluctuation-direction term
to nevertheless remain relatively close to the negative of the
sum of the other two terms over a large range of τ11. The dashed
red curve shows the overall derivative ∂∆R̃∗/∂φ2 vs. τ11. The
τ11 values corresponding to the three temperatures in Fig. 3
are indicated by the circles.

Panel (c) of Fig. 6 studies the concentration dependence
of contributions to ∂∆R̃∗/∂φ2, at a fixed value of τ11 that
corresponds to 37 ◦C. As expected, as the concentration
is decreased, the phase separation approach and fluctuation
direction terms become smaller, and the molecular weight term
eventually dominates. Thus, it is only at low concentrations
that the intense scattering from the high molecular weight of
α-crystallin controls the overall scattered intensity. This can
be seen in Fig. 3, and is explored further in panel (e) of Fig. 9,
below.

Panel (b) of Fig. 6 shows the contours of the derivative
∂∆R̃∗/∂xα, as a function of both starting γ-crystallin concen-
tration and τ11. For comparison with the path taken in the
experiments, this derivative is taken along a path that follows
a constant overall weight/volume concentration, cγ+cα = 300
(mg/ml), whereas Eq. (44) instead delineates contributions to
∂∆R̃∗/∂φ2. Thus to construct Fig. 6(b) we combined the sum of
the first order coefficients of φ2 in Eq. (44) appropriately with
∂∆R̃∗/∂cγ along the original γ-crystallin axis. Blue and red
are used to indicate negative and positive ∂∆R̃∗/∂xα, respec-
tively, and contours are labeled with its value. The vertical and
horizontal lines and circles show the cross-sections studied in
panels (a) and (c), respectively.

In summary, compositional fluctuations, aided by prox-
imity to phase separation, reduce γ-α mixture light scatter-
ing near the γ-crystallin axis well below that which would
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otherwise result from proximity to phase separation and from
α-crystallin’s high molecular weight.

C. Scattering from dilute mixtures: Virial coefficients

Because the light scattering prediction method presented
above makes use of the Percus-Yevick approximation in the
context of the sticky-sphere mixture model, it is useful to com-
pare its predictions with those that are independent of this
approximation. Toward this end, we present the second and
third mixed virial coefficients of the sticky-sphere mixture
model, and investigate the question of how well the low-order
virial series corresponding to Eq. (2) accurately represents
observed light scattering intensity from mixtures of γB and
α-crystallin. It is important to note that strictly, the compar-
isons given here only provide an assessment of how well the
Percus-Yevick approximation reproduces the corresponding
light scattering that would result from use of the second and
third order virial coefficients, with use of the same size and
attraction strength parameters. However, because the model
resulting from the Percus-Yevick approximation turned out
to provide a reasonably accurate representation of the low
and high concentration light scattering data from this system,
the comparisons also suggest how high in concentration the
second and third-order virial coefficients can serve as good
representations of the light scattering cross-section. From that
point of view, the comparisons can provide information that
may be helpful for the design of experiments on aqueous mix-
tures of globular protein solutions that aim to determine second
and third mixed virial coefficients.

As detailed below, somewhat to our surprise we found that
in contrast to the full model, the virial contributions through
third-order only work well to represent the Rayleigh ratio up to
protein concentrations of 60–80 mg/ml, quite low compared to
concentrations in a large portion of the eye lens. This is illus-
trated in Fig. 7. In panel (a), the blue surface shows ∆R for
the full sticky-sphere mixture model, corresponding to a tem-
perature near that of the γ-crystallin phase separation. The red
lines show molecular-weight terms, while yellow and green
surfaces show the second and third virial light scattering mod-
els, respectively. Note that the ideal solution and the third-order
virial series models for ∆R include a narrow, but extended
region that agrees with the full model, associated with the fact
that they underestimate ∆R along the pure γB-crystallin axis,
while they overestimate ∆R along the pure α-crystallin axis.
The contours plotted in panel (b) show the percentages by
which each of the three virial series formulations of ∆R for the
sticky-sphere mixture deviate from the ∆R calculated using
the full sticky-sphere mixture model. As an example, in the
union of the green and yellow regions, virial terms up to and
including 3rd order represent ∆R to within ±5%. The molec-
ular weight plus second virial contributions get within 10%
of the full model up until about 60 mg/ml on the γ axis, and
through about 30 mg/ml on the α axis. The molecular weight
plus second virial plus third virial contributions get within 10%
up until about 100 mg/ml on the γ axis, and through about 50
mg/ml on the α axis. Again, these concentrations are quite
low compared to 300 mg/ml concentrations for which the full
model represents the experimental data, as shown in Fig. 3.

FIG. 7. The third-order virial expansion agrees well with the full model light
scattering only up to concentrations of 60–80 mg/ml. Hereτ11 = 0.65, near the
component 1 critical pointτ11 = 2−

√
2; other parameters from Table I. In panel

(a): blue surface: ∆R for the full model; red lines: molecular-weight contribu-
tions; yellow and green surfaces: second and third virial models, respectively.
Contours in panel (b) show percentage deviations of virial series ∆R values
from the full model; red: +10%, yellow: +5%, green: +1%, black dotted: 0%,
dashed green and black: �1%, dashed yellow and black: �5%, dashed red and
black: �10%.

On the other hand, the calculations to be presented below
do give some insight into the origins of the low-concentration,
concave-down dependence of the scattered intensity on the
relative proportions ofα and γ-crystallin, as we describe below
in connection with Eq. (59).

We now describe the calculations and considerations used
to construct Fig. 7. The low-density, intensive Helmholtz free
energy of a two-component mixture can sometimes be accu-
rately expressed in a series of increasing powers of the number
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densities ρ1 and ρ2 as follows:66

f =
F

VkBT
= ρ1 ln ρ1 + ρ2 ln ρ2

+B(f )
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2
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3
1

+ 3C(f )
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2
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2 + C(f )

222ρ
3
2 + · · ·.

(45)

In Eq. (45), kB is Boltzmann’s constant, T is the absolute
temperature, and B(f )

ij , C(f )
ijk are the second and third virial coef-

ficients, respectively. The virial coefficients measure low-order
corrections to the ideal free energy that result from intermolec-
ular interactions, and are functionals of the intermolecular
potential and functions of the temperature. It is worth noting
that although the virial series can often provide a good repre-
sentation of the low-density free energy, whether it converges
or is accurate can be an involved question, and its applicability
can be confounded by self-association equilibria.

It is also important to note that the third virial coefficients
in the virial expansion of the Helmholtz free energy differ
by a factor of 2 from the third virial coefficients of the corre-
sponding virial expansion of the pressure,67 p. The relationship
between the two expansions can be readily obtained with
use of
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∂V

)
T ,N1,N2

= −kBT

f − *

,
ρ1

(
∂f
∂ρ1

)
T ,ρ2

+ ρ2

(
∂f
∂ρ2

)
T ,ρ1

+
-


,

giving

p
kBT

= ρ1 + ρ2 + B(f )
11 ρ

2
1 + 2B(f )

12 ρ1ρ2 + B(f )
22 ρ

2
2

+ 2C(f )
111ρ

3
1 + 6C(f )

112ρ
2
1ρ2 + 6C(f )

122ρ1ρ
2
2

+ 2C(f )
222ρ

3
2 + · · ·; (46)

that is, B(p)
ij = B(f )

ij , and C(p)
ijk = (2C(f )

ijk ).

The second virial coefficients B(p)
ij (T ) are given by66

B(p)
ij (T ) = −2π

∫ ∞
0

fij(r)r2dr. (47)

Substituting the Mayer f -function from Eq. (2) into Eq. (47),
one finds

B(p)
ij (T ) =

2π
3

d3
ij

(
1 −

3
2τij

)
. (48)

Similarly, each of the third pressure virial coefficients can
be expressed as66

3VC(p)
ijk (T ) = −

∫
fij(|rij |)fjk(|rjk |)fik(|rik |)dridrjdrk , (49)

where rab = rb − ra. A generating function for the C(p)
ijk for

multicomponent mixtures of sticky spheres is shown in
Appendix F, and is then specialized to the present two-
component mixtures and evaluated as functions of the d11,
d12, d22, τ11, τ12, and τ22, while as indicated above we take
τ22 = ∞ in the present model.

With use of the virial expansion analyzed above and in
Appendix F, we now give the expressions for the light scatter-
ing intensity (Eq. (1)) through the second and third virial coeffi-
cients, in terms of the quantities B(f )

ij and C(f )
ijk . The relationship

presented in Eq. (D4) between the Helmholtz free energy F(2)

per unit volume of a two-component system and the Gibbs free
energy G(3) per unit volume of the modeled three-component
system has the consequence that Hρ(G(3)/V ) = Hρ(F(2)/V ).
The latter Hessian can be computed from Eq. (45). Including
terms up to the third virial coefficient, and not yet specializing
to any particular free-energy model, we obtain

Hρ

[
F(2)

VkBT

]−1

=
1

ρ1ρ2 det Hρ
[
f
] 



[
ρ1 0
0 ρ2

]
+ 2ρ1ρ2



B(f )
22 −B(f )

12

−B(f )
12 B(f )

11



+ 6ρ1ρ2



C(f )
122ρ1 + C(f )

222ρ2 −C(f )
112ρ1 − C(f )

122ρ2

−C(f )
112ρ1 − C(f )

122ρ2 C(f )
111ρ1 + C(f )

112ρ2






,

(50)

where

ρ1ρ2 det Hρ
[
f
]
=

(
1 + 2B(f )

11 ρ1 + 6C(f )
111ρ

2
1 + 6C(f )

112ρ1ρ2

)
×

(
1 + 2B(f )

22 ρ2 + 6C(f )
222ρ

2
2 + 6C(f )

122ρ1ρ2

)
− ρ1ρ2

(
2B(f )

12 + 6C(f )
112ρ1 + 6C(f )

122ρ2

)2
.

(51)

Using Eqs. (23) and (1),

∆R(0) =

(
π2kBT

λ4

)
∇ρε

T · Hρ

[
G(3)/V

]−1
· ∇ρε

=

(
π2

λ4

)
∇ρε

T · Hρ

[
F(2)/VkBT

]−1
· ∇ρε. (52)

We now combine Eqs. (50) and (51) to evaluate the right-
hand side of Eq. (52), and expand in a power series in the
number densities of the components, keeping terms to third
order in the number densities, to obtain

λ4∆R(0)

π2

= ∇ρε
T ·

{ [
ρ1 0
0 ρ2

]
− 2

[
ρ1 0
0 ρ2

] [
B11 B12

B12 B22

] [
ρ1 0
0 ρ2

]

+

[
c11(ρ1, ρ2) c12(ρ1, ρ2)
c21(ρ1, ρ2) c22(ρ1, ρ2)

] }
· ∇ρε, (53)

in which

c11(ρ1, ρ2) = ρ3
1

(
4B2

11 − 6C(f )
111

)
+

(
4B2

12 − 6C(f )
112

)
ρ2

1ρ2;

c12(ρ1, ρ2) = c21(ρ1, ρ2) = ρ2
1ρ2

(
4B11B12 − 6C(f )

112

)
+ ρ1ρ

2
2

(
4B22B12 − 6C(f )

122

)
;

c22(ρ1, ρ2) = ρ3
2

(
4B2

22 − 6C(f )
222

)
+

(
4B2

12 − 6C(f )
122

)
ρ1ρ

2
2.

(54)

Eqs. (53) and (54) put us in a position to examine the
molecular origins of the low concentration features of Fig. 3
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in more detail. First, we note that the lowest-order terms in
∆R(0), which we denote by ∆R(0)(1), are

∆R(0)(1) =

(
4π2n2

λ4

) 

(
∂n
∂c1

)2

ρ1m2
1 +

(
∂n
∂c2

)2

ρ2m2
2



=

(
4π2n2

λ4

) 

(
∂n
∂cγ

)2

cγmγ +

(
∂n
∂cα

)2

cαmα


, (55)

where we have used cγ = ργmγ and cα = ραmα. Eq. (55) is the
expression appropriate for low-concentration vertically polar-
ized scattering of vertically polarized incident light. Thus,
in Fig. 3, the dramatically larger initial rate of increase of
light scattering intensity with concentration for α-crystallin,
as compared with that for γ-crystallin, is reflected in Eq. (55)
by the fact that the molecular weight of α-crystallin, mα,
is approximately 35–40-fold that of γ-crystallin, mγ, while
the ratio of the squares of their respective refractive index
increments (Table I) is much closer to 1.

The second-order terms in Eq. (53), similarly, can be
written as

∆R(0)(2) = −2

(
4π2n2

λ4

)
×

[
n2
γc2
γBγγ + 2nγnαcγcαBγα + n2

αc2
αBαα

]
, (56)

where we have used nγ = ∂n/∂cγ and nα = ∂n/∂cα. Because
the light scattering vs. composition depicted in Fig. 3 is given
as a function of the mixing ratio of stock solutions of α- and γ-
crystallin, at overall concentrations of 75, 150, and 300 mg/ml,
we rewrite Eq. (56), letting c0

γ denote the concentration of
a stock solution of γ-crystallin, c0

α denote the concentration
of a stock solution of α-crystallin, and 0 ≤ fα ≤ 1 denote
the fraction of the volume of a mixed solution that is taken
from the relevant α-crystallin stock, 1 − fα being the fraction
taken from the relevant γ stock. Thus, in the mixed solu-
tion, cα = fαc0

α and cγ = (1 − fα) c0
γ. For convenience we

define bγγ = n2
γ

(
c0
γ

)2
Bγγ, bγα = nγnα

(
c0
γ

) (
c0
α

)
Bγα, and bαα

= n2
α

(
c0
α

)2
Bαα. With these substitutions, we obtain

∆R(0)(2) =

(
4π2n2

λ4

)
×

[
−2

(
bγγ (1 − fα) + bααfα

)
− 4Bfα (1 − fα)

]
,

(57)

where B ≡ bγα − 1
2

(
bγγ + bαα

)
.

The term−2
(
bγγ (1 − fα) + bαα fα

)
in Eq. (57) represents

a linear dependence of second-order light scattering on rela-
tive composition fα, dependent only on the pure second virial
coefficient magnitudes and signs. This second-order mixture
term adds or subtracts from the corresponding linear depen-
dence on composition that results from a similar treatment of
Eq. (55), namely

(
aγγ (1 − fα) + aαα fα

)
with aγγ = n2

γmγc0
γ

and aαα = n2
αmαc0

α. In the present case, as is well-known,
Bαα > 0, making bαα > 0, so that the effect of the net repul-
sive interactions between α-crystallins is to reduce the light
scattering intensity on the α-crystallin axis, while Bγγ < 0,
leading to an increase in light scattering intensity on the pure
γ-crystallin axis, over what it would be for an ideal solution.

Thus, because Bαα > 0 while Bγγ < 0, the dramatic dif-
ference in intensity between the two pure protein solu-
tions at a given weight/volume concentration is gradually
reduced with increasing concentration, because of the term
−2

(
bγγ (1 − fα) + bααfα

)
. This occurs to an extent that is

quadratic in overall protein concentration, because of the
dependences of the bij on concentration. Physically, the large
excluded volume of the α-crystallins increasingly reduces
the amplitude of spontaneous composition fluctuations that
are created by their thermal motion. While the γ-crystallins
also have excluded-volume interactions, their mutual attrac-
tions are strong enough to overcome the excluded-volume
effect and lead to successively larger, evanescent clusters
from which scattered waves are in phase with one another.
Specifically, note that the model virial coefficient in Eq. (48),
B(p)

ij (T ) = (2π/3) d3
ij

(
1 −

(
3/2τij

))
, expresses the excluded-

volume effect in the term (2π/3) d3
ij, while that of the attrac-

tions alters the excluded-volume contribution in proportion to
−

(
3/2τij

)
. In the present case, at all the temperatures studied

here, τγγ < 1.5 and the attraction term dominates.
We turn now to the remaining term in Eq. (57),

−4Bfα (1 − fα), which is proportional through B to a symmet-
ric difference between second-order virial coefficients, modu-
lated by refractive index increments. If B < 0, then as overall
protein concentration is increased, this term, by itself, would
make ∆R(0) gradually become more concave down as a func-
tion of relative composition fα. While this might appear to
be qualitatively consistent with the concave-down 75 mg/ml
∆R(0) found experimentally, as shown in the top panel of
Fig. 3, at the same time it is clear from Fig. 7 that in the present
case, at such a large overall concentration, third-virial contri-
butions are quite important for setting concavity with respect
to fα at that concentration. We therefore examine this situation
more quantitatively.

To identify the molecular properties that determine B
in the present model, we use the second virial coefficient
expressions in Eq. (48) to obtain

B =
2π
3

[
nγnα

(
c0
γ

) (
c0
α

)
d3
γα

(
1 −

3
2τγα

)
−

1
2

(
n2
γ

(
c0
γ

)2
d3
γγ

(
1 −

3
2τγγ

)
+ n2

α

(
c0
α

)2
d3
αα

) ]
, (58)

which for the case c0
γ = c0

α = c0 relevant here, becomes

B =
2π
3

n2
γ

(
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)2
[
nαγ

(
dγγ + dαα

2

)3 (
1 −

3
2τγα

)
−

1
2

(
d3
γγ

(
1 −

3
2τγγ

)
+ n2

αγd3
αα

) ]

=
2π
3

n2
γ

(
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)2
d3
αα

[
nαγ

(
1 + γγα

2

)3 (
1 −

3
2τγα

)
−

1
2

(
γ3
γα

(
1 −

3
2τγγ

)
+ n2

αγ

) ]
, (59)

where we have defined nαγ = nα/nγ and assumed, consistent
with the present model, that ταα = ∞. With use of the values
in Table I, which give γγα = 0.23 and nαγ = 0.79, and taking
τγγ = 0.99 and τγα = 6.4, the square bracket in Eq. (59) has
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the value �0.165, so that indeed B < 0, potentially compati-
ble with the concave-down dependence of ∆R(0) on fα at 75
mg/ml as indicated above, depending on the magnitudes of the
third-order contributions, which we now analyze.

The third-order terms in the virial expansion of the light
scattering intensity can be written in the form

∆R(0)(3) =

(
4π2n2

λ4

) [
cγγγ(1 − fα)3 + cγγα(1 − fα)2fα

+ cγαα (1 − fα) f 2
α + cαααf 3

α

]
(60)

with

cγγγ =
(
n2
γ/mγ

) (
c0
γ

)3 (
4B2

γγ − 6C(f )
γγγ

)
cγγα =

(
c0
γ

)2 (
c0
α

) [ (
nγnα/mγ

) (
8BγγBγα − 12C(f )

γγα

)
+

(
n2
γ/mα

) (
4B2

γα − 6C(f )
γγα

) ]

cγαα =
(
c0
γ

) (
c0
α

)2 [ (
nγnα/mα

) (
8BααBγα − 12C(f )

γαα

)
+

(
n2
α/mγ

) (
4B2

γα − 6C(f )
γαα

) ]

cααα =
(
n2
α/mα

) (
c0
α

)3 (
4B2

αα − 6C(f )
ααα

)
. (61)

While Eqs. (60) and (61) apply more generally, the relevant
third virial coefficients C(p)

ijk = 2C(f )
ijk in the sticky-sphere mix-

ture model are given in Eqs. (F66), (F67), (F69), and (F70).
With use of these equations one can construct the third virial
analogue of Eq. (59).

First, however, it is convenient to rewrite Eq. (60) to iden-
tify linear (L(3)), quadratic (Q(3)), and cubic (C(3)) dependences
on fα as follows:

∆R(0)(3) =

(
4π2n2

λ4

) [
L(3) + Q(3) + C(3)

]
, in which

L(3) = cγγγ (1 − fα) + cαααfα,

Q(3) = −
(
2cγγγ + cααα

)
fα (1 − fα) ,

C(3) = cγγα(1 − fα)2fα

+
(
cγαα + cγγγ − cααα

)
(1 − fα) f 2

α . (62)

Eqs. (61) and (62) clearly show how terms in the light scat-
tering that are cubic in concentration, as indicated by the
definitions of the cijk in Eq. (61), contribute to the concave
up or down nature of the composition (fα) dependence of
the light scattering through Q(3) (Eq. (62)). With increasing
protein concentration, Q(3) thus progressively alters the con-
tribution proportional to B from the quadratic concentration
terms, shown above in Eqs. (57) and (59).

Eqs. (61) and (62) show further that with increasing con-
centration, one expects to find two light scattering contribu-
tions that are cubic in the relative composition variable fα.
One, the term

(
cγγα − cγγγ

)
(1 − fα)2 fα, has a peak amplitude

(positive or negative) at a composition that is relatively high in
γ-crystallin, at fα = 1/3. The other,

(
cγαα − cααα

)
(1 − fα) f 2

α ,
has a peak amplitude nearer to the α-crystallin axis, at fα
= 2/3.

To summarize, in the present case, despite our initial
expectation that the observed concave-down dependence of
the light scattering intensity on fα at the overall protein

FIG. 8. Modeled Rayleigh ratios at an overall protein concentration of 75
mg/ml, from the full sticky-sphere model in the Percus-Yevick approxima-
tion (green solid curve), compared with the contributions from the molecular
weight terms alone (Eq. (55), dotted-dashed orange curve), the molecular
weight plus the second mixed-virial terms (Eq. (57), red dashed curve), and
the molecular weight, second, and third mixed-virial terms (Eqs. (60) and (61),
dotted blue curve). The full model curve (green) is the same as that shown in
green in Fig. 3, panel (a), in comparison with the data.

concentration of 75 mg/ml would be straightforward to inter-
pret, this analysis suggests that the scattering at this protein
concentration involves a complicated mixture of at least sec-
ond and third virial contributions, especially for α-crystallin
rich mixtures. This situation is illustrated in Figure 8, which
shows the Rayleigh ratio contributions that result from use of
the fitted model (green), in comparison with the contributions
from the molecular weight terms (Eq. (55)) alone, the molec-
ular weight plus second virial contributions (Eq. (57)), and the
contributions including the third mixed virial terms (Eqs. (60)
and (61).

Figure 8 suggests that to measure B (Eqs. (57)–(59)),
which sets the magnitude of the second derivative of the dashed
red curve in that figure, and to measure analogous third-virial
quantities, one would need a series of light scattering mea-
surements at lower concentrations than those probed in the
data analyzed here, as functions of fα, and also that very accu-
rate data would be needed. Again, as described at the outset
of this section, we emphasize that in view of the nature of the
comparisons being made, this is only a suggestion. The third-
virial analogues of B become very complicated as functions of
the τ and size parameters, and are not included here.

V. LIGHT SCATTERING FROM γB-α MIXTURES:
DEPENDENCE OF PREDICTIONS ON γ-α, γ-γ,
AND α-α INTERACTIONS

We now use the sticky-sphere mixture model to explore
how hypothetical changes in molecular properties could affect
light scattering from concentrated γ-α mixtures. In Fig. 9,
starting from panel (a), which repeats the blue surface in
Fig. 3(c) for reference, these are (b) a γ-crystallin that has
a higher phase separation temperature than the γB-crystallin
modeled above, (c) increased attraction between α- and γB-
crystallin, (d) reduced attraction betweenα- and γB-crystallin,
(e) a higher molecular weight of α-crystallin, and (f) a more
compact form of α-crystallin. Changes of the types (b) and (c)
have been previously linked to the occurrence of cataract.20,69

Changes of type (d) can also be expected to cause cataract.
The hypothetical changes of types (e) and (f) are presented
because of the striking contrast they show between the low- and
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FIG. 9. The present model can be used to study how observed and hypothetical changes in γ- and α-crystallin could affect light scattering from dilute and
concentrated γ-α mixtures. The baseline case shown in panel (a) is the modeled body-temperature light scattering cross-section, ∆R, vs. γ-α-buffer ternary
mixture composition, that is compared with the data in Fig. 3. Panel (b): Increased proximity to γ-crystallin phase separation, here going from T − Tc
= 32 ◦C to T − Tc = 10 ◦C, not only increases scattering from pure γ solutions, but also, and in fact much more dramatically, increases light scattering
from high concentration γ-α mixtures. Panel (c) illustrates the effect of an increase in γ-α attractions, here from τ12 = 6.4 to τ12 = 1, to make a qual-
itative comparison with previous modeling and simulation,12,13 and a proposed mechanism for a congenital cataract.20 Panel (d) illustrates the effect of a
small decrease in γ-α attraction, from τ12 = 6.4, as in (a) to τ12 = 9, which would greatly increase scattering, consistent with previous findings about
phase separation instability.12,13 The sequence of panels (c), (a), and (d) illustrates that the light scattering cross-section is non-monotonic in decreasing
α-γ attraction strength. Panel (e) illustrates that low-concentration scattering would also greatly increase from that in panel (a) if the molecular weight of
α-crystallin were closer to 2 × 106 g/mol rather than 8 × 105 g/mole, though the current model can only accommodate hypothetical growth into a larger
sphere, which is unlikely (see, e.g., Ref. 45). Panel (f) illustrates another hypothetical change, that of making α more compact, by lowering its effective vol-
ume from its open, chaperone-protein structure to the 0.7 ml/g typical of globular proteins.68 Interestingly, while such a change would dramatically increase
light scattering at low γ-crystallin concentrations, for a large range of α-crystallin concentrations, it would reduce light scattering in high-concentration
mixtures.
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high-concentration dependences of light scattering on chang-
ing the molecular weight or compactness of α-crystallin.

Panel (b) of Fig. 9 illustrates how light scattering increases
as the solution conditions become nearer to a γ-crystallin phase
separation temperature, T c. Whereas T − Tc = 32 ◦C for the
baseline panel (a), which corresponds to the blue surface in
Fig. 3, T − Tc is instead 10 ◦C in panel (b). Bringing T c and
T closer by a factor of 3 increases the peak Rayleigh ratio
on the γ-crystallin axis by approximately a factor of 3, but
it is particularly striking that the scattering from mixtures of
α- and γ- crystallin changes by a much larger factor than 3
in response to the illustrated reduction in T − Tc. That is,
an increased phase separation temperature on the γ-crystallin
binary axis can increase light scattering more dramatically in
α/γ mixtures, than it does in the pure γ-crystallin solution, and
can result in intense scattering from the mixtures even in the
single-phase realm. It is important to note that such a reduc-
tion in T −Tc can be brought about not just by changing actual
temperature, but in the living organism can occur with T fixed
at body temperature while T c rises, as happens during some
forms of cataractogenesis.69

Panel (c) of Fig. 9 shows the effect of increasing the
strength of attractions between α- and γ-crystallins. We
changed the γ-α stickiness parameter, τ12, from 6.4, as in
panel (a), to 1. In this case the excess Rayleigh ratio for the
mixtures increases, but there is no change on either binary
axis, as must be the case. This increase in light scattering is
a single-phase counterpart of the role of increased α-γ attrac-
tions in destabilizing concentrated α/γ mixtures.12–14 Indeed,
an increased strength of α-γ attractions that alters their ternary
phase boundaries has been connected with the human congeni-
tal cataract associated with the human γD-crystallin mutation,
E107A.20 Physically, the increased α-γ attractions, in combi-
nation with the attractions between the γ-crystallins that are
already present, enable the γ-crystallins to effectively act as
a glue that can hold large conglomerates of α and γ together,
thereby increasing light scattering. Contributing to this light
scattering increase, the minimum eigenvector of the Hessian
is rotated clockwise, as illustrated upon going from panel (b)
to panel (a) of Fig. 5.

Panel (d) of Fig. 9 shows the effect of decreasing the
strength of attractions between α- and γ-crystallins. We
changed the γ-α stickiness parameter, τ12, from 6.4, its value
in panel (a), to 9. Due to the inverse relationship between τ
and the strength of attractions, such a change serves to reduce
the attraction between γ and α. Again, there is no light scat-
tering change on either binary axis, as must be the case. The
Rayleigh ratio increases, as it does in the case of increasing
α-γ attraction. However, note that a very different pattern of
increased light scattering as a function of protein concentra-
tion and composition now results. Thus, a comparison of panel
(d) with panel (a) illustrates that attractions between α- and γ-
crystallin are very effective in reducing the light scattering
from their concentrated mixtures that would otherwise occur.
This reduction in light scattering is a single-phase counterpart
of the role of α-γ attractions in stabilizing concentrated α/γ
mixtures with respect to phase separation, that has previously
been investigated using neutron scattering, molecular dynam-
ics simulation, and thermodynamic perturbation theory.12–14

Physically, the γ-α attractions compensate for the tendency
of mixtures of hard-spheres that differ in size to show fluc-
tuations that involve segregation by type, known as depletion
attraction.70

Note that the concentration and composition dependence
of the increased light scattering intensity in the concentrated
mixtures of panel (b) of Fig. 9 has a qualitative similarity to that
shown in panel (d), in whichα-γ attractions are less effective at
counteracting the tendency of these two proteins to segregate
by size. The changes shown in the mixture scattering in panel
(b) can be given a similar interpretation; that is, increasing γ-
γ attractions, provided that the α-γ attraction is sufficiently
low, will also enhance their segregation from α-crystallins,
and thereby can enhance scattering. Thus the γ-crystallin
phase separation temperature, even though it may remain
well below body temperature, can nevertheless represent a
key element controlling the transparency of concentrated α/γ
mixtures.

The sequence of panels Figs. 9(c), 9(a), and 9(d) illus-
trates that the light scattering cross-section is non-monotonic
as a function of α-γ attraction strength, in accord with previous
molecular dynamics simulations and perturbation theory work
on these systems;12,13 for these three panels the pure α and
γ-crystallin component parameters were left unchanged. That
is, consistent with previous work, the sticky-sphere mixture
model shows two distinct mechanisms by which light scatter-
ing at body temperature from γ-α mixtures can greatly exceed
that from the pure component protein solutions: decreas-
ing or increasing γ-α attraction strength. Thus, just as a
human γD-crystallin mutation has been identified for which
an increase in γ-α attraction has been implicated as catarac-
togenic,20 Fig. 9 suggests that other cataractogenic muta-
tions will be found that instead act through decreasing γ-α
attraction.

Panel (e) illustrates that low-concentration scattering
would also greatly increase from that in panel (a) if the molec-
ular weight of α-crystallin were closer to 2× 106 g/mole rather
than 8 × 105 g/mole. Here, it should be noted that the current
model is only set up to accommodate hypothetical growth of
α-crystallin into a larger sphere, which is unlikely (e.g., see
Ref. 45). Nevertheless, in the context of the current model, it is
interesting to note that the light scattering effect of this increase
in molecular weight is largely confined to the region near the
α-crystallin axis, for in comparison the concentrated α-γ mix-
ture light scattering shows a relatively small increase. While
much larger increases in molecular weight than that depicted
here have long been observed in aging lenses, the contrast that
panels (a) and (e) show between low- and high-concentration
light scattering changes illustrates that high concentration eye
lens protein mixtures can substantially reduce the light scat-
tering impact of a considerable growth in molecular weight.
This feature may be of importance for evaluating hypotheses
about how growing aggregates could affect light scattering in
the lens.

Panel (f) illustrates another hypothetical change, that of
making α-crystallin more compact, by lowering its effec-
tive volume from its open, chaperone-protein structure to
the 0.7 ml/g typical of globular proteins.68 Interestingly,
while such a change would dramatically increase light
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scattering at low γ-crystallin concentrations, for a large range
of α-crystallin concentrations, it would reduce light scatter-
ing in high-concentration mixtures. The physical reason for
the increased scattering on the α-crystallin axis is that com-
pact α crystallin would require higher protein concentrations
in order to constrain relative protein molecule positions so as to
suppress concentration fluctuations, and thereby reduce light
scattering intensity. Thus, the contrast between Figs. 9(a) and
9(f) illustrates that a chaperone-like, relatively open structure
of α-crystallin, used implicitly in the construction of Fig. 9(a)
via the parameters of Table I, dramatically reduces light scat-
tering intensity at low and intermediate protein concentrations.
However, Fig. 9(f) predicts that light scattering in high con-
centration γ-α mixtures would actually be reduced from its
values in Fig. 9(a), if α crystallin were more compact than it
is. Therefore, just as for the molecular weight considerations
illustrated by panel (e), there is a contrast between the low-
and high-concentration effects of this hypothetical change,
further underlining the importance of mixture light scattering
considerations.

In connection with the construction of Figs. 9(e) and 9(f),
it is important to note that to make the given comparisons
in the context of the present sticky-sphere mixture model,
we needed to assume that the α-crystallin remained spher-
ical. For the molecular-weight change case shown in panel
(e) we adjusted its diameter accordingly, while assuming that
its partial specific volume remained the same. On the other
hand, for the change in partial specific volume illustrated in
panel (f), we assumed that the molecular weight remained
the same. For example, for panel (f) we reduced the diam-
eter of the assumed-spherical α-crystallin accordingly by a
factor of (0.7/1.52)1/3. These choices then left the question
of also choosing an appropriate, plausible adjustment for the
effective stickiness parameter τ12, to accompany the two size
changes. The underlying consideration was that if the spatial
range of the α-γ attraction—for example, 1 D electrostatic
screening length—were to remain the same between the nor-
mal α-crystallin and the hypothetical contracted version of
panel 9(f), there would now be a smaller volume in which γ−α
attractions could occur, while there would be a correspond-
ingly larger volume for γ − α attractions if the α-crystallin
molecular weight were presumed to increase, as in panel 9(e).
By equating the respective second mixed virial coefficients,
and using the relationships in Eqs. (31) and (32), we first found
the parameters of a square-well attraction model like that used
in Ref. 10 that would reproduce the value of τ12 used in panel
(a), kept that square well width and depth constant for the
smaller protein radius that corresponded to the more compact
protein of panel (f), then again equated second mixed virial
coefficients to find the new value of τ12 that corresponded to
the shrunken square well. A similar procedure was used for
panel (e).

VI. CONCLUSIONS

This work shows that a simple model that incorporates
hard-sphere interactions of α-crystallins, spherically symmet-
ric sticky-sphere interactions of γ-crystallins, and spherically
symmetric sticky-sphere interactions of α-crystallins with

γ-crystallins, yields nearly quantitative agreement with exper-
imentally observed, temperature-dependent absolute light
scattering cross sections of γ-α-crystallin mixtures, includ-
ing those obtained at realistically high concentrations that
are not readily modeled with dilute or semi-dilute solution
approaches. Thus, the present model is a step towards building
an experimentally tested, quantitative theory of transparency
of the eye lens cytoplasm that is based on measured molecular
properties.

Clearly, additional molecular components and features
are needed to build a more comprehensive theory of light
scattering from the eye lens cytoplasm at equilibrium. From
the present perspective of studying light scattering from con-
trolled, concentrated mixtures of eye lens cytoplasmic compo-
nents, among the key features expected to be of importance,
beyond those of γ-α mixtures, are the roles of β-crystallins,
oligomerization and high-molecular-weight aggregate forma-
tion of crystallins, aeolotopic or orientation-dependent inter-
actions between crystallins, cytoskeletal components, and
membrane components. In each of these additional contexts,
one can expect that the high-concentration light scattering
consequences of given molecular interaction potentials may
be qualitatively different from those at more easily prepared
low concentrations, as has turned out to be the case for
γ-α mixtures (cf. Fig. 3). In this context, it is important
to note that the light scattering changes we investigate here
do not yet approach those that would lead to substantial
scattering-angle dependence of the light scattering inten-
sity. Angular dependence of the Rayleigh ratio does occur
upon close approach to liquid-liquid phase separation and
upon formation of very high molecular weight aggregates,
and can also result from cytoskeletal and membrane struc-
tures. Because light scattering from the living lens does
exhibit dramatic angular dependence,71 extending the present
model to include these phenomena would clearly be of
interest.

A model of equilibrium light scattering properties, such as
the present one, can inform quantitative models of cataracto-
genic effects of chemical modifications and mutations of lens
crystallins and other components. It is also an important start-
ing point for models of the thermodynamic driving forces for
the non-equilibrium dynamics of molecular change that are
also crucial in cataract development.
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APPENDIX A: SCHUR MATRIX PRODUCT
FORM OF THE λ − τ QUADRATIC EQUATION SYSTEM

Let τ̃ = τ
12(1−ξ3)
πdij

. First, we divide both sides of Eq. (3)

by
πdij

12(1−ξ3) and add 6τ̃ij to both sides, obtaining
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k

ρkd2
kk(λik − 6)(λjk − 6) − τ̃ij(λij − 6)

= *
,

9dijξ2

(1 − ξ3)
−

6d2
ij

diidjj

+
-

(
12(1 − ξ3)

πdij

)
+ 6τ̃ij. (A1)

Define the matrices L, D, B̃, and C̃ as follows:

L =



λ11 − 6 λ12 − 6 · · ·
λ12 − 6 λ22 − 6 · · ·

...
...

. . .


,

D =



√
ρ1d11

√
ρ2d22

. . .


,

B̃ =



*
,

9dijξ2

(1 − ξ3)
−

6d2
ij

diidjj

+
-

(
12(1 − ξ3)

πdij

)
· · ·

...
. . .



,

C̃ =



6 6 · · ·
6 6 · · ·
...

...
. . .


.

Then with use of the substitution Y = −DLD one obtains a
matrix form of Eq. (3),

Y2 + τ̃ ◦ Y = B + τ̃ ◦ C, (A2)

where A ◦ B is the Schur (Hadamard) matrix product defined
by (A ◦ B)ij = AijBij.

APPENDIX B: FOURTH-ORDER POLYNOMIAL
REDUCTION OF QUADRATICS FOR HARD-SPHERE
α-α INTERACTIONS

In this appendix, we show that the solution of Eq. (3), for
the two-component case in which τ22 = ∞, can be reduced to
the solution of a fourth-order polynomial in λ11 − 6. Here, as
in the text, we let component 1 stand for γ-crystallin, while
component 2 is α-crystallin, and we define φi =

π
6 ρid3

ii, xi

=
φi

1−ξ3
, and γ12 =

d11
d22

.
First, in the i = j = 2 instance of Eq. (3), τ22 = ∞ implies

either that λ22 = 0 or that λ22 = ∞. The latter possibility is
unphysical, and therefore we conclude that λ22 = 0. The i = j
= 1 and i = 1; j = 2 equations become

x1(λ11 − 6)2 + γ12x2(λ12 − 6)2
− 2τ11(λ11 − 6)

= 12τ11 + 18(x1 + γ12x2) − 12 (B1)

and

(λ12 − 6)
[
(1 + γ12)(x1(λ11 − 6) − 6γ12x2) − 4γ12τ12

]
= 18(1 + γ12)(x1 + γ12x2) − 6(1 + γ12)2 + 24γ12τ12.

(B2)

By solving Eq. (B2) for (λ12 − 6) we find

(λ12 − 6) =
18(x1 + γ12x2) − 6(1 + γ12) +

24γ12τ12

1 + γ12

x1(λ11 − 6) − 6γ12x2 −
4γ12τ12

1 + γ12

. (B3)

Writing

A = 18(x1 + γ12x2) − 6(1 + γ12) +
24γ12τ12

1 + γ12
, (B4)

B = −6γ12x2 −
4γ12τ12

1 + γ12
, (B5)

C = 12τ11 + 18(x1 + γ12x2) − 12, (B6)

and substituting Eq. (B3) into Eq. (B1) yields

x1(λ11 − 6)2 + γ12x2
A2

[x1(λ11 − 6) + B]2
− 2τ11(λ11 − 6) = C.

(B7)

Upon multiplying Eq. (B7) by x1(λ11 − 6) + B]2/x3
1 and

collecting coefficients, we obtain

(λ11 − 6)4 + D3(λ11 − 6)3 + D2(λ11 − 6)2

+ D1(λ11 − 6) + D0 = 0, (B8)

where

D3 =
2Bx2

1 − 2x2
1τ11

x3
1

,

D2 =
x1B2 − 4Bτ11x1 − Cx2

1

x3
1

,

D1 =
−2B2τ11 − 2BCx1

x3
1

,

D0 =
A2γ12x2 − CB2

x3
1

,

which is a fourth order monic polynomial in (λ11 −6). We find
the roots of Eq. (B8), as well as more complex λ−τ equations,
by starting at “high temperature”—that is, high values of τ.
We use a parameter t to scale the entire set of τ values by
the same factor, where t = 0 corresponds to τ = ∞, for all
particle pair types, and t = 1 corresponds to the desired set of
τij values. When t = 0, λij = 0 for all pairs. Starting at t = 0
we step t up by small increments, δt, and gradually increase
the value of t up to 1. At each point we use a combination of
secant and Newton’s fixed-point methods to find the new sets of
roots, while decreasing δt as necessary to ensure convergence
of Newton’s method, or increasing it so as to speed up the
process. This method is described further under the subject of
parameter homotopy continuation in Refs. 72 and 73.

APPENDIX C: MATHEMATICAL DETAILS INVOLVED
IN EVALUATING THE MATRIX Q

From Eq. (51) in Ref. 25, we have

Qij(r) = δij − 2π(ρi ρj)
1/2

∫ dij

mij

qij(r)dr, (C1)

in which mij = (1/2)(dii � djj), dij = (1/2) (dii + djj), and ρi is
the number density of component i. Eqs. (11)–(15) of Ref. 25
specify the qij(r) as

qij(r) = [
1
2

ai(d
2
ij − r2) + bi(dij − r) + tij]H−(dij − r) (C2)
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in which

ai =
1

(1 − ξ3)2
*
,
1 − ξ3 + 3ξ2dii −

π

6
dii

∑
k

ρkdkkλki
+
-

, (C3)

bi =
1
2

dii

(
1

1 − ξ3
− ai

)
. (C4)

Here, the quantities ξi are moments of the distribution of sphere
sizes as described in the text, and

tij = λijdiidjj/(12(1 − ξ3)). (C5)

The expressions given in Eqs. (C1)–(C3) can be simplified
using xk = (π/6)ρkd3

kk/(1 − ξ3), γij = dii/djj, and lij = 3 − λij,
to obtain

ai =
1

1 − ξ3

*
,
1 +

∑
k

xkγik lik+
-

(C6)

and

Qij = δij + xj

√
ρi

ρj
·


*
,
1 + γijlij +

∑
k

xkγik lik+
-


. (C7)

It is convenient to note that the diagonal and off-diagonal
elements from Eq. (C7), identical to Eq. (11) in the text, are

Qii = 1 + xi + xilii + xi

∑
k

xkγik lik , and (C8)

Qij = xj

√
ρi

ρj


1 + γijlij +

∑
k

xkγik lik


. (C9)

If we let

J11 = 1 + l11 + x1l11 + x2l12γ, (C10)

J12 = 1 + x1l11 + l12γ(1 + x2), (C11)

J21 = 1 + x2l22 +
x2l12

γ
(1 + x1), (C12)

J22 = 1 + l22 + x2l22 +
x1l12

γ
, (C13)

then the two-component matrix Q can be written as

Q =


√
ρ1

x1 √
ρ2

x2



[
1 + x1J11 x1J12

x2J21 1 + x2J22

] 

x1√
ρ1

x2√
ρ2



=



1 + x1J11

√
ρ1
ρ2

x2J12√
ρ2
ρ1

x1J21 1 + x2J22



=


1 + x1J11

√
x1x2

γ3/2 x2J12

γ3/2√x1x2J21 1 + x2J22


. (C14)

APPENDIX D: TRANSFORMATION OF KEY
QUANTITIES BETWEEN THE MODEL 2-COMPONENT
STICKY-SPHERE MIXTURE AND THE 3-COMPONENT
EXPERIMENTAL MIXTURES

In the present implementation of the sticky-sphere mix-
ture model, it is assumed that there are just two components,
the γ and α crystallin proteins. In this model the solvent is
regarded as a featureless continuum that fills the space between

the proteins. As a consequence, in order to compare the model
predictions with experiments that use aqueous buffer together
with the proteins, we need to consider the correspondence
between the thermodynamics of the two-component model
and the properties of the experimental mixture. For this pur-
pose, we use relationships that stem from the McMillan-Mayer
theory of solutions.50 One could of course treat the water as
a third component directly, which is an interesting possible
extension of the present work.

We use a superscript ((2)) to identify thermodynamic prop-
erties of the two-component model system, to distinguish them
from those of the three-component experimental system. The
latter are written with no superscript, as are quantities taken
as common to both two-component and three-component sys-
tems. The Helmholtz free energy, F(2), of the two-component
model system is extensive in the variables V, N1, and N2 and
therefore can be written as

F(2) = N1

(
∂F(2)

∂N1

)
T ,V , N2

+ N2

(
∂F(2)

∂N2

)
T ,V ,N1

+V

(
∂F(2)

∂V

)
T ,N1, N2

= N1µ
(2)
1 + N2µ

(2)
2 − Vp(2), (D1)

where µ(2)
1 and µ(2)

2 are the chemical potentials of components
1 and 2, respectively, and p(2) is the two-component model
pressure.

In the McMillan-Mayer theory, the pressure p(2) of the
two-component system corresponds to the osmotic pressure
π of the corresponding system containing solvent.50 If, as we
assume, the partial molecular volume of a water molecule, v̄w ,
does not significantly change with pressure in the applicable
range, the osmotic pressure is given by πv̄w = µ0

w − µw , in
which µw denotes water chemical potential in the solution,
while µ0

w denotes the chemical potential of pure water.
Now we assume throughout that in the experimental liq-

uid mixture, the partial molecular volumes are constant; that
is, we use V = N1 v̄1 +N2 v̄2 +Nw v̄w with constant values of v̄1,
v̄2, and v̄w . As mentioned in the text, this is an assumption in
the derivation49 of Eq. (1) from the excess Rayleigh ratio form
given by Kirkwood and Goldberg.48 Therefore, if a molecule
of type 1 is added to the model two-component mixture at con-
stant overall volume, as in the evaluation of the two-component
chemical potential µ(2)

1 =
(
∂F(2)

∂N1

)
T ,V ,N2

, in the corresponding

three-component system (v̄1/v̄w) water molecules would have
to be removed. Therefore, we take

µ(2)
1 = µ1 − (v̄1/v̄w)µw

µ(2)
2 = µ2 − (v̄2/v̄w)µw . (D2)

We now substitute the expressions for p(2), µ(2)
1 , and µ(2)

2
into Eq. (D1) to obtain

F(2) = N1µ1 − (N1 v̄1/v̄w)µw + N2µ2 − (N2 v̄2/v̄w)µw

− (V/v̄w)(µ0
w − µw) = N1µ1 + N2µ2 + Nwµw

− (V/v̄w)(µ0
w) = G(N1, N2, Nw) − (V/v̄w)(µ0

w). (D3)

From Eq. (D3) it follows that in the present model, the Gibbs
free energy per unit volume of the three-component mixture,
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the quantity appearing in the excess Rayleigh ratio in Eq. (1),
can be written as

G(N1, N2, Nw)/V = F(2)/V + (µ0
w/v̄w). (D4)

That is, the three-component Gibbs free energy per unit volume
corresponds to the two-component Helmholtz free energy per
unit volume, plus a quantity that is independent of the solute
concentrations, µ0

w/v̄w .
To find a convenient form for the Rayleigh ratio of the scat-

tered light in terms of the model, 2-component sticky-sphere
mixture system, we now evaluate the Hessian matrix needed
in Eq. (1), and its inverse. With use of

µw =

(
∂(Vg)
∂Nw

)
T ,p,N1,N2

= v̄w

[
g +

(
∂g
∂ρ1

)
(−ρ1) +

(
∂g
∂ρ2

)
(−ρ2)

]
, (D5)

in which g = G/V is the Gibbs free energy per unit volume, and
differentiating each of Eqs. (D2) with respect to ρj(j = 1, 2)
and using Eq. (D5), we obtain

*.....
,

∂µ(2)
1

∂ρ1

∂µ(2)
1

∂ρ2

∂µ(2)
2

∂ρ1

∂µ(2)
2

∂ρ2

+/////
-

=

*....
,

∂µ1

∂ρ1

∂µ1

∂ρ2

∂µ2

∂ρ1

∂µ2

∂ρ2

+////
-

+

(
v̄1ρ1 v̄1ρ2

v̄2ρ1 v̄2ρ2

)
Hρ[g], (D6)

where

Hρ[g] =

*.....
,

∂2g

∂ρ2
1

∂2g
∂ρ1ρ2

∂2g
∂ρ1ρ2

∂2g

∂ρ2
2

+/////
-

(D7)

is the Hessian of the intensive Gibbs free energy with respect
to number density. Further, with use of

µ1 =

(
∂(Vg)
∂N1

)
T ,p,N2,Nw

= v̄1

[
g +

(
∂g
∂ρ1

)
((1/v̄1) − ρ1) +

(
∂g
∂ρ2

)
(−ρ2)

]

µ2 =

(
∂(Vg)
∂N2

)
T ,p,N1,Nw

= v̄2

[
g +

(
∂g
∂ρ1

)
(−ρ1) +

(
∂g
∂ρ2

)
((1/v̄2) − ρ2)

]
, (D8)

one obtains

*...
,

∂µ1

∂ρ1

∂µ1

∂ρ2
∂µ2

∂ρ1

∂µ2

∂ρ2

+///
-

=

(
1 − ρ1 v̄1 −ρ2 v̄1

−ρ1 v̄2 1 − ρ2 v̄2

)
Hρ[g]. (D9)

Substituting Eq. (D9) into Eq. (D6) yields

*.....
,

∂µ(2)
1

∂ρ1

∂µ(2)
1

∂ρ2

∂µ(2)
2

∂ρ1

∂µ(2)
2

∂ρ2

+/////
-

= Hρ[g]. (D10)

Eq. (D10) now gives the expression in the two-component,
sticky-sphere mixture model to be used for the Hessian matrix

of the corresponding three-component system, that appears in
the light scattering intensity given by Eq. (1).

In the present model, expressions for the needed partial
derivatives of the chemical potentials with respect to number
densities are given by

∂µ(2)
i

∂ρj
=

1
β

(ρi ρj)
−1/2

∑
k

QkiQkj. (D11)

The Qki are given above in Eqs. (C7) and (C14).

APPENDIX E: CHANGE TO DIMENSIONLESS
QUANTITIES IN THE HESSIAN MATRIX

In order to recast Eq. (1) into a more convenient, dimen-
sionless form, as described in the text we use the volume frac-
tions φ1 = ρ1 v̄1 and φ2 = ρ1 v̄2, and define a dimensionless,
intensive Gibbs free energy

g̃ =
v̄0G

VkBT
.

We can then write the second partial derivatives of the intensive
Gibbs free energy, with respect to number density, as

∂2
(

G
V

)
∂ρ2

1

= v̄1
2 kBT
v̄0

∂2g̃

∂φ2
1

,

∂2
(

G
V

)
∂ρ1∂ρ2

= v̄1 v̄2
kBT
v̄0

∂2g̃
∂φ1∂φ2

,

∂2
(

G
V

)
∂ρ2

1

= v̄2
2 kBT
v̄0

∂2g̃

∂φ2
2

.

Therefore, the Hessian matrix can be written as

Hρ

[
G
V

]
=

kBT
v̄0

[
v̄1 0
0 v̄2

] [
Hφ[g̃]

] [
v̄1 0
0 v̄2

]
,

which gives

Hρ

[
G
V

]−1

=
v̄0

kBT



1
v̄1

0
0 1

v̄2



[
Hφ[g̃]

]−1


1
v̄1

0
0 1

v̄2


(E1)

as used in the text.

APPENDIX F: STEPS IN THE DERIVATION
OF THE THIRD VIRIAL COEFFICIENTS
FOR STICKY-SPHERE MIXTURES

It can be shown (see Ref. 66, Section 12-5) that the integral
in Eq. (49) can be written as

C( p)
ijk (T ) = −

4π(2π)3/2

3

∫ ∞
0

γij(t)γjk(t)γik(t)t2dt, (F1)

where γαγ(t) is the Fourier transform of fαγ(|r|). Taking the
Fourier transform of the Mayer f -function given in Eq. (2),
we obtain

γαγ(t) =

(
2
π

)1/2

d3
αγ



sin dαγt

2dαγταγt
+

cos dαγt

(dαγt)2
−

sin dαγt

(dαγt)3


.

(F2)
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With use of Eq. (F2), Eq. (F1) becomes

C(p)
ijk (T ) = −

32π
3

d3
ijd

3
jkd3

ik

∫ ∞
0



sin dijt

2dijτijt
+

cos dijt

(dijt)
2
−

sin dijt

(dijt)
3



×



sin djk t

2djkτjk t
+

cos djk t

(djk t)2
−

sin djk t

(djk t)3



×

[
sin dik t
2dikτik t

+
cos dik t

(dik t)2
−

sin dik t

(dik t)3

]
t2dt. (F3)

The integral appearing in Eq. (F3) is of the form

I = I(A, B, C, τA, τB, τC)

=

∫ ∞
0

[
sin At
2AτAt

+ g(At)

] [
sin Bt
2BτBt

+ g(Bt)

]

×

[
sin Ct
2CτC t

+ g(Ct)

]
t2dt (F4)

in which

g(x) =
cos x

x2
−

sin x

x3
(F5)

and A, B, C, τA, τB, τC are positive, real parameters. We note
that each bracketed expression in the integrand of Eq. (F4) is
an even function of t, and therefore

I =
1
2

∫ ∞
−∞

[
sin At
2AτAt

+ g(At)

] [
sin Bt
2BτBt

+ g(Bt)

]

×

[
sin Ct
2CτC t

+ g(Ct)

]
t2dt. (F6)

Expanding the integrand of Eq. (F6) yields

I =
1
2

∫ ∞
−∞

[ sin At sin Bt sin Ct
8τAτBτCABCt

+
sin At sin Bt

4τAτBAB
g(Ct)

+
sin At sin Ct

4τAτCAC
g(Bt) +

sin Bt sin Ct
4τBτCBC

g(At)

+
sin At
2τAA

g(Bt)g(Ct)t +
sin Bt
2τBBt

g(At)g(Ct)t

+
sin Ct
2τCCt

g(At)g(Bt)t + g(At)g(Bt)g(Ct)t2
]
dt. (F7)

The integral in Eq. (F7) is the sum of integrals of four distinct
types, namely,

T1(A, B, C) =
∫ ∞
−∞

(sin At sin Bt sin Ct/t)dt, (F8)

T2(A, B, C) =
∫ ∞
−∞

sin At sin Bt g(Ct)dt, (F9)

T3(A, B, C) =
∫ ∞
−∞

sin At g(Bt) g(Ct)tdt, (F10)

T4(A, B, C) =
∫ ∞
−∞

g(At) g(Bt) g(Ct)t2dt, (F11)

which can all be evaluated in closed form, as we shall demon-
strate using the technique of differentiation under the integral
sign. The following two lemmas will be useful.

Lemma 1 (Riemann-Lebesgue Lemma). Let f be an L1

integrable function. Then

lim
λ→∞

∫ ∞
−∞

f (x) sin(λx) dx = 0

and

lim
λ→∞

∫ ∞
−∞

f (x) cos(λx) dx = 0.

Lemma 2. Let f be an L1 integrable function. Then

lim
λ→∞

∫ ∞
−∞

sin(λx)
x

f (x) dx = lim
x→0

f (x)π.

Proofs of Lemmas (1) and (2) can be found in most
introductory analysis texts, such as Ref. 74. Additionally, we
define

Yn(A, B, C) =
π

4n!
[((A + B + C))n−1 |(A + B + C)|

+ ((A − B − C))n−1 |(A − B − C)|

+ (−1)n((−A + B − C))n−1 |(−A + B − C)|

+ (−1)n((−A − B + C))n−1 |(−A − B + C)|]

(F12)

for non-negative integers, n, and note that

∂Yn(A, B, C)
∂A

= Yn−1(A, B, C). (F13)

1. Type I integrals

To evaluate integrals of the first type, we note that by
expressing sin x in terms of complex exponentials, we can
derive the identity

sin At sin Bt sin Ct = −
1
4

[
sin((A + B + C))t

+ sin((A − B − C))t

+ sin((−A + B − C))t

+ sin((−A − B + C))t
]
. (F14)

Thus, Eq. (F8) becomes

T1 = −
1
4

∫ ∞
−∞

[ sin((A + B + C))t
t

+
sin((A − B − C))t

t
+

sin((−A + B − C))t
t

+
sin((−A − B + C))t

t

]
dt. (F15)

Using the well-known result∫ ∞
−∞

sinσt
t

dt = sgn(σ) · π (F16)

a proof of which can be found in most introductory complex
analysis texts, such as Ref. 75, we find

T1(A, B, C) = −
π

4
[
sgn((A + B + C))

+ sgn((A − B − C)) + sgn((−A + B − C))

+ sgn((−A − B + C))
]
. (F17)

In light of the fact that sgn(x) = x
|x | , for non-zero x, we obtain

T1(A, B, C) = −Y0(A, B, C). (F18)

This notation will be convenient in the evaluation of the
remaining integrals.
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2. Type II integrals

If we make the observation that

g(Ct) =
1

Ct2

∂

∂C

(
sin Ct

Ct

)
, (F19)

then the integral of the second type, given by Eq. (F9), can be
written as

T2(A, B, C) =
1
C

∂

∂C

∫ ∞
−∞

sin At sin Bt sin Ct

Ct3
dt. (F20)

If we now define

I3(A, B, C) =
∫ ∞
−∞

sin At sin Bt sin Ct

t3
dt, (F21)

differentiating Eq. (F21) twice with respect to the parameter
A yields

∂I3(A, B, C)
∂A

=

∫ ∞
−∞

cos At sin Bt sin Ct

t2
dt (F22)

and

∂2I3(A, B, C)

∂A2
= −

∫ ∞
−∞

sin At sin Bt sin Ct
t

dt = −T1(A, B, C).

(F23)

From Eq. (F18) we obtain

∂2I3(A, B, C)

∂A2
= Y0(A, B, C). (F24)

Integration with respect to A yields

∂I3

∂A
= Y1(A, B, C) + η1(B, C), (F25)

where η1 is an arbitrary function of B and C. Taking the limit
of Eq. (F22) as A goes to infinity,

lim
A→∞

∂I3

∂A
= lim

A→∞

∫ ∞
−∞

cos At
sin Bt sin Ct

t2
dt = 0 (F26)

by Lemma 1. Taking the same limit of Eq. (F25) gives

lim
A→∞

∂I3

∂A
= lim

A→∞
−
π

4

[
|A + B + C | + |A − B − C |

− | − A + B − C | − | − A − B + C |
]
+ η1(B, C)

= η1(B, C) (F27)

because the bracketed term in Eq. (F27) vanishes for A> B+C.
Hence η1(B, C) ≡ 0, which gives

∂I3

∂A
= Y1(A, B, C) (F28)

and

I3(A, B, C) = Y2(A, B, C) + η2(B, C). (F29)

If we take the limit as A→ ∞ of Eq. (F21) and apply Lemma 2,
we obtain

lim
A→∞

I3(A, B, C) = limA∞

∫ ∞
−∞

sin At
t
·

sin Bt sin Ct

t2
dt

= π limt→0

[
sin Bt sin Ct

t2

]

= πBC. (F30)

Taking the same limit of Eq. (F29), we find

lim
A→∞

I3(A, B, C) = lim
A→∞

π

8
[
(A + B + C)2

+ (A − B − C)2 − (−A + B − C)2 − (−A − B + C)2] + η2(B, C)

= lim
A→∞

π

8
[
2(B + C)2 − 2(B − C)2] + η2(B, C)

= πBC + η2(B, C), (F31)

which, by Eq. (F30) gives η2 ≡ 0 and so

I3(A, B, C) = Y2(A, B, C) (F32)

and

T2(A, B, C) =
1
C

∂

∂C
Y2(A, B, C)

C
. (F33)

3. Type III integrals

Making use of Eq. (F19) we can write

T3(A, B, C) =
1

BC
∂

∂C
∂

∂B

∫ ∞
−∞

sin At sin Bt sin Ct

BCt5
dt. (F34)

We observe that the integral in Eq. (F34) does not converge.
However, we may add a regularization term inside the inte-
grand which does not depend on B, because the derivative with
respect to B will cause these terms to vanish. Specifically, we

have

T3(A, B, C) =
1

BC
∂

∂C
∂

∂B

∫ ∞
−∞

[ sin At sin Bt sin Ct

BCt5

−
sin At sin t sin Ct

Ct5

]
dt (F35)

=
1

BC
∂

∂C
∂

∂B

∫ ∞
−∞

sin At
t

[
sin Bt

Bt3
−

sin t

t3

]
sin Ct

Ct
dt.

(F36)

If we let

I5(A, B, C) =
∫ ∞
−∞

sin At
t

[
sin Bt

Bt3
−

sin t

t3

]
sin Ct

Ct
dt, (F37)

then

∂I5

∂A
=

∫ ∞
−∞

cos At

[
sin Bt

Bt3
−

sin t

t3

]
sin Ct

Ct
dt, (F38)
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∂2I5

∂A2
= −

∫ ∞
−∞

sin At

[
sin Bt

Bt3
−

sin t

t3

]
sin Ct

C
dt. (F39)

Expanding the integrand in Eq. (F39) we find

∂2I5

∂A2
= −

∫ ∞
−∞

sin At sin Bt sin Ct

BCt3
−

sin At sin t sin Ct

Ct3
dt

= −
1

BC
I3(A, B, C) +

1
C

I3(A, 1, C)

= −
1

BC
Y2(A, B, C) +

1
C

Y2(A, 1, C), (F40)

where we have used the result obtained in Eq. (F32). Integrat-
ing, we find

∂I5

∂A
= −

1
BC

Y3(A, B, C) +
1
C

Y3(A, 1, C) + η1(B, C), (F41)

I5 = −
1

BC
Y4(A, B, C) +

1
C

Y4(A, 1, C) + Aη1(B, C)

+ η2(B, C), (F42)

where η1 and η2 are arbitrary functions of integration, which
we will again determine by comparing the limits of Eqs. (F37)
and (F38)–Eqs. (F41) and (F42) as A → ∞. We begin by
noting that the function

h(t) =
1

t2

[
sin Bt

Bt
−

sin t
t

]
sin Ct

Ct

is bounded, smooth, and integrable, which can be shown by
performing a Taylor’s series expansion of the terms in the
square brackets near t = 0, and hence by Lemma 1,

lim
A→∞

∂I5

∂A
= 0 (F43)

and by Lemma 2,

lim
A→∞

I5 = π lim
t→0

[
sin Bt

Bt3
−

sin t

t3

]
sin Ct

Ct

= π lim
t→0

[ (
Bt

Bt3
−

(Bt)3

3!Bt3
+

(Bt)5

5!Bt3
+ · · ·

)
−

(
t

t3
−

(t)3

3!t3
+

(t)5

5!t3
+ · · ·

) ] sin Ct
t

=
π

6
(1 − B2). (F44)

Furthermore, taking the limit as A→ ∞ of Eq. (F41) yields

lim
A→∞

∂I5

∂A
= lim

A→∞
−

π

24BC
[
(A + B + C)3 + (A − B − C)3 + (−A + B − C)3 + (−A − B + C)3]

+
π

24BC
[
(A + 1 + C)3 + (A − 1 − C)3 + (−A + 1 − C)3 + (−A − 1 + C)3] + η1(B, C)

= −
π

24BC
[6A(B + C)2 − 6A(B − C)2] +

π

24C
[6A(1 + C)2 − 6A(1 − C)2] + η1(B, C)

= −
πA

8BC
[4BC] +

πA
8C

[4C] + η1(B, C) = η1(B, C), (F45)

which implies η1(B, C) ≡ 0. As A→ ∞, Eq. (F42) becomes

lim
A→∞

I5 = lim
A→∞

−
π

96BC

[
(A + B + C)4 + (A − B − C)4 − (−A + B − C)4 − (−A − B + C)4

]

+
π

96C

[
(A + 1 + C)4 + (A − 1 − C)4 − (−A + 1 − C)4 − (−A − 1 + C)4

]
+ η2(B, C)

= lim
A→∞

−
π

96BC

[
12A2(B + C)2 − 12A2(B − C)2 + 2(B + C)4 − 2(B − C)4

]

+
π

96C

[
12A2(1 + C)2 − 12A2(1 − C)2 + 2(1 + C)4 − 2(1 − C)4

]
+ η2(B, C)

= lim
A→∞

−
π

96BC

[
48A2BC + 16BC + 16BC3

]
+

π

BC

[
48A2C + 16C + 16C3

]
+ η2(B, C)

=
π

6
(1 − B2) + η2(B, C). (F46)

Comparing with Eq. (F44), we deduce that η2(B, C) ≡ 0, which gives

I5(A, B, C) = −
1

BC
Y4(A, B, C) +

1
C

Y4(A, 1, C). (F47)
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Hence,

T3(A, B, C) =
1

BC
∂

∂C
∂

∂B

[
−

1
BC

Y4(A, B, C) +
1
C

Y4(A, 1, C)
]

= −
1

BC
∂2

∂B∂C

[
Y4(A, B, C)

BC

]
. (F48)

4. Type IV integrals

The fourth type of integral can be expressed as

T4(A, B, C) =
1

ABC
∂

∂A
∂

∂B
∂

∂C
1
A

∫ ∞
−∞

sin At sin Bt sin Ct

BCt7
dt. (F49)

Using the same reasoning as we did above for the Type III integrals, while the integral in Eq. (F49) does not converge, we are able
to introduce regularization terms into the integrand of Eq. (F49) as long as they are not functions of A, B, and C simultaneously.
Thus we can write

T4(A, B, C) =
1

ABC
∂

∂A
∂

∂B
∂

∂C
1
A

∫ ∞
−∞

{
sin At sin Bt sin Ct

BCt7
−

sin At sin Bt sin t

Bt7
−

sin At sin t sin Ct

Ct7
+

sin At sin2t

t7

}
dt

=
1

ABC
∂

∂A
∂

∂B
∂

∂C
1
A

∫ ∞
−∞

sin At
t

[
sin Bt

Bt3
−

sin t

t3

] [
sin Ct

ct3
−

sin t

t3

]
dt. (F50)

Let

I7(A, B, C) =
∫ ∞
−∞

sin At
t

[
sin Bt

Bt3
−

sin t

t3

] [
sin Ct

Ct3
−

sin t

t3

]
dt, (F51)

which gives
∂I7

∂A
=

∫ ∞
−∞

cos At

[
sin Bt

Bt3
−

sin t

t3

] [
sin Ct

Ct3
−

sin t

t3

]
dt (F52)

and
∂2I7

∂A2
= −

∫ ∞
−∞

cos At

[
sin Bt

Bt3
−

sin t

t3

] [
sin Ct

Ct2
−

sin t

t2

]
dt

= −

∫ ∞
−∞

{
sin At

t

[
sin Bt

Bt3
−

sin t

t3

]
sin Ct

Ct
−

sin At
t

[
sin Bt

Bt3
−

sin t

t3

]
sin t

t

}
dt

= −I5(A, B, C) + I5(A, B, 1)

=
1

BC
Y4(A, B, C) −

1
C

Y4(A, 1, C) −
1
B

Y4(A, B, 1) + Y4(A, 1, 1). (F53)

Integrating, we find

∂I7

∂A
=

1
BC

Y5(A, B, C) −
1
C

Y5(A, 1, C) −
1
B

Y5(A, B, 1) + Y5(A, 1, 1) + η1(B, C), (F54)

I7(A, B, C) =
1

BC
Y6(A, B, C) −

1
C

Y6(A, 1, C) −
1
B

Y6(A, B, 1) + Y6(A, 1, 1) + Aη1(B, C) + η2(B, C). (F55)

As usual, to determine η1 and η2, we take limA→∞ of Eqs. (F51)–(F54). Because
[

sin Bt

Bt3
−

sin t

t3

] [
sin Ct

Ct3
−

sin t

t3

]

is Riemann integrable, Lemmas 1 and 2 apply, giving

lim
A→∞

∂I7

∂A

= lim
A→∞

∫ ∞
−∞

cos At

[
sin Bt

Bt3
−

sin t

t3

] [
sin Ct

Ct3
−

sin t

t3

]
dt = 0 (F56)

and

lim
A→∞

I7(A, B, C) = lim
A→∞

∫ ∞
−∞

sin At
t

[
sin Bt

Bt3
−

sin t

t3

] [
sin Ct

Ct3
−

sin t

t3

]
dt

= π lim
t→0

[
sin Bt

Bt3
−

sin t

t3

] [
sin Ct

Ct3
−

sin t

t3

]

=
π

36
(1 − B2)(1 − C2). (F57)
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From Eq. (F56), we also have

lim
A→∞

∂I7

∂A
= lim

A→∞

1
BC

Y5(A, B, C) −
1
C

Y5(A, 1, C) −
1
B

Y5(A, B, 1) + Y5(A, 1, 1) + η1(B, C)

= lim
A→∞

π

480BC

[
10A((B + C)4 − (B − C)4) + 20A3((B + C)2 − (B − C)2)

]

−
π

480C

[
10A((1 + C)4 − (1 − C)4) + 20A3((1 + C)2 − (1 − C)2)

]

−
π

480B

[
10A((B + 1)4 − (B − 1)4) + 20A3((B + 1)2 − (B − 1)2)

]

−
π

480

[
160A + 80A3

]
+ η1(B, C)

= lim
A→∞

π

480BC

[
10A(8B3C + 8BC3) + 80A3BC

]
−

π

480C

[
10A(8C + 8C3) + 80A3C

]

−
π

480B

[
10A(8B3 + 8B) + 20A3(80A3B)

]
−

π

480

[
160A + 80A3

]
+ η1(B, C) = η1(B, C) (F58)

implying η1 ≡ 0. Similarly, in the limit of large A, Eq. (F55) becomes

lim
A→∞

I7(A, B, C) =
1

BC
Y6(A, B, C) −

1
C

Y6(A, 1, C) −
1
B

Y6(A, B, 1) + Y6(A, 1, 1) + η2(B, C)

= lim
A→∞

π

2880BC

[
2((B + C)6 − (B − C)6) + 30A2((B + C)4 − (B − C)4)

+ 30A4((B + C)2 − (B − C)2)
]

−
π

2880C

[
2((1 + C)6 − (1 − C)6) + 30A2((1 + C)4 − (1 − C)4) + 30A4((1 + C)2 − (1 − C)2)

]

−
π

2880B

[
2((B + 1)6 − (B − 1)6) + 30A2((B + 1)4 − (B − 1)4) + 30A4((B + 1)2 − (B − 1)2)

]

−
π

2880

[
128 + 480A2 + 120A4)

]
+ η2(B, C)

=
π

36

[
B2C2 − C2 − B2 + 1

]
+ η2(B, C) =

π

36
(1 − B2)(1 − C2) + η2(B, C). (F59)

Eqs. (F59) and (F57) imply η2 = 0. Therefore,

I7(A, B, C) =
1

BC
Y6(A, B, C) −

1
C

Y6(A, 1, C) −
1
B

Y6(A, B, 1) + Y6(A, 1, 1) (F60)

and

T4(A, B, C) =
1

ABC
∂

∂A
∂

∂B
∂

∂C

[ 1
ABC

Y6(A, B, C) −
1

AC
Y6(A, 1, C) −

1
AB

Y6(A, B, 1) +
1
A

Y6(A, 1, 1)
]

=
1

ABC
∂

∂A
∂

∂B
∂

∂C
Y6(A, B, C)

ABC
. (F61)

5. Evaluation of the third virial coefficients for the present sticky-sphere mixture model

In summary, we have found

∫ ∞
−∞

sin At sin Bt sin Ct
t

dt = −Y0(A, B, C)∫ ∞
−∞

sin At sin Bt g(Ct)dt =
1
C

∂

∂C
Y2(A, B, C)

C∫ ∞
−∞

sin At g(Bt)g(Ct)tdt = −
1

BC
∂2

∂B∂C
Y4(A, B, C)

BC∫ ∞
−∞

sin At sin Bt sin Ct
t

dt =
1

ABC
∂3

∂A∂B∂C
Y6(A, B, C)ABC, (F62)
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where Yn is given above in Eq. (F12), and g(x) is given by Eq. (F5). We can therefore write Eq. (F4) as∫ ∞
0

[
sin At
2AτAt

+ g(At)

] [
sin Bt
2BτBt

+ g(Bt)

]
×

[
sin Ct
2CτC t

+ g(Ct)

]
t2dt =

1
16ABC

[
−

Y0(A, B, C)
τAτBτC

+
2

τAτB

∂

∂C
Y2(A, B, C)

C

+
2

τAτC

∂

∂B
Y2(A, C, B)

B
+

2
τBτC

∂

∂A
Y2(B, C, A)

A

−
4
τA

∂2

∂B∂C
Y4(A, B, C)

BC
−

4
τB

∂2

∂A∂C
Y4(B, A, C)

AC

−
4
τC

∂2

∂A∂B
Y4(C, A, B)

AB
+ 8

∂3

∂A∂B∂C
Y6(A, B, C)

ABC

]
. (F63)

It turns out that for the two-component system we model, all of the quantities inside the second and succeeding absolute value
signs in Eq. (F12) are negative, for any of the eventual substitutions of dij values for A, B, and C, as appropriate. Therefore, for
this system, even before differentiation Eq. (F12) can be usefully rewritten as

Yn(A, B, C) =
π

4n!
[((A + B + C))n − ((A − B − C))n − (−1)n((−A + B − C))n − (−1)n((−A − B + C))n]. (F64)

This simplifies the consideration of the needed derivatives that appear in Eq. (F63). After taking the indicated derivatives, any
of the four third virial coefficients for the two-component sticky-sphere mixture model can be evaluated by taking, for C(p)

ijk , A
= dij, B = djk and C = dik . We find

C(p)
ijk =

π2

54τijτjkτik

{
d6

ij(τij − 3)τjkτik

− 9d4
ij(τij − 2)

[
d2

ik(τik − 1)τjk + d2
jkτik(τjk − 1)

]

+ 4d3
ij(2τij − 3)

[
d3

ik(2τik − 3)τjk + d3
jkτik(2τjk − 3)

]

− 9d2
ij(τij − 1)

[
d4

ik(τik − 2)τjk − 2d2
ikd2

jk(τik − 1)(τjk − 1) + d4
jkτik(τjk − 2)

]
+ τij(dik − djk)2

[
d4

ik(τik − 3)τjk + 2d3
ikdjk(τik − 3)τjk

+ 3d2
ikd2

jk
[
τik(3 − 2τjk) + 3(τjk − 2)

]
+ 2dikd3

jkτik(τjk − 3) + d4
jkτik(τjk − 3)

]}
. (F65)

For the present model of mixtures of the γB- and α-crystallin lens proteins, in which we take τ22 = ∞, Eq. (F65) gives the
following expressions for the four third mixed virial coefficients:

C(p)
111

(πd3
11/6)

2
= 10 *

,
1 −

3
τ11
+

18

5τ2
11

−
6

5τ3
11

+
-

, (F66)

which reduces correctly to the hard-sphere value, 10, when τ11 = ∞. Note that for the γ-crystallin third virial coefficient C111

just given, clearly τ12 cannot contribute. Again for τ22 = ∞, the mixed virial coefficient C112 is given by

C(p)
112 =

π2d3
11

108

(
d3

11
(
1 −

3
τ12
+

9
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. (F67)

This reduces correctly to the corresponding, mixed hard-sphere third virial coefficient, given by76

C(p)HS
112 =

π2d3
11

108
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d3

11 + 6d2
11d22 + 15d11d2

22 + 8d3
22

)
. (F68)
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For τ22 = ∞, the coefficient C122 becomes

C(p)
122 =
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. (F69)

Finally, with τ22 = ∞, C222 takes on the appropriate hard-
sphere value,

C(p)
222

(πd3
22/6)

2
= 10. (F70)
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