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Summary

Modification of CG dinucleotides in DNA is part of epigenetic regulation of gene function in 

vertebrates and is associated with complex human disease. Bisulfite sequencing permits high 

resolution analysis of cytosine modification in mammalian genomes, however its utility is often 

limited due to substantial cost. Here, we describe an alternative epigenome profiling approach, 

named TOP-seq, which is based on covalent tagging of individual unmodified CG sites followed 

by non-homologous priming of the DNA polymerase action at these sites to directly produce 

adjoining regions for their sequencing and precise genomic mapping. Pilot TOP-seq analyses of 

bacterial and human genomes showed a better agreement of TOP-seq with published bisulfite 

sequencing maps as compared to widely-used MBD-seq and MRE-seq and permitted 

identification of long-range and gene-level differential methylation among human tissues and 

neuroblastoma cell types. Altogether, we propose an affordable single CG-resolution technique 

well-suited for large scale epigenome studies.
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Staševskij et al. propose a cost-effective robust approach for high-resolution profiling of 

mammalian epigenomes, which uses covalent tagging of individual unmodified CpG sites 

followed by non-homologous priming of the DNA polymerase action at these sites to directly 

produce adjoining regions for their sequencing and precise genomic mapping.
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Introduction

Methylation of cytosine to 5-methylcytosine (5mC) in CG dinucleotides acts as a key 

epigenetic modification affecting gene regulation and cellular differentiation in higher 

eukaryotes. Dysregulation of 5mC patterns is associated with various complex human 

diseases including cancer. The complexity of the human epigenome has further increased 

with the discovery of other modified forms of cytosine - 5-hydroxymethylcytosine (hmC), 5-

formylcytosine and 5-carboxylcytosine - demanding more elaborate analytical approaches. 

Current techniques for the determination of the modification status of CG sites can be 

divided into a) bisulfite conversion-based methods, b) restriction endonuclease-based 

methods, and c) affinity capture-based techniques (Weber et al., 2005; Maunakea et al., 

2010; Harris et al., 2010). The gold standard and most widely used method is bisulfite 

sequencing (BS), which can infer modification information of each cytosine at a single-base 

resolution. Besides its unique and obvious advantages, BS suffers from experimental 

artifacts (due to extensive DNA degradation) and obstructed genomic mapping of 

sequencing reads. Most importantly, whole genome BS sequencing (WGBS) unavoidably 

generates large amounts of data, and the majority of the reads (50–80%) provide little or no 

information about CG methylation (Ziller et al., 2013). Although the cost of sequencing and 

data analysis is on decline, it still remains prohibitively high for large scale case-control 

studies of epigenomic diseases.
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The other two groups of methods provide more affordable inroads into the methylome 

structure although at significant sacrifice in resolution and/or informativity. Methylated or 

unmethylated fraction of genomic DNA can be selectively enriched by restriction 

endonuclease cleavage (MRE-seq) (Maunakea et al., 2010), however, the target specificity of 

available enzymes confines such analysis to a small subset of the CG sites in the genome. 

Affinity-based methods (using antibodies or MBD, MeCP2 proteins) utilize the enrichment 

of modified cytosines by using antibodies or modification-specific binding proteins, which 

often underrepresent regions of lower modification densities (Weber et al., 2005). Typically, 

these strategies include end-sequencing of the enriched fragments yielding rather long 

stretches of genomic DNA corresponding to a detected signal (low resolution, defined by the 

fragment length). During the past few years, chemo-enzymatic tagging of modification sites 

has been adapted for in vitro studies of hmC and 5mC residues, permitting incorporation of 

reactive azide, keto or primary amine groups followed by chemo-selective conjugation of 

biotin (Song et al., 2011; Zhang et al., 2013). Similar profiling of the unmodified fraction of 

the genome, so-called DNA unmethylome, has been achieved based on selective covalent 

derivatization of unmodified CG sites (Kriukiene et al., 2013). However, despite a higher 

precision and added versatility as compared with the affinity-based techniques, none of the 

enrichment-based approaches can break the resolution limit of 200–500 bp.

Here we propose an alternative concept in analysis of DNA modification patterns that 

bridges the existing economy-versus-resolution gap by combining selective covalent tagging 

and genomic sequencing primed at the epigenetic modification sites. The validity of this 

concept (proof of principle) is demonstrated by developing a high resolution technique for 

whole-genome analysis of uCG sites. Pilot studies of model bacterial and human genomic 

DNA samples using the designed technique (named unmodified CG-specific Tethered-

Oligonucleotide-Primed sequencing, uCG-TOP-seq) showed that the technology offers high 

resolution and the capacity to uncover unique epigenetic features currently approachable 

only by the gold standard WGBS. Unlike WGBS, it avoids sequencing of the entire genome, 

thereby providing a good alternative for cost-effective genome-wide profiling of DNA 

methylation patterns.

Design

The resolution limits of enrichment-based genome-wide profiling strategies could be 

potentially increased to a single nucleotide, if the modification status of individual target 

sites in a fragment could be identified. We, therefore, went on to explore the possibility of 

whether a chemical tag attached to a DNA epigenetic modification site could be devised to 

prime the DNA polymerase action. We took advantage of our previously developed mTAG-

seq technique (Kriukiene et al., 2013), which uses an engineered version of the M.SssI 

methyltransferase and a synthetic analog of the AdoMet cofactor to tag the unmodified and 

hemimethylated CG sites (excluding all modified CG sites) with a reactive azide group (Fig. 

1A). We term here the unmodified CG sites as uCGs to distinguish this epigenetic state from 

genetic CG dinucleotides, which may generally include any epigenetic form of the target 

cytosine. Analysis of the uCGs, i.e. a smaller fraction of the CG dinucleotides (65–80% of 

CG sites in the human genome are methylated), may be more sensitive for detecting subtle 

changes in DNA modification profiles as compared to analysis of methylated CG sites. We 
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chemically tethered an alkyne-bearing DNA oligonucleotide to direct binding of a DNA 

polymerase at a physical proximity to the target site and thus facilitate the template-

dependent polymerase action from the 3’ end of the tethered DNA duplex in the absence of 

nucleotide complementarity between the primer and the template DNA (Fig. 1B). Initial 

experiments involving model DNA fragments (Fig. S1A) showed that internal priming can 

be achieved from a duplex oligonucleotide that is chemically tethered at one of its 5’-

terminal nucleotides to a CG site. The detailed mechanism of this non-homologous 

proximity-driven priming has not yet been investigated, but apparently involves strand 

invasion and template switching events. Such tethered-oligonucleotide-primed (TOP) 

template-dependent polymerase action produces nested DNA strands that sequentially 

include the CG site and its adjacent genomic region. We undertook the development a full 

analytical procedure for whole-genome TOP-seq analysis of unmodified CG sites as 

outlined in Fig. 1C. We optimized the TOP-seq reaction conditions in our model DNA 

system and adapted it for Ion Torrent sequencing (Fig. S1).

Results

uCG-TOP-seq analysis of a model bacterial genome

We first examined our developed procedure on a megabase scale genome using a custom 

Staphylococcus aureus strain that carried no CG-specific MTase. Highly divergent 

Staphylococcal genomes (~3 Mb) typically contain >70,000 unmodified CG sites; ~1% of 

these sites can be hemimethylated due to endogenous methylation of GATC sites. To assure 

high quality read mapping, we de novo assembled the genomic sequence of the custom 

strain and identified 68,654 CG sites in 321 contigs covering a total of 2,726,458 bp. We 

applied the TOP-seq procedure on duplicate samples of gDNA followed by next generation 

sequencing on an Ion Proton sequencer. Read processing and analysis was conducted using 

our custom pipeline (see STAR Methods). In both replicates, 94% of reads from both strands 

featured a CG dinucleotide, immediately following the sequence of the priming 

oligonucleotide (Fig. 2A). For all subsequent data processing routines, we set a uCG read 

start window to ±3 nt of the target cytosine. With this read start window, 93% and 95% of all 

CGs were identified with a mean sequencing depth of 10x and 20x, respectively (Fig. 2B). 

The bacterial data analysis showed a high degree of reproducibility and 95% of common 

uCG calls between technical replicates (Pearson correlation 0.8 and 0.9 at 10x and 20x mean 

coverage, respectively; Jaccard 0.95 and 0.97 at 10x and 20x mean coverage, respectively 

Fig. 2C).

We next performed a direct assessment of how the TOP-seq read counts are affected by the 

proximity of genomic CG sites. We thus plotted the difference in coverage between closest 

neighboring CGs as a function of their separation and found that the TOP-seq signal was 

largely independent of the spatial distribution of the targets sites (Fig 2D). To further explore 

the quantitative aspects of uCG-TOP-seq we prepared a series of S.aureus DNA samples 

partially methylated at GCGC sites (3048 occurrences in the genome) or CCGG sites (1222 

occurrences) by mixing at defined ratios the genomic DNAs premethylated in vitro with 

M.HhaI or with M.HpaII MTases, respectively. The TOP-seq libraries for duplicate samples 

of each partially methylated DNA were produced and sequenced. As expected, an inverse 
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correlation between the read number and the extent of methylation at the GCGC and CCGG 

sites was observed (Fig. 2E). Altogether, our megabase genome experiments demonstrated a 

solid reproducibility of the TOP-seq approach even at the single-CG resolution and its high 

responsiveness to differential methylation levels in model DNA.

TOP-seq analysis of the human genome

Having confirmed the capacity of TOP-seq on a smaller unmethylated genome, we went on 

to examine its utility to discern the modification profiles of human DNA. We chose two 

types of human cells: fetal lung fibroblasts IMR90 and the prefrontal brain cortex (referred 

further on as “Brain”). This selection enabled direct comparison of TOP-seq data with 

published methylome profiling methods: WGBS; MBD-seq; and MRE-seq (Lister et al., 

2009; Ziller et al., 2013; Wen et al., 2014; Bert et al, 2013; Maunakea et al., 2010). 

Additionally, we were interested to see if TOP-seq is a suitable tool for the identification of 

subtle tissue-specific differences associated with human disease. Therefore, we performed 

the TOP-seq analysis of two clonal neuroblastoma (NB) cells, N-type LA1-55n and S-type 

LA1-5s, both derived from LA-N-1 NB cell line (Ciccarone et al., 1989).

Since uCG-TOP-seq generates reads only from unmethylated CG sites, which constitute a 

smaller fraction of the human genome, we combined TOP-seq with the medium capacity Ion 

Proton sequencing, which routinely generates 70–90 M of reads per PI chip. DNA samples 

were split into technical replicates at two different steps of the procedure (Fig. 1C): at Step 4 

generating Brain-1 R1, R2 and IMR90-1 R1, R2 libraries, and at Step 1, generating Brain-2 

R1, R2 and IMR90-2 R1 libraries. We obtained on average 87 M raw single-end reads for 

two technical replicates of a TOP-seq library sequenced on one PI chip. Approximately 18 

M reads were obtained for each replicate after mapping and ~96% of those reads started at a 

CG site immediately following the sequence of the priming oligonucleotide. For basic 

characteristics see Table S1 and Fig. S2A. On average, 21% of all CGs were identified by at 

least 1 sequencing read on either strand starting at 0-3 nt distance to a CG dinucleotide. 

Combining Brain-1 R1/R2 and IMR90-1 R1/R2 technical replicates together (so-called “low 

coverage” libraries, ~9.4 and ~9 M reads, respectively) increased the fraction of identified 

CGs to 33.5% in Brain and 31.9% in IMR90. This amounted to 4.1 and 3.9 mean coverage 

(Table S1) distributed uniformly across all autosomes (Fig. S2B).

We also subjected the IMR90-1 R1/R2 libraries to deeper sequencing generating ~100 M 

reads per technical replicate (so-called “high coverage” IMR90-3 and IMR90-4 libraries, 

Table S1). This increased the mean coverage to ~9x per identified uCG, and led to the 

identification of 34-35% of total genomic CGs per library (46% of CGs and ~14x coverage 

in the combined IMR90-3/4 dataset). The number of identified sites monotonically grows 

with the total number of reads (closely resembling a logarithmic function) (Fig. S2C), 

suggesting that at increasing sequencing depths, the uCG calling progressively expands from 

low- to moderate- and even to high-methylation CG sites. ~50% of CGs were identified as 

uCGs in 5’UTR regions as well as in 2 kb upstream regions from transcription start sites. 

These were followed by intergenic and coding sequence (CDS) regions (~30% each) for 

IMR90 and by CDS, downstream sequences and 3’UTRs for Brain (Fig. 3A). TOP-seq 

signal was detectable in 96% of 26,641 autosomal CGIs. As expected, promoter CGIs were 
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the most enriched in uCGs (50-100% CGs identified in 93-96% of CGIs) indicating their 

highly unmethylated state (Fig. S2D). The variation of identified uCGs was higher among 

intragenic and intergenic CGIs attesting their diversity and on average higher methylation 

levels. These findings showed that TOP-seq data are generally consistent with established 

genome methylation patterns.

For a more detailed assessment of the technique, we evaluated the correlations of technical 

replicates sequenced to different depths. The Pearson correlation did not exceed r=0.53 for 

the low coverage IMR90 data (r=0.65 for Brain low coverage replicates) and increased to 

r=0.68 for the higher coverage. To improve the quantification of DNA methylation, we 

performed a computational adjustment of the TOP-seq coverage data to generate a high-

resolution prediction of DNA methylation levels of 26 M autosomal CGs. Using 

Epanechnikov kernel we computed weighted density estimates (Parzen, 1962) from the 

coverage signal and divided them by unweighted CG-density to obtain the TOP-seq 

unmethylome density (u-density) signal. Kernel bandwidth parameters were determined by 

scanning the TOP-seq u-density correlations at a wide range of kernel windows with the 

corresponding public IMR90 WGBS signal (Lister et al., 2009) in chromosome 1 (Fig. 3B). 

This adjustment enhanced Pearson correlation of the low coverage replicates to r=0.8 for 

IMR90 and r=0.89 for Brain. Correlation of the high coverage IMR90 replicates increased to 

r=0.9 (Fig. 3C). As expected, the TOP-seq u-density performed equally well across regions 

of different CG density (Fig. S2E). Finally, hierarchical clustering of samples using TOP-seq 

densities further confirmed a good agreement among technical replicates and marked 

differences across tissues and cell types (Fig. 3D).

Comparison of TOP-seq with other epigenome profiling approaches

Cross-platform correlation of the low coverage and high coverage TOP-seq u-density 

datasets with IMR90 WGBS data was |r|=0.51 and |r|=0.57 respectively. For comparison, we 

found the correlation of IMR90 WGBS with published MRE-seq and MBD-seq (Bert et al, 

2013) to be in the order of r=0.18 and r=0.3, respectively. Weak correlations between WGBS 

and the enrichment-based methods have previously been noted by us and others (Kriukiene 

et al., 2013; Zhang et al., 2013), which may in part derive from non-linear relationship 

between the data produced with different methods (Stevens et al., 2013). In a further 

adjustment step, we sought to account for possible sequence-specific variations that may 

influence the TOP-seq signal. We used a small fraction of the WGBS dataset (chromosome 

20) to train an exponential decay model containing additional genomic feature-specific 

covariates which was then used to convert the TOP-seq u-density into so-called CG 

methylation estimates (m-estimates, methylation values presented in the scale from 0–100). 

Although the second enhancement step had a minor effect on correlation among the TOP-

seq technical replicates (Fig. 3E), it improved the absolute correlation with the IMR90 

WGBS (Lister et al., 2009; chromosome 20 excluded) to r=0.63 for low coverage and to 

r=0.68 for the combined high coverage IMR90 dataset (Table S1; Fig. 3F and Fig. S3A).

Dissection of the whole genome profiles across major genomic features showed a good 

agreement of the TOP-seq m-estimates and WGBS in CGIs, enhancers, 3’UTRs, CDS, 

introns and some classes of repeats (Fig. 3G). Importantly, TOP-seq outperformed MBD-seq 
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across the majority of elements spanning a wide range of methylation levels. TOP-seq and 

WGBS agreed that genic enhancers EnhG1 are hypermethylated relative to active enhancers 

EnhA1 (Fig. S3B). Correlation of the methods at these enhancer regions was r=0.6 for 

EnhG1 and r=0.65 for EnhA1 (Fig. S3B). In contrast, correlation of MBD-seq with WGBS 

at both types of enhancers in our hands was considerably lower (G1 r=0.22, A1 r=0.38). In 

CGIs, the precision of TOP-seq was comparable with MBD-seq and superior to MRE-seq 

(r=0.74, r=0.76, r=0.17, respectively) (Fig. S3C). Correlation in repeat elements and in 

transcribed regions Tx, heterochromatin Het and TssA and TssBiv transcription start sites 

was lower for all methods concerned (Fig. 3G and Fig. S3D).

Conversion of our experimental u-density data to the m-estimate format was also successful 

(led to improved correlation with WGBS, r=0.69) using another independently produced 

IMR90 WGBS map (Ziller et al., 2013) (Fig. S3A to C). However, a similar conversion of 

the Brain u-density data based on the published brain WGBS map (Wen et al., 2014) did not 

lead to satisfactory m-estimate maps; that was quite understandable given poor correlation of 

the u-density and the WGBS dataset (r~0.3), which we tend to attribute to biological 

diversity of samples obtained from a complex prefrontal brain area in independent 

experiments. The application of the IMR90-derived model onto the Brain u-density signal 

did not improve the results either. Altogether, the presented examples suggest that this 

optional adjustment step is only feasible when a high quality reference WGBS map derived 

from a related tissue is available. Accordingly, the TOP-seq u-density profiles were used in 

all further comparative tissue analyses due to lack of a suitable brain WGBS map.

As the ultimate validation of the predictive power of the method, we evaluated how top 10% 

of unmethylated 1 kb regions in IMR90 cells as well as in Brain identified by TOP-seq, 

MBD-seq and MRE-seq overlap with top 10% of unmethylated regions derived by WGBS. 

In IMR90, we observed a very strong association between the TOP-seq u-density and 

WGBS (Fisher test OR=7; p<2×10−22 and OR=8.1; p<2×10−22 for low and high TOP-seq 

sequencing depths, respectively). MBD-seq showed a weaker association (OR=3.1; p < 

2×10−22) whereas MRE-seq showed significant dissociation (OR=0.2; p < 2×10−22). 

Differences were not as marked in Brain where TOP-seq scored best (OR=11.1; p < 

2×10−22) followed by MRE-seq (OR=10.3; p < 2×10−22). Finally, we used pyrosequencing 

to examine 20 TOP-seq derived regions representing diverse CG density and methylation 

levels in CGIs and enhancers (Table S2; methylation levels were chosen according to WGBS 

data of IMR90 cells). TOP-seq showed a good agreement with the pyrosequencing data (|r|

=0.82) (Fig. 3H and Fig. S3E), only slightly behind the gold standard WGBS (r=0.95) (Fig. 

S3E).

We also compared the TOP-seq u-density profiles with WGBS across different gene-

associated elements (Fig. 4A). As expected, the TOP-seq and WGBS profiles of the 

corresponding tissues showed inverse patterns throughout the analyzed regions. We went 

further to determine the TOP-seq u-density in and around segments representing a range of 

chromatin states (Kundaje et al., 2015). Among the active promoter states, active TSS, 

bivalent/poised TSS promoters and flanking TSS upstream segments showed higher TOP-

seq u-density signals indicating their lower methylation levels (Fig. 4B). Subtle methylation 

differences can further be inferred based on the distribution of the TOP-seq signal in various 
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chromatin segments (Fig. 4C and Fig. S4), which mirrors closely the methylation profiles 

derived from the WGBS data.

TOP-seq profiling of human neuroblastoma-specific cell types

Neuroblastoma is a malignancy of the developing sympathetic nervous system that is the 

most common extracranial solid cancer in childhood. A characteristic feature of NB tumors 

is a varied presence of several distinct cell types (Shimada et al., 1984; Walton et al., 2004). 

The most abundant are neuroblastic (N-type) cells, which are tumorigenic and have neuronal 

features. In contrast, non-tumorigenic, (S-type), cells possess marker proteins identifying 

them as neural crest-derived cells with features of glial/melanocytes/smooth muscle 

precursor cells. A third cell type, I-type, has been shown to be a stem-like cell type which 

can differentiate into either N or S cells and is highly tumorigenic. No comprehensive 

genome-wide methylation data is available for different NB cell types so far. We focused on 

the N and S type cells as a case-control example to compare their genome-wide u-density 

maps and to identify differentially methylated regions.

During cancer development and progression, two concurrent epigenetic abnormalities are 

commonly observed: global hypomethylation and localized hypermethylation of CG islands. 

We first looked at the relative quantities of modified cytosines in LA1-55n and LA1-5s DNA 

(referred to as N and S DNA, respectively) using a quantitative HPLC/MS assay. We found 

that the level of 5mC in N-type DNA (3.57±0.03%) was slightly lower than in S-type DNA 

(3.89±0.003%) (Fig. S5A). Indeed, both NB tissues were hypomethylated in comparison to 

Brain and IMR90 (mdC = 5.04±0.02% and 4.5 ±0.01% in Brain and IMR90, respectively).

Whole-genome TOP-seq analysis of N and S DNA comprised three technical replicates 

each, resulting in ~48 M of mapped reads in total for each cell type (see Table S1). Called 

uCGs totalled 31.8% and 38.7% of all CGs in the combined S and N datasets, respectively, 

consistent with a less methylated epigenotype of the N-type cells (Fig. S5A), and showed 

more pronounced chromosomal variations as compared to Brain and IMR90 (Fig. S2B). The 

highest TOP-seq signal was found in chromosome 2, and was particularly strongly enriched 

in a 1.6 Mb region encompassing the MYCN gene (chr2: 15026730-16640120) in both cell 

types (Fig. S5B). MYCN amplification is a well known aberration in the progenitor LA-N-1 

cell line (Spengler et al., 1997), which can give rise to false DMR calls using TOP-seq or 

other read count-based profiling approaches.

We compared TOP-seq u-density profiles in various genomic elements. CGIs displayed 

lower TOP-seq u-density, i.e. hypermethylation, in the N cells as compared to the S-type 

(Fig. 5A). This was further confirmed by TOP-seq u-density profiles around CGIs in all the 

investigated tissues (Fig. 5B) and agrees well with the methylation studies reporting that the 

methylation of multiple CGIs is a hallmark of NB with poor prognosis (Abe et al., 2005). 

When moving into more distant regions, the u-density increases in the N-type cells 

consistent with their global hypomethylation relative to S-type (Fig. 5B).

Repeat elements that comprise >40% of the human genome are heavily methylated in 

somatic tissues (Lister et al., 2009; Sue et at., 2012), but hypomethylation of LINE, Alu, 

LTR and Satellite repeats has been shown to accompany tumor progression in cancers and is 
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associated with tumor aggressiveness (Rauch et al., 2008). Analysis of the TOP-seq u-

density distribution across the most abundant repeat families confirmed WGBS data and 

revealed distinct TOP-seq u-density in Brain and IMR90 (Fig. S5C), indicating relative 

hypomethylation of the repeat elements in IMR90 cells as compared to the brain cortex. 

Importantly, we detected hypomethylation of the most abundant repeat families in NB (and 

IMR90) cells as compared to Brain, with the highest unmethylation level of Alu repeats in 

the tumorigenic N cells (Fig. S5C). From this we can conclude that TOP-seq can efficiently 

reveal subtle methylation differences among hypermethylated genomic elements, such as 

repetitive sequences.

Differential methylation between NB cell types

We analyzed the TOP-seq data to identify statistically significant methylation differences 

between the N- and S-type cells relative to the Brain and IMR90 reference across CG islands 

(CGI-DMR) (Fig. S6A; Table S3). To assess the reliability of the differential TOP-seq u-

density values, we performed pyrosequencing validation of the methylation levels of a series 

of DMRs detected in the N- and S-type NB cells (see Table S4; also Table S2). The selected 

examples included many subtle and strong DMRs detected between cancerous and IMR90 

cells. Pyrosequencing confirmed the methylation status of 10/10 and 8/10 of selected regions 

(90% total) in the S- and N-samples and showed a good agreement of the corresponding 

differential methylation values (|r|=0.75 and 0.79) (Fig. 5C). Some uncertainty in the 

validation of DMRs may have come from potential copy number variations (CNV), which 

are generally abundant in NB tissues. Altogether, the pyrosequencing experiments confirmed 

a high predictive power of the method for detection of cell type-specific differential 

methylation related to human disease.

Given that NB is a neuroendocrine tumor arising from neural crest cells we focused our 

analysis on promoter and intragenic CGI-DMRs identified between N, S and the Brain 

reference (Fig. S6A), and assigned them to their host genes (Table S3). As shown above 

(Fig. 5A and B), N-type cells demonstrated global hypermethylation at CGIs. Accordingly, 

we identified fewer hypomethylated CGIs in the promoter and intragenic regions of N-type 

than in S-type cells, while the number of intergenic CGI-DMRs was comparable for both 

cell types (Fig. S6A).

We performed functional annotation analysis of the genes with the identified CGI-DMRs 

first focusing on promoter CGI characterization. Gene Ontology (GO) term enrichment 

analysis for the sets of S/B-hypoM and N/B-hypoM indicated a significant enrichment for 

components of intracellular organelle lumen and cytoskeleton (Table S5). HyperM promoter 

CGIs for both N and S cells were significantly enriched in groups of homeobox-domain 

containing proteins, glycoproteins, signal peptides, and biological processes covering neuron 

differentiation, development and axonogenesis (Table S5). This is in line with the nature of 

this developmental tumor, which is associated with the impairment in maturation of the 

neuronal phenotype. Intriguingly, analysis of the N/B-hyperM CGIs identified 

hypermethylation of genes involved in neural crest development and migration, which are 

absent in the S/B-hyperM CGI-DMRs. We then tested whether the detected methylation 

events matched any group of genes that have been shown to be silenced by aberrant 
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methylation in NB, e.g. CCND1/CCND2, RB1, RASSF1, ZMYND10, HIST1H3C, 

HOXD3, PCDHB cluster, etc (Caren et al., 2011; Decock et al., 2012; Yanez et al., 2015). 

Remarkably, hypermethylation of the promoter and/or intragenic CGIs was confirmed in all 

of the investigated NB marker genes in both NB cell types (genome-browser view of 

RASSF1 and ZMYND10 are shown in Fig. 5D), as opposed to the IMR90/Brain pair (Table 

S6). Besides the well-described NB marker genes, we identified promoter CGI 

hypermethylation in a number of gene groups involved in development, neural functions and 

in TNF-receptor genes (TNFRSF10B; TNFRSF10D; TNFRSF11A; TNFRSF11B; 

TNFRSF18, TNFRSF8 etc) (Table S3 and Fig. S6B). These include the transcription factor 

clusters HoxD and HoxA (methylation of HoxA genes was described in breast cancer 

(Novak et al., 2006)), the POU class transcription factors involved in neuronal differentiation 

(POU2F2 was previously described as methylated in NB tumors and cell lines (Caren et al., 

2011)), and the protocadherin cluster PCDHG. In NB, epigenetic marks of repression have 

been described for the PCDHB and PCDHA clusters (Abe et al., 2005), whereas no 

information is so far available for PCDHG. Beside detected hypermethylation of the 

HIST1H3C gene in both N- and S-type cells (Table S3 and Table S6), we found promoter 

CGI methylation in a large cluster of all four types of histone genes (chr 6:cluster 1; 22 

genes, Table S3). A half of them were significantly hypermethylated in the N-cells relative 

to S-type cells, pointing at possible N-cell-specific alterations in DNA packaging and 

chromatin structure. Among the DMRs selected for pyrosequencing we validated three 

strong hyperM-CGI DMRs: promoter CGI of NB marker genes RASSF1 and ZMYND10 
and one de novo identified promoter CGI residing in the TNFRSF8 gene were 

hypermethylated in both N- and S-type cells in respect to the normal tissues (Fig. 5C, D and 

E; Table S4).

It has been reported that tissue- and cell type-specific methylation is present in a small 

fraction of CGI promoters, whereas a far greater proportion occurs across gene bodies which 

include potential alternative CGI promoters (Maunakea et al., 2010). Importantly, functional 

annotation analysis of the intragenic CGI-DMRs of the N and S cells (with respect to Brain 

and each other) revealed substantial differences between the NB cell types. In contrast to the 

S/B-hypoM (and S/N-hypoM) comparisons, for N/B-hypoM (and N/S-hypoM) CGI-DMRs, 

we identified significantly enriched terms related to glycoproteins, extracellular matrix 

structure, collagens, EGF-like domain proteins, which included many growth factors, 

developmental and receptor proteins. Comparison of the intragenic N/B-hyperM and S/B-

hyperM CGI-DMRs found a strong overlap in GO terms associated with sequence-specific 

DNA binding proteins, neuron differentiation/development and cell adhesion (Table S5). 

However, N-specific hypermethylated CGIs with respect to S (N/S-hyperM) fell into large 

gene clusters involved in neuron differentiation and development, cell-cell signaling, 

synaptic transmissions and neurological system process, pointing at potential 

downregulation of these genes as compared to the non-tumorigenic S-type cells (Table S5).

Long-range hypomethylation in neuroblastoma cells

To assess the power of TOP-seq to discern large-scale methylation patterns we investigated 

long hypomethylated regions (0.1–1 Mb), termed PMDs, or partially methylated domains. 

PMDs have been detected in IMR90 cells and some cancer lines and tumors (Lister et al., 
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2009; Berman et al., 2012). A gene silencing role has been suggested for PMDs in IMR90 

cells. Moreover, a striking correspondence has been observed between PMDs of IMR90 and 

nuclear-lamina–associated domains (LADs) (Guelen et al., 2008), which are directly 

involved in gene repression and usually range from 80 kb to 30 Mb in size (Berman et al., 

2012). Besides the presence of PMDs and coincident LADs in the immortalized cell types 

such as IMR90, PMDs detected in colon tumors also strongly coincided with LAD 

boundaries (Berman et al., 2012). Since dynamic association with the nuclear lamina has 

been implicated as a key mechanism in the developmental regulation of long-range gene 

silencing that can be perturbed in cancer cells, we sought to identify PMDs and investigate 

their relationship with nuclear LADs in the NB cells. The ability of TOP-seq to detect PMDs 

was initially tested by analysis of a 15 Mb region containing several LADs (data of TIG3 

embryonic fibroblasts, (Guelen et al., 2008)) in IMR90 and Brain DNA (Fig. 6A). The u-

density profiles contained scattered peaks originating from hypomethylated CGIs, however, 

the remaining u-density and differential u-density clearly showed IMR90-specific 

hypomethylation perfectly matching the LAD boundaries (Fig. 6A). We removed CGIs and 

their flanking 5 kb regions and calculated mean TOP-seq u-density across a composite LAD 

in our studied tissues (Fig. 6B). The CGI-devoid analysis showed strong hypomethylation of 

the LAD regions as compared to inter-LAD regions in the IMR90 cells, while no 

comparable changes in the TOP-seq u-density were detected in the brain cortex DNA. The 

observed methylation differences were mirrored by BS-seq data further confirming that 

LADs (and likely PMDs) are absent in the cells of the adult brain cortex (Fig. 6B). Similar 

analysis of NB cells revealed the presence of LADs in both of these tissues. This first 

genome-wide assessment of DNA methylation across LADs and their boundaries in NB-

specific cells indicates that large regions of DNA hypomethylation may be characteristic to 

developing cells of neural crest origin, including the non-tumorigenic S-type cells and 

tumorigenic neuroblasts.

Common features of the chromatin architecture derived by correlation of the TOP-seq u-

density (CGI signal removed) with the lamin B1 signal of the TIG3 embryonic fibroblasts 

were clearly apparent in the N-type, S-type and IMR90 cells but not in the Brain. Strikingly, 

on average across chromosomes, the correlations of the IMR90 and S-type cells with lamin 

B1 were higher than those of the N cells (Fig. 6C). Taken together, these observations 

suggest that an interplay between the DNA methylation and higher-order chromatin 

organization is a widespread mechanism of epigenetic regulation, which appears to be 

impaired in the tumorigenic N-type cells.

Discussion

We demonstrate here that certain DNA polymerases can be primed from a covalently 

tethered oligonucleotide with no required sequence complementarity between the tethered 

primer and the template DNA, and that such priming can occur with high fidelity with 

respect to the tagged site (patent no US9347093B2). This general analytical technique 

generates asymmetric target site-nested amplicons permitting their unidirectional sequencing 

and precise mapping in a genome. Owing to our previously developed CG-specific chemo-

enzymatic labeling of DNA (Kriukiene et al., 2013), its first implementation fell on the 

unmodified CG sites, however, other known and yet unknown tagging chemistries could be 
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similarly exploited. To this end, our preliminary experiments indicate that the M.SssI-

directed tagging of hmCG sites with thiols compounds (Liutkeviciute et al., 2011) is well 

compatible with the described strategy. The TOP-seq approach is also flexible with respect 

to selection of downstream sequencing platforms (Ion Torrent, Illumina), and can be 

configured for whole-genome random fragment profiling, as demonstrated in this work, or 

for targeted multiplex analysis of selected genomic loci (forked end-adapters to be replaced 

with a set of locus-specific primers, see Fig. 1C).

We also demonstrate a successful application of the developed TOP-seq technique for high 

resolution whole genome profiling of unmodified CG sites in human DNA. The gold 

standard WGBS can directly infer the modification levels of each C nucleotide from 

experimental data. However, confident estimation of the methylation levels is only 

achievable at sequencing depths of >10x (Harris et al., 2010) or even 100x (Libertini et al., 

2016). While the sequencing costs are on decline and the number of complete high 

resolution human DNA methylome maps is growing, yet just a few such maps are publicly 

available, and their need keeps outpacing their production due to prohibitive costs for most 

laboratories. Many more lower-cost DNA methylomes have been generated across a variety 

of biological and disease states using sparse sampling (MRE-seq or Infinium arrays) or 

enrichment-based (MBD-seq or MeDIP-seq) analytical methods. The latter group lack single 

CG resolution and typically calculate enrichment scores that reflect regional (200–400 bp) 

DNA methylation levels. In contrast, a TOP-seq u-density (or m-estimate) value for each CG 

is calculated from a coverage reading of this CG site taking also into account adjacent data 

points within the kernel window. Thus, each CG in the TOP-seq profile receives an 

individual experiment-derived value, which can be interpreted separately or combined into a 

window-resolution profile. Therefore, no other method provides a combination of single CG 

resolution, genome-wide coverage, and a cost that is affordable for a typical laboratory, 

particularly when many samples are assayed.

It has been suggested (Stevens et al., 2013) that MBD-seq and MRE-seq libraries of 30–50 

M mappable reads approach saturation for the method-targeting CGs, and that such coverage 

is sufficient for general whole-genome profiling. Similarly, TOP-seq libraries of 30 M of 

mappable reads and 4x mean CG coverage (Low coverage dataset, Table S1) approach 

saturation (Fig. S2C), and show both good consistency and agreement with WGBS maps 

(1.18 billion raw reads and ~28x coverage) (Fig. 3 and Fig. S3). Therefore, low coverage (2–

4x) TOP-seq analysis could be applied when the number of samples to be analyzed is 

important. The number of sequencing reads that gives a qualitatively comparable map by our 

assay is at least an order of magnitude lower than is required for a WGBS methylome 

(Harris et al., 2010). Owing to the high informativity of the TOP-seq reads (>90%) and 

simplicity of data processing, our method bridges this economy-versus-resolution gap.

The presented data demonstrate a higher precision of the TOP-seq technique as compared to 

the affinity-based profiling approaches, or MRE-seq both on the whole genome scale and 

across most of the individual genomic elements (Fig. 3F, 3G and Fig. S3). To this end, 

inferring accurate methylation levels in CG-poor regions is thought to be problematic using 

MeDIP-seq or MBD-seq (Harris et al., 2010). Owing to robust covalent tagging, TOP-seq 

can efficiently produce sequencing reads from uCG sites residing in regions of diverse CG 
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or methylation densities (Fig. S2E). Altogether, our results highlight the capacity of the 

TOP-seq technique to detect both local methylation changes at relatively short genomic 

elements, such as CGIs, and higher-order chromatin organization in a single assay. The 

presented results also reinforce the notion that the cytosine modification states at the 

genomic scale can be revealed by interrogating the unmethylated fraction of CG 

dinucleotides, which interact with a multitude of regulatory elements of the intricate human 

epigenome. The presented concepts and tools thus show the potential for tremendously 

expanding our capabilities in manipulating and harnessing genomic information for a variety 

of useful applications.

Limitations

In contrast to BS-based methods, TOP-seq cannot directly determine the absolute 

methylation levels, but can infer u-density or m-estimate profiles from libraries of uCG-

derived reads. Akin to other read-count based epigenome profiling approaches, it is sensitive 

to CNVs, and therefore, de novo discovered DMRs should be verified to fall outside genetic 

aberrations or validated by an independent method such as clonal bisulfite sequencing. 

Generally, it is common for cancer-specific and germline-transmitted CNVs to extend over 

megabase distances (Beroukhim et al, 2010). Therefore, the length of DMRs should be 

considered when analyzing genetically diverse tissues such as cancers.

STAR METHODS

KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Request should be directed and will be fulfilled by Lead Contact S.K. 

(saulius.klimasauskas@bti.vu.lt.)

METHOD DETAILS

Genomic DNA

DNA from post mortem human brain (the prefrontal brain cortex, Brodmann area 10) of 50-

year old healthy men was kindly provided by A. Petronis (CAMH, Toronto). Genomic DNA 

of human fetal lung fibroblast IMR90 and neuroblastoma specific LA1-55n and LA1-5s cell 

lines were obtained from the European Collection of Cell Cultures (ECACC, UK). Genomic 

DNA of Staphylococcus aureus was kindly donated by A. Lubys (Thermo Fisher Scientific 

Baltics, Vilnius).

Preparation of TOP-seq genomic libraries

Genomic DNA was sonicated on a Bioruptor UCD-200 instrument (Diagenode) in EB buffer 

(10 mM Tris-HCl (pH 8.5) to yield fragments with a peak size of 150-200 bp.

Step 1—For mTAG labeling, 50-500 ng of gDNA was incubated with eM.SssI (0.5-1 μM) 

in TNB buffer (10 mM Tris-HCl (pH7.4), 50 mM NaCl, 0.1 mg/ml BSA) supplemented with 
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200 μM Ado-6-azide cofactor (Kriukienė et al., 2013; Masevicius et al., 2016) for 1 hour at 

30 °C followed by Proteinase K treatment (0.2 mg/ml) for 30 min at 55°C and column 

purification (GeneJet PCR Purification kit, Thermo Scientific (TS)).

Step 2—Azide-tagged DNA was end-filled using a DNA End Repair Kit (TS) according to 

vendor's recommendations and DNA was purified using the GeneJet Purification Kit. A 3’-

dA mononucleotide extension was added to end-repaired DNA by incubating with Klenow 

exo- polymerase in Klenow Buffer (TS) in the presence of 0.5 mM dATP at 37 °C for 45 

min, enzyme inactivated at 75 °C for 15 min followed by purification through GeneJet 

columns. Partially complementary adapters A1/A2 (4.5 μM) (produced by annealing of 

partially complementary 32/33 nt oligonucleotides A1/A2, A1 5' 

PGATTGGAAGAGTGGTTCAGCAGGAATGCTGAG and A2 5' 

ACACTCTTTCCCTACATGACACTCTTCCAATCT) were ligated by incubating the DNA 

with 15 u of T4 DNA Ligase (TS) in Ligase buffer at 22 °C overnight in a total volume of 30 

μl, followed by thermal inactivation at 65 °C for 10 min and column purification (DNA 

Clean&Concentrator-5, Zymo Research).

Step 3—DNA eluted in 20 ul of Elution Buffer was supplemented with 10 μM alkyne DNA 

oligonucleotide (TO, 5’-

T(alkyneU)TTATATATTTATTGGAGACTGACTACCAGATGTAACA, Base-click), 3.3 mM 

of CuBr:TBTA mixture (Sigma) in 60-65% of DMSO, incubated for 2.5 or 6 hours at 45 °C 

and subsequently diluted to <1% DMSO before purification through a Zymo 

Clean&Concentrator-25 column.

Step 4—A 50 μl reaction containing 5 ng of TO-DNA, 0.5 μM of a complementary priming 

strand (EP; 5‘-TGTTACATCTGGTAGTCAGTCTCCAATAAATATAT, with custom LNA 

modifications (Exiqon)) and 5 u Pfu polymerase (TS) in Pfu buffer with 0.2 mM dNTP was 

incubated at the following cycling conditions: 1 cycle at 95 °C 1 min, 65 °C 1 min, 72 °C 1 

min.

Amplification of a primed DNA library was carried out by adding 5 μl of the TOP reaction 

mixture to 50 μl of amplification reaction containing 2x Maxima Hot Start PCR Master Mix 

and barcoded fusion PCR primers A(Ad)-EP-barcode-primer (63 nt) and trP1(Ad)-A2-

primer (45 nt) at 0.5 μM each (both primers contained phosphorothioate modifications). The 

following thermocycler conditions were used for amplification: 94 °C 4 min; 15 cycles at 

95 °C 1 min, 60 °C 1 min, 72 °C 1 min. The final libraries were purified through Zymo 

columns, size-selected for ~250 bp fragments (MagJet NGS Cleanup and Size-selection kit, 

TS), and were subjected to Ion Proton (TS) sequencing.

Step 5—NG sequencing of TOP-seq genomic libraries using Ion Proton PI chip (TS) and 

read processing.

Validation of TOP-seq in a model DNA system

To monitor the TO-primed DNA synthesis, 155 bp (1H; 1H-dir 5‘-

TGTGTTACTGTGTGGAAAAGACC, 1H-rev 5‘-CCACTCCTTATAGTTTGGCTGA) and 

202 bp (2H; 2H-dir 5‘-GCAATGTGTTGTGGAGGAGA and 2H-rev 5‘- 
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CCTACTTGGGTTTGCCCTCT) PCR fragments were made from human BMX gene, each 

containing a single CG site. The efficiency of mTAG labeling of the model DNA fragments 

after Hin6I-restriction cleavage (see below) was tested by qPCR with the same primers used 

to produce the respective PCR fragments. The efficiency of click chemistry reaction was 

tested by gel-electrophoresis and HPLC–MS analysis of the products (see below). The 

template-dependent DNA synthesis primed by the priming oligonucleotide and the following 

amplification of the primed product was monitored on an Agilent Bioanalyzer.

qPCR analysis of eM.SssI-directed alkylation

A mixture of model DNA fragments were mTAG-modified as described in the main TOP-

seq protocol. 10 ng of the modified DNA was incubated with the Hin6I restriction 

endonuclease in Tango Buffer (TS) for 1 hour at 37 °C following thermal inactivation of the 

enzyme by incubation at 65 °C for 15 min. The amount of intact DNA according to the 

uncleaved control was calculated for each DNA fragment. qPCR experiments were 

performed with a Rotor-Gene Q real-time PCR system (Qiagen) using Maxima SybrGreen 

qPCR Master Mix (TS). 0.3 mM of each primer pair was used in each reaction. The 

amplification program was set as: 95 °C for 10 min, 40 cycles 95 °C for 15 s, 60 °C for 1 

min.

HPLC-MS analysis of oligonucleotide tethering

A model azide-tagged duplex was prepared by incubation of 0.5 μM of pTAACG/pATTCG 

double-stranded DNA oligonucleotide with eM.SssI MTase (1 μM) and Ado-6-azide 

cofactor (200 μM) in TEN buffer (Tris-HCl pH 7.4 10 mM, NaCl 50 mM, BSA 0.1 mg/ml) 

followed by purification with Oligo Clean&Concentrator kit (Zymo Research). Azide-

derivatized pTAACG/pATTCG oligonucleotide at 1 μM concentration was combined with 

IntAlk2 alkyne-modified oligonucleotide (10 μM final concentration) and CuBr:TBTA mix 

(final concentration 0.33 mM CuBr, 0.67 mM TBTA), using DMSO as a solvent (65-70% of 

the final reaction mix). The reaction was incubated for 6 h at 45 °C, and then purified using 

an Oligo Clean&Concentrator kit (Zymo research). Purified DNA was incubated in 40 μl of 

P1 buffer containing Nuclease P1 (Sigma) 0.5 u for 2 h at 55 °C, and then dephosphorylated 

by adding 1 μl FastAP phosphatase at 37 °C overnight. Samples were analyzed on an 

integrated HPLC/ESI-MS system (Agilent 1290 Infinity) equipped with a Supelco 

Discovery®HS C18 column (7.5 cm × 2.1 mm) by elution with a linear gradient of solvents 

A (20 mM ammonium formate, pH 3.5) and B (80% aqueous methanol) at a flow of 0.3 

ml/min at 30 °C as follows: 0-1 min, 0% B; 1-18 min, 80% B; 18-19 min, 100% B. High-

resolution mass spectra of modification products were acquired on an Agilent Q-TOF 6520 

mass analyzer (100–2500 m/z range, positive ionization mode).

HPLC-MS/MS analysis of genomic DNA

50 ng of gDNA in two replicates was digested with 0.5 u Nuclease P1 (Sigma) for 2 h at 

55 °C in 40 μl of P1 buffer and then dephosphorylated by adding 1 μl FastAP (TS) 

phosphatase and incubating overnight at 37 °C. Standard d5mC, dhmC, dC and dG 

nucleosides (Trilink Biotech) were used for external calibration. Varied amounts of standard 

5mC and hmC nucleosides were combined with 20 pmol each of dC, dG, dT, dA and 

samples were analyzed in duplicate. Samples were analyzed on an integrated HPLC/ESI-
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MS/MS system (Agilent 1290 Infinity/ 6410B triple quadruple) equipped with a Supelco 

Discovery®HS C18 column (7.5 cm × 2.1 mm, 3 μm) by elution with a linear gradient of 

solvents A (0.0075% formic acid in water) and B (0.0075% formic acid in acetonitrile) at a 

flow of 0.3 ml/min at 30 °C as follows: 0-7 min, 0% B; 7-21min, 3% B; 22-25 min, 80% B. 

Mass spectrometer was operating in the positive ion MRM mode and intensities of 

nucleoside-specific ion transitions were recorded: d5mC m/z 242.1→126.1; dhmC m/z 

258.1→142.1; m/z dG 268.1→152.1. Ionization capillary voltage 2500 V, drying gas 

temperature 150 °C and flow rate 10 l/min, collision energy 15V.

Pyrosequencing

DNA oligonucleotides for pyrosequencing (Table S2) were designed with PyroMark Assay 

design 2.0 software (Qiagen) and synthesized by Metabion. Bisulfite conversion of IMR90, 

N and S type NB DNA was performed with EpiJET Bisulfite Conversion kit (TS). The 

respective DNA fragments were prepared from the converted DNA using Maxima Master 

Mix (TS) according to standard PCR conditions. The unmethylated EpiTect Control DNA 

(human) was acquired from Qiagen. Methylated control DNA was obtained as follows: the 

unmethylated EpiTec Control DNA was methylated by incubating with M.SssI (TS) and 

AdoMet 0.3 mM at 30 °C for 10-16 hrs, then incubating with Proteinase K (0.2 mg/ml) at 

55 °C for 1 hour and purifying with Genomic DNA purification kit (Zymo). Pyrosequencing 

was performed on PyroMark Q24 version 2.0 device with PyroMark Gold Q24 kit (Qiagen). 

Data analysis was done with PyroMark Q24 2.0.6. software.

S.aureus genome assembly

Libraries of S.aureus genomic DNA for Ion PGM sequencing (two replicates) were prepared 

by using Torrent ClaSeek kit (TS) and amplified with Phusion Hot Start DNA polymerase 

(TS) according to the vendor's recommendations. The final libraries were size-selected for 

~330 bp fragments (MagJet NGS Cleanup and Size-selection kit, TS), evaluated on an 

Agilent Bioanalyzer, quantified by qPCR and subjected to Ion PGM sequencing (Life 

Technologies) to give 7,939,365 sequencing reads. Fastq quality trimmer (FASTX toolkit) 

was used to trim the read ends having quality less than 30. Reads longer than 100 bp were 

retained. DNA sequence assembler MIRA (v4) with default options was used to construct 

the assembly (Chevreux et al., 1999). The tool reported 70-80x coverage. Contigs longer 

than 500 bp were retained yielding 321 contigs spanning 2,726,458 bases.

QUANTIFICATION AND STATISTICAL ANALYSIS

NG sequencing of TOP-seq genomic libraries

TOP-seq samples were sequenced on Ion Proton PI chip (TS). Reads shorter than 80 nt were 

discarded. Adapter sequences were removed using cutadapt (Martin, 2011) from 5’ end. 

FASTX (http://hannonlab.cshl.edu/fastx_toolkit/index.html) trimmer was used to trim 33 nt 

from 3’ ends to remove possible adapter sequences. FASTX quality trimmer was used to 

trim 3’ ends below phred quality score 20. Finally, 3’ ends were cut to a maximum read 

length of 70 nt (S.aureus) or 165 nt (human) and reads shorter than 16 nt were discarded. 

BWA (Li and Durbin, 2009) was used for alignment and only reads with mapping quality 

score of at least Q30 were retained. TOP-seq libraries of S.aureus were aligned to de novo 
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assembled genome whereas human samples were aligned to hg19 genome. Identical reads 

(the same original length and starting genomic coordinate) were termed PCR duplicates and 

only one per group was retained. For the human samples, reads pertaining to sex 

chromosomes were removed before subsequent computation of u-density.

Post-processing analysis of TOP-seq data

For each mapped read we computed the distance from its start position to the nearest CG 

dinucleotide. We define CG coverage as the total number of reads, c, on any strand starting 

within absolute distance, d. We retained only reads with d ≤ 3. For the human samples 

weighted kernel density estimates of TOP-seq reads were computed using R density function 

with Epanechnikov kernel over 2^21 points uniformly distributed across each chromosome. 

Read counts were normalized to sum to 1 within each chromosome and used as weights for 

the density function. Gaussian kernel smoothing with the same bandwidth implemented in R 

ksmooth function was used to interpolate respective density values at the exact positions of 

CG nucleotides. The same approach yet with omission of weights was used to estimate 

unweighted CG density in the genome. Final TOP-seq unmethylation densities, the u-

densities, were obtained by dividing weighted TOP-seq read densities by the unweighted CG 

density at each CG dinucleotide. Kernel parameters (180 bp for coverage-weighted density 

and 80 bp for CG density) were selected by evaluating correlation of IMR90 TOP-seq 

IMR90-1 R1 and WGBS samples at single CG resolution in chromosome 1 (see Fig. 3B) 

and the same parameters were subsequently used for all samples and all chromosomes.

Methylation estimates

Methylation estimates, m-estimates, were obtained by training an exponential decay model 

that assumes a linear decrease of WGBS methylation with exponential increase of u-density 

signal and other genomic feature-specific covariates. The model was computed using R nls 
procedure and defined as

Covariate values were calculated for each CG using 50 bp windows around each CG. The 

following covariates were used: GC frequency – percentage of guanine and cytosine bases 

per window (UCSC gc5BaseBw track); fraction of CG dinucleotides among CN pairs within 

window; mean sequence mappability value per window (UCSC 

wgEncodeCrgMapabilityAlign24mer track); percentage of bases per window that belong to 

SINE, LTR repeats, upstream, UTR 5’ and intergenic regions as separate covariates. Model 

training was performed using TOP-seq IMR90-1 R1 sample chromosome 20 which was then 

excluded from subsequent analyses involving m-estimates.

Public sequencing datasets

Brain and IMR90 WGBS datasets were downloaded through the Gene Expression Omnibus 

(GEO) with accession numbers GSE46710, GSM432687, GSM1204464. We only 

considered CG methylation and averaged beta values across the strands. GSM1204464 data 

was filtered for CGs with coverage ≥ 5. Genome wide Brain MRE-seq signal for autosomes 
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was downloaded from the UCSC database (ucsfMreSeqBrainCpG track) in a bigWig format. 

It was converted to bedGraph format using bigWigToBedGraph conversion tool (Kent et al., 

2010). IMR90 MRE-seq dataset was downloaded from GEO (accession number 

GSM830153). Signals from two strands were summed and genomic coordinates lifted to 

hg19 using liftOver tool. MBD-seq dataset was downloaded from GEO (accession number 

GSM947460). MBD windows were lifted to hg19 genomic coordinates and the same value 

assigned to all CGs that fall into the same window.

Genomic annotations

Repeat element (Repeat Masker annotation, rmsk), CG island (cpgIslandExt), gap location 

(gap), lamina associated domain (laminB1Lads) and lamin signal (laminB1) tracks were 

downloaded from the UCSC database (https://genome.ucsc.edu). Reference gene annotation 

was obtained from the GENCODE encyclopedia of genes (release 19) (https://

www.gencodegenes.org). For analysis we used only data from the autosomes.

Chromatin states (expanded 18-state model) were downloaded from the Epigenome 

Roadmap project (http://egg2.wustl.edu) for the following datasets: cell line IMR90 (E017) 

and brain dorsolateral prefrontal cortex (E073). Chromatin states were defined according to 

Kundaje et al. (2015).

CG islands (CGIs) were classified into three classes on the basis of their relation to 

GENCODE protein coding genes. CGIs overlapping 2 kb region upstream from a 

transcription start site were classified as promoter CGIs, 9,545 in total. CGIs overlapping 

gene body of protein coding genes (excluding promoter CGIs) were classified as intragenic, 

11,676 in total. All the remaining CGIs were classified as intergenic, 5420 in total.

For each protein coding gene we selected its longest processed transcript and used it as a 

reference gene. Additionally, we removed genes that were shorter than 1 kb. Upstream 

regions were defined as 2 kb flanks from the gene start site. When computing generic gene 

methylation profile each specific upstream, 5’-UTR, exon, intron, 3’-UTR region was 

divided into 20 equal size bins and individual CG methylation signals were averaged within 

the bins.

For methylation analysis of specific repeat elements we selected following repeat families: 

Alu, L1, L2. ERVL-MaLR, ERVL, ERV1, ERVK, ERV repeat families were merged into 

one family - ERV. Using this approach we calculated 1118248 Alu, 862941 L1, 637751 ERV 

and 439887 L2 elements. Alu repeats were grouped according to their position to gene body. 

If Alu element overlapped 2 kb upstream region from the transcription start site it was 

classified as promoter specific. Alu elements overlapping gene body (but not in promoter 

specific set) were classified as intragenic. All the remaining Alu's were classified as 

intergenic. 23835, 572112, 522301 elements were used for promoter, intragenic and 

intragenic Alu analysis, respectively.
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Analysis of TOP-seq and WGBS profiles

For the S.aureus samples overlap of called uCGs was quantified using Jaccard similarity 

coefficient. For any two sets of uCGs, A and B, Jaccard similarity is defined as 

.

Pearson correlation coefficient, denoted r, was used as a measure of concordance throughout 

the paper. In cases where the sign of correlation was not important, we report absolute 

correlation values, denoted |r|. Overlap between any two sets was measured using two-tailed 

Fisher's exact test and odds ratio (OR) as well as p values were reported. P value 

significance threshold was 0.05. For hierarchical clustering Pearson correlation was 

converted into distance measure and complete linkage was used. Barplots with whiskers 

denote mean and standard deviation, respectively. In boxplots median was used as the center, 

the box spans 25th to 75th percentiles, the whiskers indicate 2nd and 98th percentiles.

Analysis of long-range hypomethylated domains

Methylation profiles in lamina associated domains (LADs) and inter-LAD regions were 

computed as follows. First, from the list of LADs we removed those that overlapped gaps in 

the genome assembly. LADs were further filtered according to their size retaining only those 

that are larger than 10% and smaller than 90% quantile of all the LADs. Inter-LAD domains 

were filtered using the same procedure. Each resulting domain was divided into 10 equally 

sized bins. Next, we removed CGs that overlapped CGIs or their 5 kb flanking regions. Due 

to MYCN amplification we also excluded chromosome 2 from analysis. For each CpG we 

assigned a corresponding bin of LAD or inter-LAD region. The final profile was obtained by 

averaging the signal in each bin using Gaussian kernel smoother with bandwidth 2. Finally, 

we evaluated correlation of TOP-seq and lamin B1 signal at each chromosome. Lamin B1 

values were interpolated at the positions of used CpGs using Gaussian kernel smoother with 

2 kb bandwidth.

Differential methylation of NB cell types

Promoter, intragenic and intergenic CGIs were used to find differentially methylated regions. 

For each CGI, mean TOP-seq u-density value per sample was computed; if CGI had mean 

value less than 0.0001 it was not included in analysis. All samples were passed to limma 

(Ritchie et al., 2015) for multigroup analysis and contrasts interrogated for N vs S, N vs B 

and S vs B. Regions having FDR adjusted q < 0.01 and absolute fold change above 20% 

were termed significant. Each CGI was associated with the gene whose promoter or body it 

overlapped and gene enrichment analysis was performed using DAVID annotation tool 

(version 6.7) (Huang et al., 2009).
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Chemo-enzymatic approach to map unmodified CpG sites at single-base resolution

Demonstrates non-homologous proximity-driven priming of DNA polymerases

Offers unidirectional DNA sequencing immediately from covalently tagged CpG sites

Independent of bisulfite conversion and avoids whole-genome sequencing
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Figure 1. Tethered Oligonucleotide-Primed sequencing (TOP-seq) analysis of DNA
A, Selective tagging of genomic uCG sites with an azide group using an engineered variant 

of the SssI methyltransferase (eM.SssI) and a synthetic analog of the SAM cofactor (Step 1 

in C). B, Tethered Oligonucleotide-primed DNA polymerase activity at an internal 

covalently tagged CG site (Step 4a). X and P denote generic nucleotides in genomic DNA 

and the tethered oligonucleotide, respectively. C, TOP-seq procedure for whole-genome 

mapping of unmodified CG sites using next generation sequencing. For selective 

amplification of the TOP strands, fragmented genomic DNA is processed to add partially 
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complementary adapters in Step 2. Following TO-primed strand extension (Step 4a), PCR 

amplification with Ad-A2 and Ad-TO primers containing NGS platform-specific 5’-end 

adaptor sequences selectively enriches the primed product but not the original DNA strand 

(Step 4b). Sequencing is initiated at the A adaptor sequence included in the 5’-part of Ad-

TO-barcode amplification primer (Step 5). TO, tethered oligodeoxyribonucleotide; A1 and 

A2, strands of a partially complementary adapter; Ad, extended sections of platform-specific 

adapters. See also Figure S1.
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Figure 2. Validation of TOP-seq on a model bacterial genome
A, Distance distribution of TOP-seq read start positions from a uCG site in the TOP-seq 

library of S. aureus genome. Top and bottom strands are shown as “+” and “−”. B, 

Identification of uCGs at different mean CG coverage. C, Pearson correlation and Jaccard 

coefficient between technical replicates at different mean uCG coverage. D, Difference in 

coverage between neighbouring CG sites as a function of the distance between them. E, 

Distribution of uCG coverage at partially methylated CCGG and GCGC sites. Genomic 

DNA samples containing 0/100, 20/80, 50/50 and 100/0 % methylation of CCGG and 

GCGC sites, respectively, were prepared and analyzed. Total coverage across technical 

replicates was summed and divided by total number of reads in a sample and multiplied by 

106.
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Figure 3. TOP-seq analysis of two human tissues
A, Percentage of called uCGs of total CGs in a genomic element for the brain cortex and 

IMR90 cells. CDS - protein coding DNA sequence. Upstream and Downstream regions 

encompass 2 kb regions from the gene start or end site, respectively. B, Dependence of the 

WGBS and TOP-seq u-density correlation on the kernel bandwidth parameters. Color scale 

represent correlation of u-density signal and WGBS. Selected kernel bandwidths: 180 bp for 

coverage-weighted density and 80 bp for CG density. C, Correlation between technical 

replicates of the high coverage TOP-seq u-density IMR90 library (IMR90-3 and IMR90-4; 

~100 M reads each). D, Hierarchical clustering of TOP-seq u-density profiles of technical 

replicates of all tissues. E, Correlation between technical replicates of the high coverage 

TOP-seq m-estimate IMR90 library. F, Scatterplot of the correlation between the TOP-seq 

m-estimates (‘all’ means combined IMR90 dataset, 16x CG coverage) and WGBS at single 

CG resolution. G, Correlation between TOP-seq data (u-density and m-estimates), MBD-seq 

and WGBS across various genomic elements. H, TOP-seq u-density compared to 

pyrosequencing methylation values in 20 selected genomic regions. Average TOP-seq u-

density values (“all” dataset) across the regions were used for comparison. See also Figures 

S2, S3 and Tables S1, S2.
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Figure 4. TOP-seq profiles at various gene-associated elements and chromatin states
A, TOP-seq u-density and WGBS profiles in the brain cortex and IMR90 cells over different 

gene-associated regions: upstream (2 kb), 5’-untranslated (5’UTR), exons, introns and 3’-

untranslated (3’UTR) regions. Smoothed densities were calculated for 20 equally sized bins 

per region. B, TOP-seq u-density and WGBS (IMR90 data) profiles in 5 kb flanking regions 

of transcription start sites (TSS) associated chromatin segments: active TSS states (TssA); 

bivalent/poised TSS states (TssBiv); TSS flanking regions (TssFlnk) and TSS flanking 

regions divided into upstream and downstream flanking regions (TssFlnkU and TssFlnkD). 

C, Mean TOP-seq u-density and WGBS methylation values (for the brain cortex and IMR90 

data) in various chromatin states: TssA; TssBiv; active enhancers EnhA2 and genic 

enhancers EnhG1; segments of actively transcribed genes (Tx); heterochromatin, (Het); and 

repressed polycomb segments (ReprPC). See also Figure S4.
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Figure 5. TOP-seq analysis of the neuroblastoma N and S cell types
A, Mean TOP-seq u-density for CGIs, CGI shores (±2 kb around CGIs), CGI shelves (±2 kb 

around CGI shores) and the rest of the genome (Sea). B, TOP-seq profiles around CG 

islands. C, Validation of TOP-seq DMRs using pyrosequencing. Fold change of S vs IMR90 

and N vs IMR90 were measured (Table S4). For a DMR to validate positive TOP-seq fold 

change should correspond to negative pyrosequencing fold change and vice versa. Positive 

fold change in TOP-seq means higher methylation in IMR90, negative fold change means 

higher methylation in S or N. D, Browser representation of TOP-seq u-density profiles along 

two NB marker genes: RASSF1 and ZMYND10. Hypermethylated CGIs in NB tissues 

relative to normal references are boxed. E, Browser view of TOP-seq data along a 86 kb 

region in Chr1 coding for tumor necrosis factor receptor genes TNFRSF8 and TNFRSF1B. 

Identified hyperM promoter CGIs (relative to Brain and IMR90) are boxed. See also Figures 

S5, S6 and Tables S3, S4, S5, S6.
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Figure 6. Lamina-associated domains in somatic and neuroblastoma cell types
A, Genome browser view of TOP-seq u-density profiles in a 15 Mb region of Chr2. Blue 

rectangles above the lamin B1 track represent LADs for Tig3 cells. B, Generalized TOP-seq 

u-density profiles (Top) in LAD and inter-LAD regions for all four tissues compared to 

WGBS methylation profiles (Bottom) for Brain and IMR90 data. C, Global correlation of 

the TOP-seq u-density and Lamin-B1 profiles. Error bars show ±SD.
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