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Abstract

PlexinA is a neuronal receptor protein that facilitates axon guidance during embryogenesis. This 

gene is associated with several neurological disorders including Alzheimer's disease, Parkinson's 

disease and autism. However, the effect of variants of PlexinA on brain structure remains unclear. 

We demonstrate that single nucleotide polymorphisms within the intron and 3'UTR segments of 

several human PlexinA genes alter the post-natal developmental trajectory of corpus callosum 

microstructure. This is the first demonstration that PLXNA mediation of a neuroanatomical traits 

can be detected in humans using in vivo neuroimaging techniques. This result should encourage 

future research that targets specific disease-related polymorphisms and their relevant neural 

pathways.
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Introduction

PlexinA (PLXNA) is a family of cell-surface receptor proteins that guide developing axons 

to their targets within the central nervous system.1,2 It is comprised of four genes, known as 

PlexinA1-A4.1,3 Plexins form a receptor complex with neuropilins so as to bind 

semaphorins, thereby mediating the latter's chemorepulsive influence on axonal growth-cone 

development.2,4 Plexins are expressed throughout the developing nervous system.5 However, 

an important part of their role in brain development is to guide developing cortical axons 

across the midline, thereby contributing to the formation of the corpus callosum,6 a large 
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white matter bundle that links the two cerebral hemispheres. Molecular signaling through 

this pathway maintains an orderly position of axons as they cross the midline at the corpus 

callosum, thereby allowing the axons to reach their appropriate homotopic targets in the 

contralateral hemisphere.7

While most research on plexin has been conducted on Drosophila, C. elegans and rodents, 

recent studies of humans have linked common polymophisms in PLXNA4 with an increased 

risk of complex neurological disorders, including Alzheimer's disease,8 Parkinson's disease9 

and autism.10 The link between risk alleles and abnormal brain development in these 

diseases may be found in atypical expression-levels or atypical structural isoforms of 

plexins. We present here the first study to examine the influence of variation in the PLXNA 
gene family on human white matter microstructure, with a focus on the developing corpus 

callosum.

Material and methods

We used diffusion tensor imaging (DTI), a magnetic-resonance-based technique that 

measures the diffusion of water,11 to assess white matter properties of the human corpus 

callosum during post-natal developmental. A major advantage of DTI is that it permits non-

invasive in vivo measurements of white matter microstructure. Axon membranes are only 

semi-permeable to water, thereby creating a barrier to diffusion perpendicular to, but not 

parallel with, the main axis of white matter bundles. Fractional anisotropy (FA) is a DTI-

derived measurement that quantifies the amount of diffusion parallel to, relative to 

perpendicular with, axon bundles.12 White matter bundles that take a straight path have high 

FA values, since the orientation of the resistance to diffusion is uniform throughout the 

bundle, whereas white matter bundles that take a tortuous path have lower FA values, since 

the direction of resistance to diffusion varies along the extent of the bundle.13

The data used in the present study were obtained from the Pediatric Imaging, 

Neurocognition and Genetics (PING) Study database (http://ping.chd.ucsd.edu). PING is a 

data resource comprised of highly standardized and carefully curated magnetic resonance 

imaging data, extensive genotyping data, and developmental and neuropsychological 

assessments for a large cohort of children three, collected across multiple sites. The PING 

database (version v0.4) was searched for single nucleotide polymorphisms (SNPs) within the 

PLXNA1-4 genes. Genotype data for 1083 participants (ages 3–21 years, 521 female, 454 

European, 110, African, 104 Asian, 64 South American, 12 Pacific Islands, 321 mixed 

ancestry, 18 other) were retrieved from the database along with FA for the corpus callosum 

for each participant. Data analysis was conducted in R v3.1.14 Additive models15 were used 

to test whether FA varied in the corpus callosum as a function of genotype and/or the 

interaction of genotype with age, using age, sex, genetic ancestry and data-collection site as 

covariates.

Results

The PING database contained 13 SNPs across the four PLXNA genes (see Table 1). For all 

plexin genotypes, corpus callosum FA increased throughout the course of development 
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(Figure 1), demonstrating a trend consistent with previous research on callosal 

development.16 Three of 13 SNPs in our dataset exhibited a main effect of genotype, 

indicating differences in corpus callosum FA that persisted across development. Ten SNPs 

exhibited interactions between genotype and age, indicating variation in the developmental 

trajectory of corpus callosum FA. Only three of the 13 SNPs failed to predict FA.

Discussion

Most of the PLXNA SNPs available in our database were introns and 3' untranslated regions 

(3'UTRs). Both types of regions regulate gene expression,17 suggesting that common 

polymorphisms within the PLXNA gene family may primarily affect the levels of gene 

expression. Introns can also regulate alternative splicing of exon sequences, resulting in 

different isoforms of a protein. Little is known about how plexin isoforms differ in function, 

and additional research is needed to elucidate their role in both typical and atypical brain 

development. However, SNPs can be statistically associated with nearby sequences through 

shared inheritance. This may explain the strong effects observed for a synonymous codon 

substitution for rs4679323. The SNPs that were analyzed in the present study may be 

statistically associated with nearby non-synonymous substitutions on exons that are not 

available in the PING database.

The present study demonstrates that natural variation in in the PLXNA family has a 

measurable influence on the microstructure of the largest white matter tract in the human 

brain. This is particularly manifested as an abnormal developmental trajectory of fractional 

anisotropy, suggesting that plexin may have a prominent role in postnatal regulation of white 

matter microstructure. The present study is an important step in understanding the 

relationship between these axon-guidance genes and complex neurological disorders in 

humans. Future research using similar in vivo methodologies should seek to link 

polymorphisms related to specific disorders with abnormal white matter microstructure in 

brain regions related to those disorders. Complementary research using molecular genetic 

methodologies will be vital in elucidating the cellular mechanisms that drive the influence of 

PLXNA variation on white matter maturation in the human brain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Plexin-mediated developmental trajectory of corpus callosum microstructure
A–J) Plots of corpus callosum FA as a function of age for the ten SNPs with significant main 

effects of genotype or interactions between genotype and age. Each plot includes the mean 

developmental trend (solid line) and one standard error above and below it (shaded area). 

The developmental trajectory for each genotype is plotted separately in each panel. In two 

cases (panels A and D), the developmental trajectory for homozygotes of the minor-

frequency allele was based on too few observations, resulting in unreliable estimates of the 

developmental trend for those alleles. Plots for SNPs that showed a significant main effect of 

genotyped are marked with an asterisk. Lines showing a significant interaction between 

genotype and age are highlighted in bold. K) Midsagittal magnetic resonance image of the 

human brain with the corpus callosum indicated by black arrows.
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