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Abstract

This work focuses on developing a 2D Canny edge-based deformable image registration (Canny 

DIR) algorithm to register in vivo white light images taken at various time points. This method 

uses a sparse interpolation deformation algorithm to sparsely register regions of the image with 

strong edge information. A stability criterion is enforced which removes regions of edges that do 

not deform in a smooth uniform manner. Using a synthetic mouse surface ground truth model, the 

accuracy of the Canny DIR algorithm was evaluated under axial rotation in the presence of 

deformation. The accuracy was also tested using fluorescent dye injections, which were then used 

for gamma analysis to establish a second ground truth. The results indicate that the Canny DIR 

algorithm performs better than rigid registration, intensity corrected Demons, and Distinctive 

Features for all evaluation matrices and ground truth scenarios. In conclusion Canny DIR performs 

well in the presence of the unique lighting and shading variations associated with white-light-

based image registration.

1. Introduction

1.1 Non-invasive imaging modalities

Optical imaging systems are a crucial modality for observing in vivo functional changes. 

Optical imaging techniques have emerged to track organ system responses to endogenous or 

exogenous changes. Small animal optical imaging in vivo models are often used to test drug 

accumulation, drug response, toxicity, metastatic behavior, tumor progression/regression, 

changes in metabolism, and inflammatory response (Hilderbrand and Weissleder, 2010; Rao 

et al., 2007).

In vivo imaging modalities that are non-invasive are often preferred for small animal 

longitudinal studies (Balas, 2009). Generally, non-invasive imaging systems can be divided 

into structural and functional modalities. Structural modalities provide anatomical and 

morphological information, such as computed tomography (CT), magnetic resonance 

imaging (MRI), white light optical imaging, and ultra sound. Whereas functional modalities, 

such as positron emission tomography (PET), single photon emission computed tomography 

(SPECT), and optical imaging (fluorescence and bioluminescence), provide biological 

molecular activity information. All of these imaging modalities come with their own unique 

blend of advantages and limitations.
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Micro CTs can have high spatial resolution and fast acquisition times (Holdsworth and 

Thornton, 2002). However CTs, can be expensive and are associated with increased hazards, 

such as ionizing radiation exposure (Carlson et al., 2007). To achieve high contrast and 

spatial resolution large photon fluences are required which leads to high integral radiation 

dose for the subject, which can affect the immune system and potentially influence the 

outcome of some in vivo studies (Jawhara and Mordon, 2004; Anderson and Warner, 1976; 

Kroeker et al., 2011). MRIs can produce high quality 3D images without the use of ionizing 

radiation. However, MRIs can have long image acquisition times, suffer from low spatial 

resolution, require special electromagnetic shielding, and are expensive (Kobayashi et al., 
2004). To achieve high spatial resolution while simultaneously preserving good signal to 

noise rations, long slice acquisition times are required. Ultrasound imaging techniques can 

acquire images at high image acquisition frequencies. Ultrasound imaging provides a low 

cost, non-invasive, in vivo imaging modality that has been implemented as a complement to 

fluorescent imaging (Snyder et al., 2009). Although useful for 3D in vivo tumor localization 

imaging applications, ultrasound imaging may present challenges when used for full in vivo 
surface imaging (Kepshire et al., 2009). Also, high spatial resolution, low contrast, full small 

animal imaging can be challenging with this modality (Qin et al., 2015). White light imaging 

techniques are non-ionizing, very low cost, easy to mobilize, and have fast image acquisition 

times. However, white light imaging techniques are limited to surface information, and are 

sensitive to lighting and shading variations (Maier-Hein et al., 2013). For these reasons, 

white light imaging modalities are not currently used for quantitative longitudinal studies.

PET scanners have been developed for use in small animals. However, in order to obtain 

high spatial resolution with high signal contrast, high radiation doses are needed, which have 

the potential to damage healthy tissues (Johnson et al., 2005). High costs and additional 

regulation due to the presence of radioactive tracers are also factors for PET imaging. 

SPECT is similar to PET in its use of a radioactive γ-ray tracer material but are much 

cheaper than PET scans, as longer half-life radionuclides can be used. Fast acquisition times 

are possible with SPECT, allowing for cardiac or respiratory image gating. However, since 

SPECT does not rely on coincidence timing, it suffers from poor spatial resolution (about 

1cm), which makes SPECT not suitable for small animal imaging (Kung et al., 1990).

Optical imaging using fluorescence or bioluminescence can have fast acquisition times and 

achieve high spatial resolution (Balas, 2009). Optical imaging modalities do not rely on 

radioactive tracers so are subject to less stringent regulations. Fluorescent tracer molecules 

can be less costly and less biologically harmful than their radioactive counterparts. An 

optical imaging small animal model can be made portable with greater ease than PET or 

SPECT imaging modalities (Rodriguez et al., 2014). However, optical imaging techniques 

can only image near surface signals and must rely on reconstructive techniques for 3D 

localization (Werner et al., 2012).

To help facilitate cross institutional collaboration, commercial demonstration, and proof of 

principal modeling, portable multimodal structural and functional imaging systems have 

begun to gain attention (Rodriguez et al., 2014). As the demand for portable imaging 

systems has increased, low cost optical imaging modalities have become increasingly 

attractive (Okusanya et al., 2014; Ye et al., 2016). White light in vivo anatomical tracking is 
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attractive as a light weight versatile tool for clinical imaging research. However, it is 

currently very difficult conduct longitudinal quantitative optical imaging-based studies as 

anatomical mapping from day to day is challenging (Zhu et al., 2013).

1.2 Deformable Image Registration Methods

In order to track inflammatory responses, immunological behavior, or metastatic behavior, 

images must be assessed at various time points along a span of time sufficient to characterize 

the time dependent biological event. To quantitatively measure signal and compare it in a 

meaningful way, corresponding regions between images taken at different time points must 

be compared. To compare corresponding regions between images, structural information 

must be used as a surrogate to track functional information.

Conventional small animal in vivo tracking methods include direct voxel/pixel to voxel/pixel 

tracking based on intensity and gradient information or atlas matching, which relies on an a-

priori digital model (Joshi et al., 2010; Wang et al., 2012a; Wang et al., 2012b). The atlas 

matching method relies on iteratively deforming a digital mouse model to match simulated 

x-ray projections with measured x-ray projections. The deformations of the digital mouse 

are typically optimized using a steepest decent model until convergence is reached (Avriel, 

2003; Bonnans et al., 2013). This method has two major drawbacks, it relies on x-ray 

information which makes it unusable for a pure optical system and it will not meaningfully 

converge if the solution space of the optimization problem is non-convex (Horst and Tuy, 

2013). Also, recalculating the simulated x-ray projections at every iteration is extremely 

computationally expensive, and thus very time consuming (Folkerts, 2015).

Another class of algorithms utilizes feature extraction methods for image registration. These 

methods rely on steepest decent optimization to minimize a non-linear least squares function 

(Yuille et al., 1992). This style of registration includes facial recognition, facial expression 

extraction, finger print identification, and palm print recognition. These distinct feature 

methods are all based on the scale-invariant feature transform (SIFT) method (Lowe, 2004; 

Xiong and Torre, 2013; de la Torre et al., 2015; Chu et al., 2013). Local gradient information 

around each district feature is transformed into a representation that allows for high levels of 

local shape distortion and change in illumination. Using district features, as opposed to 

conventional deformable image registration (DIR) techniques, allows for less susceptibility 

to noise, and lighting variations. However, distinct feature extraction techniques currently 

rely heavily on disjointed features, which causes sparsity in features within the image 

(Naveen, 2013). This is in part caused by a stability feature removal step, which helps ensure 

feature reliance. In the case of white light image registration, it is favorable to use complete 

edges of an image instead of using a scattered subset of features (Canny, 1986; Qian and 

Huang, 1996; Worthington, 2002; Wang and HE, 2004; Luo and Duraiswami, 2008; Wang 

and Fan, 2009; Chen and Lo, 2012). If each point along the canny edge is treated as a 

feature, then edge continuity can be used for stability discrimination. The differences 

between the SIFT method and the canny edge feature extraction method is demonstrated in 

figure 1.

Small animal white light based DIR is uniquely challenging, as minor changes in the 

mouse’s anatomical position can lead to big changes in shading and lighting. Similarly, 
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features such as implantation swelling, and lesions on the skin can vary from day to day. 

Weight loss or weight gain can also make tracking the surface of a mouse difficult.

Conventional DIR algorithms using uniform grid based approaches can be error prone in 

regions with low contrast information such as the smooth surfaces on the skin or low quality 

regions of the image. However, strong features on the mouse skin surface such as the ridges 

of the spine, shoulders, ribs, and hind legs can often be seen even in the presence of lighting, 

shading, and noise variation. Recently, a new form of non-grid based DIR algorithms have 

emerged, called Landmark-Guided DIR, which uses a sparse subset of points to deformably 

register noisy images (Kearney et al., 2015). This style of registration is well suited for 

images that have high noise contamination and large intensity inconsistencies between time 

points.

This paper demonstrates the feasibility of using canny edges, embedded in a sparse DIR 

framework, to overcome the challenges of small animal in vivo white light based anatomical 

tracking.

2. Methods and Materials

2.1 In Vivo Setup

All images were acquired using Progenitec’s portable imaging device (Progenitec Inc., 

Arlington, Tx). White light and fluorescent images where acquired using a 100μm isotropic 

pixel size. Fluorescent images where obtained using a 635nm LED source at 30mA for 60 

seconds.

7 BALB/c, 8–10 week old mice were subcutaneously injected with CY5 tagged EPO. CY5 

is a near infrared fluorescent dye with an emission wavelength of 630–700nm (Veiseh et al., 
2007). All mice were imaged in prone position.

2.2 The Algorithm

A cross correlation based algorithm was used to rigidly register the image at time zero 

(Istsatic) with an image acquired at a later time (Imoving). Once a rigid registration is 

determined, canny edges are generated on the Istatic set (Wang and Fan, 2009; Luo and 

Duraiswami, 2008; Wang and HE, 2004; Canny, 1986). The canny edges are then separated 

using connected component analysis (Samet and Tamminen, 1988). The various steps 

associated with generating points from and separating the Canny edges can be seen in figure 

2.

Each point (P) associated with the canny edges is used to match corresponding regions 

between Istatic and Imoving, as these edges will all have strong gradient information 

associated with them. To help ensure that the canny edge does not represent noise, a line 

filtration algorithm is implemented. The line (L) must be above a certain length α. Once a 

set of filtered canny edges is defined, a local small area (LSA) around each P on the static 

image (LSAstatic) is defined with an initial size of 500μm × 500μm. Each LSA is registered 

to a corresponding area on the moving image (LSAmoving). An optimization scheme is 
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implemented to determine the optimal (i,j) shift of each LSAmoving until E is minimized for 

every P, where

The set of offsets iP and jP are then tested for stability. The deformation vectors at all points 

along an individual canny line are tested for smoothness by comparing neighboring offsets. 

If |ip−ip±1,2| or |jp−jp±1,2| is greater than δ then the pth point is considered unstable, and is 

subsequently removed. The removed points will be discarded and will not be considered 

during the deformation process, since these points have been labeled unstable. Figure 3 

shows the original set of control points derived from the canny edge, with the corresponding 

stable set of control points.

The new set of stable offsets iP and jP are used to populate the complete 2D deformation 

vector field (DVF). To populate the DVF, the convex hull is calculated to find the boundary 

of the data set (Jarvis, 1973; Stein et al., 2012; Srikanth et al., 2009). Then Delaunay 

triangulation is used to compute a bounding triangle for the interpolated area (Rong et al., 
2008; Qi et al., 2013). Next, sparse bi-linear interpolation is applied to extract the value at 

every unknown voxel (Kearney et al., 2015; Kaltofen and Yagati, 1989; Cuyt and Lee, 

2008). The complete DVF is then used to deform Imoving. The whole process is repeated 

iteratively, using the Vercauteren method, until the stopping criterion S at iteration I is 

reached, where  (Vercauteren et al., 2008; Vercauteren et al., 
2009).

The various steps of the Canny DIR algorithm are implemented as follows:

Algorithm 1

Initiate Multiscale Loop

 Canny Edge Extraction

 Canny Edge Refinement and Separation

  Initiate Canny-Edge-Based Sparse Interpolation Loop

   Initiate Canny-Edge Smoothness Loop

    LSA Similarity Search

   End Loop

  Compute Sparse Interpolant

  Accumulate DVFs and Deform Imoving

  Evaluate Stopping Criterion

  End Loop

End Loop
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2.3 Evaluations

Several DIR methods were compared with the Canny DIR algorithm, such as rigid 

registration, the Demons based method, and the distinct feature method. A modified open 

source version of the Demons algorithm was used, with an intensity correction step, called 

intensity corrected Demons (IC Demons) (Kroon, 2011). The distinct feature extraction 

method was based on an open source code (Naveen, 2013). The Canny DIR method was 

developed in-house.

The distinct feature extraction method relies on detecting blobs with associated scale levels, 

derived from scale-space extrema on the scale-normalized Laplacian . The 

scale-space extrema are extracted from the points (x, y; s) in scale-space. Comparisons are 

then made in relation to local neighbors over space and scale. If a point falls within a cutoff 

criterion over the scale-space local neighborhood, then it is considered to be a district feature 

(Lowe, 2004).

Common methods of establishing a ground truth include, using a known DVF applied to a 

reference image then applying Monte Carlo noise contamination, Gaussian noise 

contamination, and or an intensity transformation (Liu, 2008; Shen et al., 2005; Brock et al., 
2005; Sharp et al., 2007; Kearney, 2012; Zhen et al., 2013; Kearney et al., 2015). Other 

popular methods include using an entirely digital phantom with a known DVF (Segars et al., 
2008; Segars and Tsui, 2009; Segars et al., 2010).

Monte Carlo noise contamination can be challenging in a 2D white light image, as there is 

no 3D surface information to base shading characteristics. Gaussian noise does not account 

for shading and lighting artifacts. Intensity transformations that simulate lighting and 

shading variations can be unrealistic. To overcome these challenges, two different ground 

truth models were created. A synthetic 3D mouse surface model, and a 2D fluorescence 

accumulation model were used to evaluate the accuracy of the algorithm.

For the synthetic 3D mouse surface model, a microCT scan was taken with the Skyscan 

1178 (Bruker, Kontich, Belgium), using an isotropic resolution of 200μm. A surface mesh 

was generated using marching cubes (Lorensen and Cline, 1987; Ho et al., 2005). A white 

light image, taken from the portable imager, then mapped on to the surface of the mouse. A 

line was drawn from each surface face on the mouse surface, which passed through the 

white light image to a virtual source. The pixel that each line passes through was used to 

shade a corresponding surface face. All the faces of the mouse surface are shaded using this 

method, until the mouse skin texture is fully mapped to the reconstructed mouse surface. 

The mouse surface was then deformed using a 15mm half sine wave in the right-left (LR) 

direction, from the apex of the head to most posterior aspect of the feet. The mouse surface 

was then rotated about the superior-inferior axis, from 0° to 40°. Figure 4 shows the various 

synthetic mouse surface scenarios.

In order to evaluate the performance of the various DIR algorithms in the presence of noise 

contamination, 3 different noise contamination scenarios were introduced, in the presence of 

deformation and/or rotational transformation, as described in figure 4. Figure 5 shows the 

various synthetic mouse surface scenarios with various levels of Gaussian noise 
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contamination. In figure 5, noise contamination levels 1, 2, and 3, correspond respectively to 

standard deviations of 2.3%, 4.6% and 11.59% of the maximum white light signal 

intensities.

In order to test the local accuracy of the various DIR methods, the surface of the mouse was 

divided into multiple zones, to help understand the effects of rotation on different local 

regions of the mouse surface. Figure 6 shows the various zones of the mouse surface.

For the second ground truth testing case, the Canny DIR will be used to deformably register 

white light image sets. The resulting DVFs will then be applied to the corresponding 

fluorescent image sets. The similarity of the original fluorescent image and the deformed 

fluorescent image are then evaluated using the gamma analysis technique (Harms Sr et al., 
1998). If a direct spatial comparison between images is done, two corresponding pixels that 

are offset by a pixel width can lead to big discrepancies using direct spatial comparison 

(Depuydt et al., 2002; Spezi and Lewis, 2006; Gu et al., 2011). For this reason it is favorable 

to use a technique that searches locally for a best match. Gamma analysis searches a 

specified area around each pixel until a best match is found. The smallest difference from 

each pixel is recorded for a given region of interest.

If i, and j represent the indexes of the image being analyzed, k, and l represent the search 

range specified, R represents the search range, and D represents the percent error threshold, 

the gamma equation can be represented as, G(i, j) = arg min ||Ga(k,l)||, where, 

, r represents the radial distance squared, and d represents the 

signal difference squared. The cutoff criterion used was 95% of all pixels within a 3×3 pixel 

search range, are within 3% error (Depuydt et al., 2002).

To test the spatial congruence between the various registration algorithms, several intensity 

evaluation metrics were used, root mean square error of the Canny edge (RMSECE), root 

mean square error of the mouse boundary (RMSEB), normalized mutual information (NMI), 

and feature similarity index metric (FSIM). RMSECE between the Canny edges C1 and the 

Canny edges C2 in corresponding images, are defined as, 

 (Qian and Huang, 1996; Zhen et al., 2012). RMSEB 

between the mouse boundary B1 and the mouse boundary B2 in corresponding images, are 

defined as, . The mouse boundaries, and are extracted 

using the marching squares algorithm on the intensity thresholded white light images, once 

small areas outside the central mouse boundary have been removed (Ho et al., 2005). NMI is 

a measurement of the mutual information between corresponding images (Wells et al., 1996; 

Skouson et al., 2001; Pluim et al., 2003; Torkkola, 2003). FSIM evaluates gradient and phase 

information between corresponding images (Zhang et al., 2011).
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To help evaluate the accuracy of the fluorescent signal mapping between image sets, 

confined NMI is used. By confining the NMI algorithm to a region of interest conforming to 

the 50 percentile margin of fluorescent signal on the static image, the relative distribution of 

signal intensities can be used as a measure of fluorescent signal mapping congruence. 

Confined NMI provides a metric that relies on intensity frequency distribution rather than 

the intensity spatial distribution, which can be useful when regions of interest undergo 

morphological transformations (Kearney et al., 2015).

3. Results

3.1 Ground Truth Results

A deformed grid superimposed on the static image is shown for IC Demons, SIFT, and 

Canny DIR methods in figure 7.

Figure 8 shows an absolute difference comparison between the static and deformed images 

using rigid registration, SIFT, and Canny DIR methods, with its corresponding deformed 

fluorescent image sets.

To get a better understanding of the intensity congruence between image sets a gamma 

analysis was done between the various image sets. Figure 9 shows a gamma analysis 

between the static and deformed images using rigid registration, SIFT, and Canny DIR 

methods.

3.2 Evaluation Metrics Results

The synthetic mouse surface ground truth scenarios were evaluated using the 90 percentile 

error margin for the IC Demons, SIFT and Canny DIR algorithms. Table 2 shows the DVF 

accuracy for all synthetic scenarios using various DIR methods.

The synthetic mouse surface ground truth scenarios were also evaluated using various noise 

contamination levels at the 90 percentile error margin for the IC Demons, SIFT and Canny 

DIR algorithms. Table 3 shows the DVF accuracy for all noise contamination scenarios at 0° 

and 40°, with deformation, using various DIR methods.

Table 4 shows the registration results from 7 mice evaluated with NMI, RMSECE, and FSIM 

evaluation metrics.

To evaluate the intensity congruence of the various registration algorithms the maximum 

gamma error was used as well as the overall gamma passing rate. A gamma passing rate of 

3% error with a (300 × 300) μm2 search range was used. For maximum gamma a (300 × 

300) μm2 search range was also used. Table 5 shows the gamma evaluation results.

In addition to the NMI, canny edge RMSECE, and FSIM, the mouse body boundary RMSEB 

was used to evaluate the anatomical accuracy of the various registration algorithms. To 

provide additional evaluation of the fluorescent signal mapping accuracy, confined NMI was 

used to evaluate the fluorescent intensity congruence of the various registration algorithms. 

Table 6 shows the mouse body RMSEB and confined NMI evaluation results.
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4. Discussion

The ground truth accuracy for the synthetic scenarios for IC Demons, SIFT, and Canny DIR 

were all evaluated at the 90% error margin. For the 0° scenario, all the algorithms performed 

well for all zones and were within 305μm at the 90% error margin. For the 10° scenario all 

the algorithms performed fairly well overall and the Canny DIR slightly outperformed all 

other algorithms. For the 20° scenario, the IC Demons and SIFT algorithms performed 

poorly for some zones, while the Canny DIR algorithm performed well for all zones and was 

within 300μm for all zones. At 30° rotation, most of the methods for all the zones did not 

perform well, except for zones 1 and 2 of the Canny DIR method. Zone 1 is within 310.1μm 

at the 90% error margin. For the 40° scenario, all algorithms for all zones perform poorly but 

the Canny Edge method performs far better than all other algorithms, especially for zone 1, 

which stays within 395.1μm at the 90% error margin. The synthetic ground truth test 

demonstrates that the Canny DIR method is accurate in the presence of rotations (≤ 20°). 

However, under larger rotations, between 20° and 30°, the surface tracking should be limited 

to zone 1. Rotations larger than 30° should be avoided.

The ground truth accuracy for the noise contamination scenarios for IC Demons, SIFT, and 

Canny DIR were all evaluated at the 90% error margin. For the level 1 noise contamination 

scenario, all three algorithms performed well with no rotation for all zones. Level 1 noise 

contamination combined with 40° rotation caused some degradation of the accuracy for the 

IC Demons and SIFT algorithms for all zones. For level 1 noise contamination, the Canny 

DIR method maximum accuracy degradation was 26μm at the 90% error margin for zone 4 

with a 40° rotational transformation. For the level 2 noise contamination, with no rotation, 

the SIFT and Canny DIR algorithms remained accurate for all zones but the IC Demons 

algorithm had a large accuracy degradation for all zones. For level 3 noise contamination, all 

the algorithms had large accuracy degradations for all zones, except for Canny DIR, which 

stayed within 42.8μm at the 90% error margin, with no rotation for zones 1 and 2.

In general, large noise contamination should be avoided and care should be taken to ensure 

sufficient and consistent illumination conditions. If large lighting variations are present, 

additional care should be taken during setup and positioning to reduce the degree of 

rotational variation between measurements. Also, experiments should be limited to zones 1 

and 2 if there are large uncertainties in lighting and rotational conditions.

For the evaluation matrices, the IC Demons performed near as well as rigid registration for 

the RMSECE evaluation method and only slightly better than the rigid registration method 

for the NMI and FSIM. Although the intensity distribution is transformed towards the target 

image, the resulting DVF is not a good representation of the physical morphological 

deformation (Castillo et al., 2009). The deformed grid may warp unrealistically in the 

presence of intensity incongruence between the image sets. This effect can be seen in figure 

7. Since the objective function of the Demons method is minimizing intensity difference 

distribution between the deformed and static image, intensity evaluation metrics can give 

artificially good results (Leow et al., 2005). The RMSECE method, produces poor results in 

this case because it is a representation of how well the edges between the images are aligned 

(Oliveira and Tavares, 2014).
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The SIFT performance was generally much better than IC Demons. This method will 

perform particularly well when evaluated with NMI or FSIM because the distinct features 

are chosen on regions of the image that have rich intensity and gradient features. So when 

these regions are selected for intensity matching they will have a somewhat better 

performance. This method performs only slightly better than IC Demons method when 

evaluated using RMSECE, because the edges between the deformed and static image do not 

match up well. This is in part because the distinct features are not dense along the image 

edges. If the distinct feature extraction method is less discriminatory, more features will be 

used but they will be less stable and will produce more deformation errors (Lowe, 2004). 

There will always be a tradeoff between the amount of distinct features being used and the 

quality of the overall quality of the features (Naveen, 2013). For this study the removal 

criteria was calibrated to achieve the best possible NMI performance.

There is an effect on the Canny edge sensitivity ε and the SIFT removal tolerance ω. The 

effects of changing the canny edge and SIFT constants can be seen in figure 10.

Although the optimal values for the upper threshold εupper and lower threshold εlower will 

vary somewhat depending on the imaging environment, a normalized εupper value of 0.1 and 

an εlower value of 0.01, tend to produce the best tradeoff between edge density and edge 

quality. Similarly, using an ω of 0.01 offered a good tradeoff between distinct feature density 

and quality.

The canny DIR method performed better than all other methods for every evaluation metric 

used. It performed only slightly better than the SIFT method for the NMI evaluation metric. 

This is in part due to the distinct feature selection criteria bias towards NMI performance, 

which stems from the removal criteria calibration (Torkkola, 2003). It had the largest 

performance increase over all other methods for the RMSECE evaluation metric. Since the 

Canny DIR method uses stable edges, it is expected that an edge-based evaluation matrix 

would give good results.

For the gamma analysis evaluation methods, it can be seen that the IC Demons method 

performed the worst, which suggests that the DVFs are not accurate. This method sacrifices 

spatial congruence for intensity congruence. As a result, the quality of the DVFs can suffer, 

in the presence of lighting and shading variations.

The SIFT method performed far better than the rigid registration method for both the 

maximum gamma and the gamma passing rate tests. This method had a mean maximum 

gamma of roughly twice as small as the rigid registration method and about triple the 

gamma passing rate. This is a good indication that this method had realistic DVFs.

The canny DIR method outperformed the district feature method for both the maximum 

gamma and the gamma passing rate tests. This method had a mean maximum gamma of 

roughly twice as small as the SIFT method and about 2x better gamma passing rate. This is a 

strong indication that the canny DIR method has the most accurate DVFs.
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It is important to note that, all the Canny DIR mice passed the gamma analysis test and that 

only two mice passed the gamma analysis test for the SIFT method. Also, none of the mice 

passed the gamma test for the IC Demons or rigid registration methods.

The confined NMI method showed the rigid registration and IC Demons methods 

performing the worst in most cases. In some cases the IC Demons performed worse than the 

rigid registration method. This is in part due to unrealistic DVFs resulting from Demons bias 

towards intensity congruence over spatial congruence. The Canny DIR algorithm 

outperformed all other methods for all mice. The Canny DIR method only performed 

slightly better than the SIFT method for mice 1 and 4. The SIFT distinct features were 

visually inspected for these cases and found to correspond well with the NMI region of 

interest. This helped the SIFT algorithm accurately map the fluorescent signal between 

image sets. For mouse 4 the rigid registration performed almost as well as the Canny DIR 

algorithm. This case was visually inspected and was found to not match anatomically very 

well but the fluorescent signals did spatially correspond to each other well.

The RMSEB method showed that the rigid registration and parametric algorithms performed 

on average nearly the same. The SIFT method had a large increase in performance compared 

with the rigid and parametric algorithms. For the SIFT method, the RMSEB evaluation 

metric accuracy depends heavily on the placement of the distinct features. If regions near the 

boundary do not have distinct features, those portions of the boundary will have to rely on 

sparse interpolation only and may not get registered accurately. The Canny DIR method 

performed better than all other algorithms for the RMSEB evaluation method. This is 

partially because it is likely that a Canny edge will form continuously around the boundary 

of the mouse.

Since, 2D white light images are based on 3D surface projections of mice, there are some 

limitations to using the Canny DIR method. Canny DIR, will not account for large mouse 

rotations, since the region of the skin surface being image can change between time points. 

Care must be taken during setup and positioning to help minimize rotation. The mice should 

be oriented such that the fluorescent implants are not too far from the center of the mouse 

surface, with respect to the imager. Future work will be directed at comprehensively 

analyzing the setup, and implantation imaging limitation of this method.

5. Conclusion

Canny DIR presents a possible solution to overcome the challenges of in vivo deformable 

image registration using optical imaging. The ground truth results, and the evaluation 

matrices, demonstrate that Canny DIR is capable of achieving high spatial accuracy between 

image sets in the presence of illumination changes, due to anatomical deformation, and low 

levels of axial rotation, due to setup errors. Furthermore, an in vivo metastatic cancer 

tracking experiment is underway which will shed light on the effectiveness of various cancer 

trap devices. This work has taken advantage of the capabilities of optical imaging systems, 

to provide the initial steps towards an in vivo, non-invasive, portable, fluorescent signal 

tracking solution.
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Figure 1. 
Posterior mouse surface with superimposed SIFT method (left), and Canny edge feature 

extraction method (right).
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Figure 2. 
The static image (A). The magnitude of the gradients (B). The Canny edge extraction (C). 

The points associated with the Canny edges superimposed on the static image (D). Zoomed 

in region of image D (E). Color coded separated canny edges, are shown superimposed on 

the static image (F).
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Figure 3. 
The original set of all points are shown (left). The stable set once all the unstable points have 

been removed (right).
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Figure 4. 
The synthetic mouse surface (A), with 15mm deformation at 0° rotation (B), 10° rotation 

(C), 20° rotation (D), 30° rotation (E), and 40° rotation (F).
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Figure 5. 
The synthetic mouse surface with no noise (A), with noise contamination level 1 (B), with 

noise contamination level 2 (C), and with noise contamination level 3 (D). All four noise 

contamination scenarios are shown with no deformation (left), deformation with no rotation 

(middle), and 40° rotation with deformation (right), as described in figure 4.
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Figure 6. 
The mouse surface distance from centermost vertex on the posterior abdomen (left). The 4 

local zones of the mouse from centermost (zone 1) to outermost (zone 4).
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Figure 7. 
A deformed grid superimposed on the static image is shown for IC Demons (A), SIFT (B), 

and Canny DIR (C).
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Figure 8. 
White light absolute value difference comparison between the static and deformed images 

for rigid registration (A), SIFT (B), and Canny DIR (C). Fluorescence absolute value 

difference comparison between the static and deformed images for rigid registration (D), 

SIFT (E), and Canny DIR (F).
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Figure 9. 
The white light image with the fluorescence superimposed on the static image (A). The 

static image with the superimposed fluorescence gamma comparison between the static and 

rigid registration (B), SIFT (C), and Canny DIR (D). The yellow box shows the area under 

consideration.
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Figure 10. 
Canny edges with an εlower of 0.1 and an εupper of 0.9 (A), an εlower of 0.01 and an εupper of 

0.1 (B), and an εlower of 0.001 and an εupper of 0.01 (C). SIFT points with an ω of 0.1 (D), 

an ω 0.01 (E), and an ω 0.001 (F).
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