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Abstract

Background—To explore possible markers of developmental immunotoxicity, we prospectively 

examined 56 children to determine associations between exposures to methylmercury and 

persistent organic pollutants since birth and the comprehensive differential counts of white blood 

cells (WBC) at age 5 years.

Materials and methods—Extended differential count included: neutrophils, eosinophils, 

basophils, lymphocytes (including T cells, NK cells, and B cells), and monocytes. Organochlorine 

compounds (OCs) including polychlorinated biphenyls (PCBs) and pesticides, five perfluoroalkyl 

substances (PFASs), and total mercury (Hg) were measured in maternal (n=56) and children’s 

blood at 18 months (n=42) and 5 years (n=56). We constructed latent functions for exposures at 

three different ages using factor analyses and applied structural equation models adjusted for 

covariates.

Results—Prenatal mercury exposure was associated with depleted total WBC, especially for 

lymphocytes, where a one standard deviation (SD) increase in the exposure was associated with a 

decrease by 23% SD (95% CI: −43, −4) in the cell count. Prenatal exposure to OCs was 
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marginally associated with decreases in neutrophil counts. In contrast, the 5-year PFASs 

concentrations were associated with higher basophil counts (B= 46% SD, 95% CI: 13, 79). 

Significantly reduced subpopulations of lymphocytes such as B cells, CD4-positive T helper cells 

and CD4 positive recent thymic emigrants may suggest cellular immunity effects and 

dysregulation of T-cell mediated immunity.

Conclusion—Developmental exposure to environmental immunotoxicants appears to have 

different impacts on WBC counts in childhood.
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1. Introduction

Exposure to environmental pollutants may significantly affect the immune system and cause 

immunologic suppression in children [1]. The developing immune system appears to be 

highly sensitive to toxic effects, and experimental animal studies and in vitro assays have 

shown immunomodulatory effects of persistent organic pollutants (POPs), especially 

polychlorinated biphenyls (PCBs) [2-5], organochlorine pesticides (OCPs) [5-7], and 

perfluoroalkyl substances (PFASs) [8-10], as well as mercury and other metal compounds 

[11, 12]. These immunotoxicants are ubiquitous, most are persistent, and they are widely 

detected in children and adults from the general population [13].

In humans, recent epidemiologic studies have reported immunomodulatory effects of 

mercury [14-16] and POPs [13, 17, 18] in children and adults. For example, higher 

exposures to PFASs were associated with a reduction of the humoral immune response to 

booster vaccination [17-19], whereas mercury exposures were associated with increased pro-

inflammatory cytokines, antinuclear and antinucleolar autoantibodies and decreased anti-

inflammatory cytokines [20]. Developmental exposure to PCBs and OCPs has also been 

shown to modulate the immune system in infants [21, 22], children [23], and adults [13]. 

Higher 6-month infant concentrations of PCB-153 and DDE 

(dichlorodiphenyldichloroethylene) were strongly associated with lower 6-month BCG-

specific antibody levels [24], and higher maternal and infant PCB concentrations have been 

associated with a reduced volume of the infant thymus, the site of T-cell maturation [25]. 

Moreover, early-life environmental PCB exposure was associated with fluctuations in major 

lymphocyte subsets [26], and affected the dynamics of cell surface lymphocyte receptor 

expression [27]. Overall, previous studies provide compelling evidence of the detrimental 

effects of exposure to environmental toxicants on the immune system, including immune 

cell counts, cytokine responses, and levels of specific antibodies [28]. However, most of the 

human studies on immunotoxicity of POPs and mercury lack a prospective design with age-

related exposure profiles, and no study has so far attempted to examine the potential joint 

effect of different POPs on the immune system development. These complexities also 

indicate a need for new statistical tools to disentangle the role of multiple exposures on 

multiple immune system markers [29].
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The white blood cell (WBC) count has been proposed as an immunologic end point to detect 

immunotoxic effects of environmental contaminants in prospective epidemiologic studies 

[30]. In humans, WBC counts have proven useful in signaling clinically relevant 

hematologic changes that may result in clinically identifiable immune disorders [31], with 

absolute numbers of WBC providing biologically more reliable information than 

percentages [32].

In the present study, we explored the associations between exposures to POPs and 

methylmercury measured at birth and at ages 18 months and 5 years in regard to extended 

WBC differential counts at age 5.

2. Materials and methods

2.1. Study population

The present study focuses on fifty-six children from a cohort of consecutive births formed in 

the Faroe Islands to include 490 children during an 18-month period between late 2007 and 

early 2009. Whole blood was taken from the cord and from the mother two weeks after 

parturition. In addition, maternal hair at parturition was also sampled. Blood and hair were 

obtained from the child at successive clinical examinations at ages 18 months and 5 years. 

At age 5 years, children underwent detailed examinations including immune system 

biomarkers. On dates when fresh blood samples could be transported to the immunological 

laboratory in Denmark, we obtained maternal consent for a subgroup of 56 children to draw 

additional blood for the purposes of the present study. Standard questionnaires were used to 

record past medical history, current health, social factors, and nutritional habits during and 

before pregnancy. Relevant obstetric information, including birth weight, parity and 

maternal age were abstracted from hospital’s medical records.

The study protocol was approved by the ethical review committee serving the Faroe Islands 

and by the institutional review board at the Harvard T.H. Chan School of Public Health, and 

written informed consent was obtained from all mothers.

2.2. WBC counts and lymphocyte subsets

The total number of WBCs, neutrophils, eosinophils, lymphocytes, and monocytes were 

recorded by standard procedures using the ABX Pentra DX 120 (Horiba, United Kingdom/

Germany). Furthermore, T-cell (CD3), T-helper cells (CD4), T-cytotoxic cells (CD8), B-

lymphocytes (CD19), NK (CD16/56) cells and CD4+ recent thymic emigrants (CD4-RTE) 

absolute counts were performed by a single-platform no-lyse-no-wash procedure. Fifty μl 

EDTA anti-coagulated peripheral blood were incubated in TRUCount tubes (BD 

Biosciences, Denmark) with a panel of conjugated monoclonal antibodies. The following 

combinations of antibodies were used to characterize T cells as CD4 T cells (CD3-PerCP 

(clone SK7), CD4-FITC (clone SK3), CD8 T cells (CD3-PerCP (clone SK7), CD8-PE 

(clone SK1)) and CD4-RTE (recent thymic immigrant) cells as (CD3-ECD (clone UCHT1), 

CD4-PC7 (clone SFCT12T4D11), CD31-PE (clone WM59), CD45RA-FITC (clone L48), 

and CD45RO-PC5 (clone UCHL1), NK cells as (CD45-PerCP (clone 2D1), CD16/56-PE 

(clone B73.1 + NCAM16.2), and CD3-FITC (clone SK7)), and B cells as (CD19-PE (clone 
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4G7), CD45-PerCP (clone 2D1)) (BD Biosciences, Beckman Coulter and AbD Serotec, 

Denmark). The samples were measured on FC500 flow cytometer (Beckman Coulter, 

Denmark). The laboratory participates in the quality assurance program by National 

External Quality Assessment Site (NEQAS).

2.3. Exposure assessment

PCBs, OCPs (p,p’ and o,p isomers of dichlorodiphenyltrichloroethane [DDT] and DDE, and 

hexachlorobenzene [HCB]) and PFASs (perfluorohexane sulfonic acid [PFHxS], 

perfluorooctanoic acid [PFOA], perfluorooctane sulfonate [PFOS], perfluorononanoic acid 

[PFNA], and perfluorodecanoic acid [PFDA]) were measured in cord (n=56), maternal 

(n=56) and children’s serum at ages 18 months (n=42) and 5 years (n=56). In addition, as 

measures of methylmercury exposure, mercury (Hg) was measured in cord blood, maternal 

blood and hair, and in child blood and hair at age 5 years.

Serum analyses of DDE, DDT, HCB, and PCBs were carried out by the same procedure for 

all samples using a gas chromatograph with electron capture detection at Department of 

Environmental Health, University of Southern Denmark [23]. To avoid problems with PCB 

congeners not assessed or below the detection limit, ΣPCB was calculated as the sum of 

major congeners 138, 153, and 180 multiplied by 2 [33]. DDE at 18 months and 5 years, and 

DDT at 18 months were detected in less than 50% of samples and were therefore not further 

considered. The PFASs were measured using online solid-phase extraction and analyzed 

using high-pressure liquid chromatography with tandem mass spectrometry [34]. The 

accuracy and reliability of the data was ensured by including, in each analytical series, 

quality control serum samples, calibration standards, and reagent and serum blanks. Within-

batch and between-batch coefficient of variations were better than 3.0% and 5.2% for all 

analytes. Total mercury analyses in hair and blood were performed on a Direct Mercury 

Analyzer (DMA-80, Milestone Inc, Sorrisole, Italy), with imprecision below 4%. All POP 

results below the limit of detection (LOD) were replaced by the LOD divided by √2.

2.4. Statistical analyses

WBC, Hg, and POP concentrations were all log-transformed (base 2) before they entered the 

models to approximate a normal distribution. One child had very high WBC count 

(Total=16.4 ×109 cells/L) due to a fever and was consequently removed from the analyses. 

Due to the large number of exposure variables, we used structural equation models (SEM) to 

assess the covariate-adjusted associations between prenatal, 18-month, and 5-year exposures 

and the extended WBC counts at 5 years.

We first conducted an exploratory factor analysis (EFA) without a priori information on the 

structure and correlations in the data, followed by a confirmatory factor analysis (CFA) to 

categorize exposures into a small number of factors, thereby reducing the extent of multiple 

comparisons. For prenatal exposures, this method resulted in three factors explaining 65% of 

the variance. Factor 1 included the 5 PFASs, factor 2 included mercury indicators (i.e., cord 

blood, maternal blood and hair concentrations), and factor 3 included HCB, PCB, DDE, 

o,p’-DDT, and p,p’-DDT. For 18-month exposures, the method yielded 2 factors explaining 

65% of the variance. Factor 1 included the 5 PFASs, whereas factor 2 included HCB, PCB, 

Oulhote et al. Page 4

Reprod Toxicol. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



o,p’-DDT, and p,p’-DDE. At 5 years, three factors explained 56% of the variance. Factor 1 

included the 5 PFASs; factor 2 included child hair-Hg and blood-Hg concentrations, whereas 

factor 3 included HCB, PCB, p,p’-DDE, and p,p’-DDT. For the sake of simplicity, factors 1, 

2, and 3 will be referred to as PFAS, mercury (Hg), and organochlorine (OC) functions, 

respectively. Correlations between the latent functions ranged between 0.07 (for 5-year Hg 

and OC) and 0.79 (for 18-month PFAS and OC). Although these correlations show good 

discriminant validity for the constructed factors and are considered reasonable to avoid 

multicollinearity issues in SEM analyses, the small sample size precluded the simultaneous 

analyses of all the factors in a single model. We therefore completed separate SEM analyses 

linking each latent exposure function with each WBC count. For each age, the exposure 

factors were regressed on the WBC counts, while adjusting for covariates. Models for 

prenatal exposures were adjusted for age at age-5 examination (months), sex, parity (no 

older sibling / 1 or more older siblings), and maternal smoking during pregnancy; whereas 

models for 18-month and 5-year exposures were further adjusted for birth weight (g) and 

duration of breastfeeding (< or ≥ 6 months). Missing data for breastfeeding (n=2) were 

compensated by Full Information Maximum Likelihood estimation.

3. Results

3.1. Descriptive results

The characteristics of the study population are presented in Table 1. The mean age of 

children was 60 months, with fewer boys than girls (39% vs 61%). Most of the children had 

an older sibling (71%), and 41% were breastfed for 6 months or longer (Table 1). Apart from 

one child with a total WBC count below 4 × 109 cells/L, results from all children were 

within the normal range (4-11 × 109 cells/L) [35]. The total WBC count did not differ in 

regard to age, sex, parity, maternal smoking during pregnancy, birth weight, or breastfeeding 

duration.

3.2. Exposures

Among the PFASs, PFOS showed the highest serum concentrations at all ages, followed by 

PFOA and PFHxS, while PFNA and PFDA occurred in the lowest concentrations (Table 2). 

Between-PFAS correlation coefficients for maternal serum or child at age 18-month and 5-

year ranged from 0.29 to 0.87 and were higher at 18 months and lower at 5 years. Within-

PFAS correlation coefficients ranged between 0.28 and 0.79, and were generally higher for 

the child’s 18-month and 5-year serum samples and lower between maternal and the child’s 

postnatal serum samples (Figure 1). For methylmercury exposures, the higher cord blood 

concentrations were closely correlated with those in maternal blood (0.92). Blood- and hair-

Hg concentrations were also well correlated on each occasion (0.73 for maternal 

concentrations and 0.89 for child concentrations at age 5). Regarding POPs, PCBs showed 

the highest within correlation coefficient between serum concentrations at 18 months and 5 

years. PCBs also showed high correlations with the other POPs and PFASs at each age 

(Figure 1). PFAS concentrations at all ages were generally lower in mothers with a previous 

childbirth, whereas POPs at 18 months were lower in children breastfed for 6 months or 

more.
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3.3. WBC counts in relation to exposure levels

The CFA models exhibited a good to very good fit to the data. All measured exposures 

showed significant and high correlations to their latent functions (Table 3) and therefore 

appeared as appropriate indicators. The variance in observed exposures explained by the 

latent exposure functions ranged between about 50 and 100%.

SEMs showed an acceptable (age-5 models) to a very good fit to the data. Table 4 shows the 

resulting associations between the latent exposure functions for PFAS, Hg, and OC at each 

age in regard to the WBC counts at 5 years. Higher prenatal methylmercury exposure was 

consistently associated with lower WBC counts. For instance, a one standard deviation (SD) 

increase in maternal concentrations was associated with a 23% SD decrease in lymphocytes 

(95% confidence intervals [CI]: −43, −4%) and a 30% SD decrease in total WBC count 

(95% CI: −56, −5%). Maternal OC concentrations were marginally associated with 

decreases in neutrophil and total WBC counts, with a 1-SD increase in maternal OC 

concentrations associated with a 27% SD decrease in total WBC count (95% CI: −57, 4%). 

Further, a 1-SD increase in 5-years OC concentrations was also marginally associated with a 

23% SD decrease in total WBC count (95% CI: −47, 1%). Finally, higher PFAS 

concentrations at all ages were associated with higher basophil counts (B=28 % SD; 95% 

CI: −2, 57%, B=34 % SD; 95% CI: 0, 68%, and B=46 % SD; 95% CI: 13, 79%, respectively 

for maternal, 18-month, and 5-year PFAS).

In regard to the specific lymphocyte subpopulations, maternal Hg concentrations were 

significantly associated with decreased CD3+ T cells, CD4+ cells, CD4-RTE and CD19+ B 

Cells concentrations. For instance, a 1-SD increase in maternal Hg concentrations was 

associated with a 23% SD (95% CI: −40, −6%) and a 24% SD (95% CI: −47, −1%) decrease 

in CD4+ T cell and 19+ B cell concentrations, respectively. No association was observed 

with 18-month and 5-year exposures (Table 5). Attempts to incorporate all exposure 

information in a single model failed, as the fit indices were poor, and signs of 

multicollinearity issues were observed in the resulting estimates, with unstable parameter 

estimates and negative variances.

4. Discussion

In this prospective study with age-related methylmercury and POPs exposure profiles, we 

found an association between prenatal methylmercury exposures and depleted total white 

blood cell counts, especially for monocytes, basophils and CD3+ T lymphocytes, CD4+ T 

lymphocytes, CD4+ recent thymic emigrants (CD4-RTE), and CD19+ B lymphocytes. 

Further, prenatal and concurrent concentrations of organochlorine compounds were 

marginally associated with decreased neutrophil and total WBC counts. Finally, higher 18-

month and 5-year PFAS concentrations were associated with increased basophil counts in 

the children at age 5 years.

Very few studies investigated WBC count in relation to developmental exposure to 

methylmercury and POPs. Of greatest interest, our study suggests a negative impact on 

recent thymic immigrant cells, as well as on mature lymphocyte subsets. The results are in 

line with other human studies showing decreased lymphocyte [16, 36], and monocyte [37] 
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counts in relation to mercury exposures, but contradict a recent cross-sectional study 

showing a positive correlation of the serum-mercury concentration – likely reflecting 

inorganic mercury exposure – with lymphocyte count [15]. In the Faroes, total mercury 

concentrations in blood and hair primarily indicate exposures to methylmercury [38], thus 

suggesting that different chemical speciations may affect the mercury-associated toxicity. 

Mercury-induced cytotoxicity has been demonstrated in cells of the immune system, 

including B cells, T cells, and monocytes [39, 40], and two in vitro studies demonstrated that 

Hg exposure causes mitochondrial dysfunction and enhances the apoptosis of neutrophils 

and mononuclear cells including T cells [41, 42]. However, mercury has also been shown to 

exert immunomodulatory and anti-apoptotic effects in animals [43] and to be associated with 

autoimmune diseases in both animals and humans [44]. Although no clear picture has 

emerged so far, the differences between studies may mainly be attributable to differences in 

concentrations and mercury species, i.e., whether inorganic mercury or methylmercury [45].

Our study also found that OCs tended to have similar effects as methylmercury, though not 

significantly so. Previous studies have reported similar findings in various settings. Higher 

PCB concentrations were associated with lower neutrophil and lymphocyte percentages, and 

a lower total WBC count [13, 46]. Further, Inuit infants whose mothers had elevated levels 

of PCBs and dioxins in their breast milk had decreased CD4+/CD8+ T cell ratio at 6 and 12 

months of age [47]. A joint effect of higher exposures of DDT and PCBs on CD16+ NK 

cells was also observed in Japanese infants [22]. Finally, neutrophil counts were inversely 

related to OC pesticides concentrations in the general U.S. population form NHANES 

1999-2002 [48]. Similar findings have also been reported in animal and in vitro studies 

[49-52]. The strong correlations between PCBs and other OCs exposures observed in this 

population make it difficult to distinguish between effects of specific OC substances. It is 

also worth mentioning that although we were able to collect serum samples and examine OC 

concentrations at different time points, with apparent different associations with neutrophils 

and total WBC count, it is still challenging to state about the exact timing of greatest 

susceptibility. Given the long half-lives of OCs, the serum concentrations at 18 months and 5 

years are likely still affected by prenatal and lactational transfer from the mother.

We also observed an association between PFAS exposure and increased basophil count. 

Although the role that basophils play in the immune system has not been thoroughly 

investigated in the past, recent studies revealed their crucial role in various immune 

responses such as allergy and anti-parasitic protective immunity [53]. Importantly, elevated 

IgE concentrations correlate with increased numbers of circulating basophils both in mice 

and in humans [54], and recent evidence from epidemiologic and animal studies suggests 

that PFASs may be associated with allergy and asthma-related outcomes, perhaps as a result 

of a shift in the host’s immune state toward a more TH2-like state [55-59].

Based on the cell counts obtained in the present study, current evidence does not allow any 

conclusions regarding any increased risk of adverse outcomes. As WBC counts could be 

easily generated in population studies, further investigation is warranted, even though the 

clinical significance of these changes is unclear at this point. However, the results are 

indicative of immunotoxic and/or immunomodulatory effects of methylmercury and POPs, 

and the demonstrated effects on the cellular and humoral immune responses might lead to 
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increased susceptibility to various infectious diseases or to immune dysfunction with an 

impaired immune tolerance. Interestingly, our findings point to developmental toxicity on 

the thymus, as demonstrated by the lower CD4-RTE concentration, associated with perinatal 

methylmercury exposure. One may speculate that a compromised thymic function could lead 

to insufficient T cell helper activity for developing B-cell based immunity and in the longer 

term perhaps also an increased risk of autoimmune disease, as may be seen in immune 

deficiency conditions.

A major limitation of this study is the small sample size. Although the use of structural 

equation models allowed a reduction of multiple comparisons and a gain in statistical power 

due to the by reduced measurement error, the small sample size did not allow for mutual 

adjustment of the three families of exposures, nor mutual adjustment for pre- and postnatal 

exposures.

To our knowledge, this is the first study to investigate associations of both prenatal and 

postnatal exposure to multiple POPs and methylmercury and children’s WBC counts. 

Despite the small sample size, we were able to adjust for several potentially relevant 

confounders, and their effect on the results was marginal. The potential influence of any 

unmeasured determinant of WBC would appear minimal, especially when taking into regard 

the homogeneity of the Faroese population in terms of socio-demographic, lifestyle, and 

genetic characteristics. Thus, these findings should inspire further study of the possible 

effects of developmental exposure to environmental chemicals on children’s immune 

functions.

5. Conclusions

In this prospective study of Faroese children, we report that prenatal methylmercury and OC 

exposures are inversely associated with the total WBC counts at age 5 years. The finding of 

significantly reduced subpopulations of lymphocytes such as B-lymphocytes, CD4 positive 

T helper cells and CD4 positive recent thymic emigrants suggest an effect of prenatal 

methylmercury exposure on cellular immunity and a dysregulation of T-cell mediated 

immunity. Prenatal OC exposure was marginally associated with decreases in neutrophil 

counts, while postnatal PFAS concentrations appeared to be associated with increased 

basophil counts. These observations suggest different effects of developmental exposures to 

immunotoxicants on circulating leukocyte populations in childhood. This study provides 

new evidence of the potential immunomodulatory effects of persistent organic pollutants and 

methylmercury and suggests that extended differential counts may be useful in future 

research.
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HIGHLIGHTS

• White blood cell counts may be affected by developmental exposure to 

immunotoxicants,

• We assessed associations of latent pollutant exposures with cell counts at age 

5 years,

• Prenatal methylmercury exposure was associated with depleted white cells, 

especially lymphocytes,

• Perfluorinated compound exposures at age 5 were associated with higher 

basophil counts,

• White cell counts appear to be affected in different ways by immunotoxicant 

exposures.
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Figure 1. 
Correlation heat map and hierarchical clustering of maternal, 18-month, and 5-year POPs 

and Hg exposures. Red represents positive correlations whereas blue represents negative 

ones. The intensity of the color is a function of the correlation.
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Table 1

Characteristics of the study population (n=55)

Population characteristic Mean (SD) or n (%)

Age, months 60.1 (0.8)

Birth weight, grams 3684 (537)

Maternal age at delivery, years 30.6 (5.7)

Sex

 Boys 22 (40)

 Girls 33 (60)

Parity

 No siblings 16 (29)

 ≥ 1 siblings 39 (71)

Maternal smoking during pregnancy

 No 44 (80)

 Yes 11 (20)

Breastfeeding duration

 < 6 months 32 (60)

 ≥6 months 21 (40)

 Missing 2

Differential White blood cells count (109 Cells/L)

 Neutrophils 3.13 (1.75)

 Basophils 0.10 (0.13)

 Lymphocytes 2.57 (0.84)

  CD3 2.00 (0.62)

  CD4 1.11 (0.40)

  CD8 0.75 (0.26)

  CD4-RTE 0.55 (0.24)

  B Cells 0.56 (0.24)

  NK Cells 0.16 (0.07)

 Monocytes 0.43 (0.15)

 Eosinophils 0.31 (0.25)

 Total WBC 6.54 (2.12)
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Table 3

Results of the confirmatory factor analysis for prenatal, 18-month, and 5-year exposures.

Factors Indicators Loading SE p-value Standardized
estimate

Prenatal

PFAS

PFOA 1.00 0.00 NA 0.65

PFNA 1.22 0.25 <0.001 0.78

PFDA 1.43 0.30 <0.001 0.94

PFOS 1.04 0.20 <0.001 0.83

PFHxS 1.29 0.38 0.001 0.62

OC

HCB 1.00 0.00 NA 0.92

PCB 1.34 0.17 <0.001 0.84

p,p'-DDE 1.80 0.19 <0.001 0.87

o,p'-DDT 1.44 0.25 <0.001 0.65

p,p'-DDT 1.33 0.20 <0.001 0.7

Hg

hair Hg 1.00 0.00 NA 0.87

blood Hg 0.91 0.13 <0.001 0.91

CB-Hg 0.95 0.11 <0.001 0.99

18
months

PFAS

PFOA 1.00 0.00 NA 0.89

PFNA 1.03 0.10 <0.001 0.92

PFDA 0.88 0.11 <0.001 0.9

PFOS 0.86 0.12 <0.001 0.9

PFHxS 1.56 0.23 <0.001 0.82

OC

HCB 1.00 0.00 NA 0.94

PCB 1.83 0.28 <0.001 0.99

p,p'-DDE 1.62 0.61 0.008 0.65

o,p'-DDT 1.27 0.11 <0.001 0.65

5 years

PFAS

PFOA 1.00 0.00 NA 0.54

PFNA 1.74 0.48 <0.001 0.67

PFDA 1.32 0.39 0.001 0.53

PFOS 1.59 0.52 0.002 0.85

PFHxS 1.95 0.52 <0.001 0.62

OC

HCB 1.00 0.00 NA 0.97

PCB 1.85 0.33 <0.001 0.84

p,p'-DDE 1.80 0.27 <0.001 0.83

p,p'-DDT 1.05 0.22 <0.001 0.5

Hg
hair Hg 1.00 0.00 NA 0.89

blood Hg 0.84 0.35 0.02 1
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