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Abstract

We describe a stochastic model to compute in vivo protein turnover rate constants from stable-

isotope labeling and high-throughput liquid chromatography–mass spectrometry experiments. We 

show that the often-used one- and two-compartment nonstochastic models allow explicit solutions 

from the corresponding stochastic differential equations. The resulting stochastic process is a 

Gaussian processes with Ornstein–Uhlenbeck covariance matrix. We applied the stochastic model 

to a large-scale data set from 15N labeling and compared its performance metrics with those of the 

nonstochastic curve fitting. The comparison showed that for more than 99% of proteins, the 

stochastic model produced better fits to the experimental data (based on residual sum of squares). 

The model was used for extracting protein-decay rate constants from mouse brain (slow turnover) 

and liver (fast turnover) samples. We found that the most affected (compared to two-exponent 
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curve fitting) results were those for liver proteins. The ratio of the median of degradation rate 

constants of liver proteins to those of brain proteins increased 4-fold in stochastic modeling 

compared to the two-exponent fitting. Stochastic modeling predicted stronger differences of 

protein turnover processes between mouse liver and brain than previously estimated. The model is 

independent of the labeling isotope. To show this, we also applied the model to protein turnover 

studied in induced heart failure in rats, in which metabolic labeling was achieved by administering 

heavy water. No changes in the model were necessary for adapting to heavy-water labeling. The 

approach has been implemented in a freely available R code.

Graphical Abstract
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INTRODUCTION

The continuous degradation and synthesis of proteins plays an important role in maintaining 

cellular homeostasis.1 The dynamic equilibrium of cellular protein abundances can change 

due to, for example, external stimuli, developmental programs, onset of diseases, or aging. 

The new equilibrium is achieved by balancing between alterations in the rate of synthesis 

and the rate of degradation. The combined process of synthesis and degradation termed as 

protein turnover refers to the movement of a protein through its pool and is often expressed 

as a first-order rate constant.2 It is thought that protein degradation is a stochastic process; 

all proteins (newly synthesized and old) have the same probability of being degraded.2

The labeling of proteins with radioactive amino acids is considered to be a “golden 

standard” for studying proteome dynamics. In this “pulse-chase” method, proteins of interest 

are radioactively labeled over a brief period of time (the pulse), and then the decay in 

radioactivity is measured over time (the chase) and is used to determine the protein half-
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life.3 This assay is accurate and minimally perturbative but requires a specific antibody for 

each protein, which makes it difficult for scaling to multiple proteins. Fluorophore tagging 

of proteins have also been used for proteome dynamics studies.4,5 Although these methods 

are real-time, it has been argued that the tagging may affect protein turnover properties, both 

through changing the protein structure and by altering their abundance and stoichiometry 

relative to interaction partners.6

Mass-spectrometry-based proteomics is a widely used, high-throughput technology to 

identify and quantify proteins.7 Most of the quantitative proteomics applications so far have 

been used for measuring the net change in protein abundance.8 The technology has recently 

been enhanced and applied9 in studies aimed at measuring the rate of protein turnover, both 

in vivo10–15 and in vitro.16–19 Protein turnover studies using metabolic labeling and liquid 

chromatography–mass spectrometry (LC–MS) analyses have a complex design that includes 

a critical bioinformatics component to extract protein-decay rate constants.2

The work discussed herein focuses on the application of a stochastic model to extract protein 

turnover rate constants from in vivo protein turnover studies. Briefly, the metabolic 

incorporation of stable isotope and LC–MS measurements of time course peptide and 

protein labeling provide data on protein kinetics. Traditionally, exponential decay curves 

have been used to fit the experimental data and infer the protein turnover rate 

constants.11,18,20,21 Single-compartment (single exponential) and multicompartment (first-

order synthesis and multiexponential)21,22 models have been employed. Time-dependent 

ordinary differential equations (ODE) have also been used to model the stable isotope 

incorporation in metabolic labeling.22,23 However, the general applicability of these models 

to in vivo studies are limited because they may result in negative decay rates (for 

multicompartment systems) and are not able to explain fluctuations in the experimental 

data.21

Stochastic models were recently applied to high-throughput time-course data in proteome 

studies.24,25 SORAD24 used a Gaussian process (GP) to describe time-course data of 

phosphor proteins from enzyme-linked immunosorbent assay experiments. Similar models 

have been used for chromatographic alignment25 and beta-binomial process modeling of 

high-throughput sequencing.26 The stochastic processes add the flexibility of accounting for 

fluctuations in the data. Here, we describe a nonparametric, data-driven stochastic approach, 

GP, for modeling time-course data from metabolic labeling experiments. We show that the 

GP with the Ornstein–Uhlenbeck (OU) kernel is a natural solution to the protein turnover 

kinetics in one- or two-compartment models. This approach produces fits that are highly 

improved compared to the traditional curve-fitting models; it overcomes problems with 

negative decay rates and random fluctuations in decay rates. Last, the model is isotope-

independent (i.e., 15N or 2H labeling). The R code implementing the model is available at 

https://ispace.utmb.edu/users/rgsadygo/Proteomics/ProteinKinetics.

METHODS

Protein turnover studies using metabolic labeling, mass spectrometry and bioinformatics 

have a complex design and comprise multiple stages.27 There are some variations dependent 
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on what type of labeling (e.g., 15N, 2H, or 13C) is used and how a tracer is administered. For, 

e.g., studies that rely on heavy-water labeling, the animals are provided heavy water using a 

“primed-infusion” logic. For example, animals are given an initial loading bolus to 

instantaneously raise the enrichment of body water to a desired level. They are 

simultaneously given labeled water in the drinking bottles to maintain the enrichment. At 

predetermined time points, the animals are sacrificed, and the organs or tissues are collected. 

LC–MS/MS is used to identify proteins and measure the level of incorporation of heavy 

isotopes.28–30 The time-course data of the heavy isotope incorporations is then modeled to 

extract the protein turnover rate constant (Figure 1). The last stage is the focus of this study. 

In the following text, we will first review the current models and then describe our stochastic 

model to extract protein turnover rate constants from heavy-isotope labeling data.

Ordinary differential equations have previously been used to model the incorporation of the 

heavy-isotope-labeled species in metabolic labeling and LC–MS.21,23 As a prototypical 

study, Guan and colleagues21 have used one- and two-compartment models to determine 

protein turnover rate constants from experiments using an 15N-labeled algae diet (produced 

from 15N-enriched NaNO3) and mass spectrometry. In brief, the one-compartment model 

assumes that proteins are synthesized at a constant rate, ksyn, and degraded proportional to 

their abundance levels with the degradation rate constant of kdeg. With the additional 

assumption of the steady-state for a protein concentration, it was shown that the fraction of 

the heavy-isotope-labeled proteins, β(t) (characterized by the relative isotope fraction, RIF), 

is described by a first-order deterministic equation:

(1)

where t is the time, and the initial value condition is β(0) = 0(the baseline, before the tracer 

administration). The solution of this equation is a growth curve with a single exponent:

The details of all formula derivations are provided in the Supporting Information. We note 

that under the steady-state assumption (which is used in this work), the protein degradation 

rate constant is equal to the fractional protein synthesis rate (ratio of the synthesis rate over 

the protein concentration). Thus, throughout the paper, we refer to the protein turnover rate 

constant and degradation rate constant interchangeably.

Several other publications11,12,18,20,31 modeling protein turnover from stable isotope 

labeling experiments have used equations similar to eq 1. However, when applied to the data 

sets from mouse protein turnover studies that used 15N labeling, the fit to the data was often 

complicated (in particular, for fast protein turnover).21 Better results were achieved by using 

a two-compartment model. In this model, the first compartment considers the kinetics of 

amino acids, and the second compartment accounts for the amino acids incorporation into 

proteins. Protein synthesis is assumed to be a first-order process. It is modeled to depend on 
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the concentrations of heavy-isotope-labeled amino acids (precursor pool). The model leads 

to a system of equations for the fraction of heavy-isotope-labeled amino acids, α(t) and β(t):

(2)

where ksyn is the rate constant of protein synthesis from the precursor amino acids. Eq 2 was 

derived under the assumption of the steady-state for the total (labeled and unlabeled) protein 

level. The amino acids are synthesized with the constant rate, k0, and degraded proportional 

to their abundances with the rate constant, ksyn. Protein degradation is characterized with the 

rate constant, kdeg. The equation for α(t) is solved first, with the initial value for stable-

isotope-labeled amino acids, α(0), set equal to zero:

which leads to the following equation for the β(t):

(3)

The solution of eq 3 (β(0) = 0) is the two-exponent growth curve:

The solutions for α(t) and β(t) were obtained with the assumption that the heavy-isotope 

labeling is asymptotically complete. This assumption, while somewhat reasonable for 

incorporation of 15N-labeled amino acids into proteins, will not be generalizable for 

incorporation of deuteriums during the administration of heavy water. This is because, in 

contrast to the fully 15N-labeled diet, the metabolic labeling with heavy water involves 

administration of only ~5% 2H2O in the drinking water. Metabolic labeling with 100% 15N 

in the diet may lead to the complete labeling of all nitrogen atoms in a protein, but using 5% 

heavy water will only result in partial labeling of the proteins. The incomplete labeling was 

also observed6 in labeling by SILAC.32 It was observed that unless the cell medium is 

regularly renewed by labeled amino acids, complete labeling of proteins will not be 

achieved. In animal experiments, it is not feasible to renew the cellular environment.

To account for the incomplete labeling, we introduced a new parameter, the heavy-isotope-

enrichment fraction at the asymptote, λ. With this parameter, the solution for β(t) becomes

(4)
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A more descriptive text on the one- and two-compartment models and their solutions is 

provided in the Supporting Information. Even though the two-compartment model produced 

significantly improved fits compared to the experimental data, it was observed that the 

model was not able to account for the stochastic fluctuations in the experimental data.21 It 

has subsequently lead to high synthesis rate constants in the two-compartment model and 

negative decay rate constants for the expanded, three-compartment model. Here, we will 

show that stochastic differential equations based on either eq 1 or eq 2 allow the exact 

solution in the form of a GP with OU kernel. The stochastic equation uses a model 

fluctuation parameter that allows one to account for and estimate the effects of stochastic 

fluctuations in experimental data.

The stochastic analog of eq 3 for β(t) (with the inclusion of the incomplete isotope labeling 

at the asymptote) is

(5)

where X(t) is a stochastic variable denoting the fraction of the heavy-isotope-enriched 

protein (β(t) in the deterministic model), Γ(kdeg, ksyn, t, X, λ, and σγ) is the volatility, 

which, in general, is dependent on the model parameters ksyn, kdeg, λ, and X(t), and the 

variance of the model fluctuations, σγ; B(t) is the Brownian motion (white Gaussian noise). 

If we assume that, in addition to the model fluctuations, there are also measurement errors 

that are described by a white Gaussian noise, ε (with standard deviation σε), the final model 

is

The model depends on the stochastic variable, X(t), which is the solution to eq 5. We assume 

a homoscedastic variance, which allows for an explicit solution to eq 5. Thus, if the 

volatility, Γ, depends only on the model fluctuations, σγ, then eq 5 becomes

(6)

Eq 6 can be solved (using the assumption of Itô’s process33,34 for X(t) and the 

transformation g(X,t) = X(t)*exp(kdegt). The details of the derivation are provided in the 

Supporting Information). The solution of eq 6 is

(7)
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Note that the solution, (7), is the OU process34,35 with a mean value, β(t), in eq 4 and 

covariance matrix, K(t,s) (also called Gram matrix), expressed as

where t and s are time points. The result allows the direct application of the OU process to 

the proteome turnover dynamics. Because the solution is exact, it is not only 

methodologically preferable but also offers practical advantages to the Gaussian kernel 

model that was previously used for the first-order equation;24 this stems from the fact that 

for the exact solution, there is one less parameter. The scaling factor in the Gaussian kernel 

is an independent parameter that needs to be estimated from the data. In the exact solution, 

the scaling parameter in OU kernel is the degradation rate constant, kdeg. In addition, it is 

natural that for the processes that behave exponentially, eq 7, the covariance terms between 

the time points will also be exponential (depending on the absolute value of the time 

difference) rather than Gaussian. Thus, our final model for the heavy-isotope-labeled protein 

proportions becomes

(8)

where MVN stands for multivariate normal distribution, n is the number of data points (time 

points at which heavy isotope levels have been measured), μ is equal to β, which is 

determined in eq 4, and the covariance matrix, Σ is an n by n matrix defined as

(9)

where δ is the Kronecker’s δ. The model (eq 8) with the covariance matrix (eq 9) is a GP 

with OU kernel, and numerical methods exist36,37 for its solution to obtain kdeg and ksyn. 

The approaches to extract the parameters from the data use the posterior distributions or 

likelihood function and find parameter values that maximize them. In total, there are five 

hyperparameters in our model, θ = (kdeg, ksyn, σγ, σε, λ). The log-likelihood function is

(10)

The posterior distribution, p(θ|y), of the parameters is proportional to the product of the 

likelihood function and the prior distributions, π(θ). The log of the posterior distribution of 

the hyperparameters is
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The hyperparameters can be estimated from the data either by maximizing the posterior 

distribution with respect to the hyperparameters36 or by sampling from the posterior 

distribution with Markov chain Monte Carlo methods.25 We used a quasi-Newton approach, 

a Broyden–Fletcher–Gold-farb–Shanno algorithm38 available in R,39 to maximize the 

posterior distribution function and obtain the hyperparameters. For the prior distributions 

(except for λ), we chose exponential distributions with the prior decay rates estimated from 

the nonstochastic model. A uniform prior was chosen for the asymptotic enrichment level, 

λ. Note that the derivative of the log-likelihood function, eq 10, with respect to the every 

hyperparameter is in a closed form and is used in the optimizations. The corresponding 

formulas are shown in the Supporting Information.

The approach is implemented in an R code39 and is available in the Supporting Information.

RESULTS

Performance Metrics Using 15N Labeling Data

The protein turnover experiments using 15N labeling were used to test and compare the 

performance of the stochastic model with the results from exponential curve fitting. The 15N 

labeling data is freely available online.21 The data consists of two parts, a brain and a liver 

proteome. For every protein, RIF values of all peptides (for the protein) have been averaged 

to obtain protein RIF. We used these values to test our model. On average, protein turnover 

rates in brain are longer than those in the liver. For the nonstochastic model, the fitting of 

liver data has been more difficult and required three exponential curves, some of which 

produced negative rate constants.21 As a goodness of fit metric, we chose the residual sum of 

squares (RSS) for each model:

where yi are the observed values and ŷi are the corresponding theoretical predictions. In 

Figure 2, we show the comparison of the RSS values between the stochastic modeling (x 
axis) and the two-exponent curve fitting (y-axis) for the mouse liver proteome (the red line is 

the line of unity). For the data points above the line of unity, the RSSs of the two-exponent 

curves are larger than the corresponding RSSs from GP. The fits obtained by the GPs 

resulted in smaller RSS values for 794 out of 797 proteins. Unlike the exponential curve 

fitting, GP allows for correlations between the measured RIFs in the time-course data. It is a 

desirable feature because the data points that are nearby in the time domain are expected to 

be correlated, and ideally, a model will be able to account for the correlation. In the case of 

the GP, the time correlations are provided in the structure of the Gram matrix. The diagonal 

elements of the matrix are the sum of the white-noise variance and amplitude of the OU 

kernel. The nondiagonal elements of the matrix are the covariance between the different time 

points. The corresponding figure for brain proteome is shown in Figure S1. Another 
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goodness-of-fit measure in time course models is the Pearson correlation between the 

predicted values and experimental observations along the time axis. In Figure S2 (mouse 

liver) and Figure S3 (mouse brain), we show the scatter plot of the Pearson correlation 

coefficients for each protein obtained using predictions from two-exponent fitting and GP 

modeling. Similar to RSS, GP showed substantially improved correlation coefficients 

compared to the two-exponent fitting.

To explicitly compare the fits from the two models, we have chosen a liver mitochondrial 

protein, trifunctional protein subunit α (Q8BMS1). The experimental data (empty circles) 

and fits (green line, GP; blue line, exponential curves) are shown in Figure 3. The GP results 

in a better fit (an approximately 70 times smaller RSS value compared to the two-

compartment exponential curve fit). The ksyn rate constant computed in the exponential 

curve fit is very large, in the order of 1012 (day−1), and the GP produced 1.4 day−1. The 

degradation rate constant, kdeg, in GP was 0.15 day−1, which was twice higher than the 

corresponding value from the two-exponent curve fit. The 95% confidence interval of the GP 

predicted fit is shown in Figure S4.

Comparison with the ODE Results Using 15N Labeling Data

The scatter plot of the computed decay rate constants using a GP model and two-exponent 

curve fitting for mouse liver proteins is shown in Figure 4. The relevant data for mouse brain 

are shown in Figure S5. In general, the GP model produced decay rate constants that are 

larger than those from the two-exponent curve fitting. The correlation between the rate 

constants was 0.81. The density plot of the differences between kdeg values produced by the 

GP and two-exponent curve fit are shown in Figure S6. The distribution peaks at about 0.18 

day−1 and extends up to 1 day−1. For liver proteins, the median degradation rate constants 

were 0. 091 and 0.228 day−1 for the two-exponent curve fit and GP, respectively. Thus, GP 

modeling, on average, predicts more than 2-fold faster degradation rate constants for liver 

proteins. For the mouse brain proteins, the effects were not so drastic. The median rate 

constants for brain proteins were 0.040 and 0.054 day−1 in the two-exponent curve fit and 

GP modeling, respectively. It has been noted previously that the exponent curve-fitting 

models were less accurate for modeling faster protein turnover (liver proteins).21 The ratio 

of the median turnover rate constants of liver proteins to brain proteins increased from 2.25 

in two-exponent fitting to 4.23 in GP modeling. Thus, the GP modeling predicts a larger 

difference between the protein turnovers in liver and brain. The ratio of the medians of 

turnover rate constants predicted by the GP modeling compares well to earlier studies that 

estimated the rate of incorporation of [14C] tyrosine in mouse liver (2.8% per hour) and 

brain (0.6% per hour).40 Note that in these studies, the calculation of the rate constants are 

based on the tracer incorporation rate and the steady-state assumption, i.e., the fractional 

synthesis rate of proteins are equal to the fractional degradation rate. Under the steady-state 

assumption, the degradation rate constant is linearly dependent on the synthesis rate, as can 

be seen from the one-compartment model (solution of eq 1b in the Supporting Information). 

Figure S7 summarizes decay rate constants of brain and liver proteomes computed using 

two-exponent curve fitting and GP modeling.
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Stronger differences were observed in cases where one estimates the synthesis rate 

constants, ksyn (Figure 5). Unlike the two-exponent curve fit, there are no ksyn values by the 

GP that are larger than 10 day−1. For the two-exponent curve fitting ksyn, values as large as 

1014 day−1 have been produced. The median values of ksyn for the two-exponent curve and 

GP were 9.12 × 10 and 1 day−1, respectively. We note that in the labeling experiments where 

the first isotope distribution pattern is measured after about 9 h of metabolic labeling, the 

accurate determination of the rate constants of this much higher magnitude are unrealistic. 

The GP, however, yielded a maximum synthesis rate constant less than 10 day−1. In addition, 

as it is shown in Figures 2 and S1–S3, the goodness of fit is substantially improved for the 

GP. The synthesis and degradation rate constants as computed by GP, and two-exponent 

curve fittings are provided in Tables S1 and S2 for liver and brain proteins, respectively.

The stochastic model produces a volatility standard deviation, σγ, for each protein rate 

constant estimate. The higher volatility standard deviation means a stronger random 

fluctuation effects. In Figure S8, we show the distribution of model standard deviations for 

the liver proteins. The mode of the standard deviation is nonzero at 0.018, and the highest 

values are at 0.08.

As was mentioned above, one way to improve the model fitting to the data has been to add 

more compartments. However, we believe that one should consider the development of a 

rationale solution and interpretation, e.g., make sure the modeling is done properly (as Guan 

et al.21 have shown) but that it is supported by some strong physiological underpinnings. It 

would appear that the addition of more compartments solved one problem (i.e., gave a better 

fit of the data) but failed to address what these compartments would represent from a 

biochemical perspective.

Our approach simply considers another way to align the biology and the modeling. We 

suspect that the approach described herein provides a better fit than previous ODE methods, 

in part because of instability in the 15N-precursor precursor labeling (note that a major 

assumption is a constant precursor labeling). For example, if the amino-acid enrichment is 

constant, one would expect that the use of an ODE method should produce a good fit of the 

apparent protein-decay rate constant. Presumably, the use of 15N-labeling (via the diet) 

results in pulsatile (or oscillatory) changes in the 15N-labeling of proteogenic amino acids. 

One would expect a maximum 15N-enrichment immediately following the consumption of 

the food and a lower degree of labeling at times when food is not consumed (given that 

during those periods, 14N would be appearing via endogenous protein degradation). In 

addition, one needs to consider that there are gradients between plasma amino acid labeling 

and the labeling of free amino acids in different tissues. Effectively, the “free amino acid” 

compartment is further compartmentalized, and the “mixing” between different tissues and 

variable plasma labeling is not necessarily equal across sites. We suspect that this is what led 

Guan and colleagues21 to use models of increasing complexity when they fit the tissue-

specific protein labeling. The observations would be expected to play a greater role in cases 

where protein turnover is faster (e.g., liver versus brain) and therein requires more complex 

models (e.g., three- versus two-compartment) to get a better fit.
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Kinetics of Heart Mitochondrial Carnitine Palmitoyltransferase 1

In a recent study,41 we used heavy-water labeling to determine the changes in half-lives of 

mitochondrial proteins in cardiomyocytes due to the induced heart failure in rats. One of the 

proteins that we studied was carnitine palmitoyltransferase (CPT) 1. The experimental data 

(crosses, normal heart; triangles, induced heart failure) and corresponding GP fits (black 

line, normal heart; blue line, induced heart failure) are shown in Figure 6 (the data is for the 

CPT 1 from subsarcolemmal mitochondria (SSM) of cardiomyocytes). The computed 

turnover rate constants for the normal and induced heart failure samples were practically the 

same and equal to 0.09 day−1. The result is in agreement with the finding that turnover rates 

for CPT 1 in SSM were not affected by the induced heart failure. The ksyn rate constant was 

substantially larger in heart-failure-induced SSM CPT 1 than in the protein of the normal 

heart: 2.2 versus 0.09 day−1.

CONCLUSIONS AND FUTURE WORK

We have applied GP modeling to extract protein turnover rates from the time-course data of 

isotope incorporation in stable-isotope labeling and LC–MS experiments. It was shown that 

an exact solution to the stochastic differential equation yields a GP solution with OU kernel. 

The approach is preferable to the more widely used GP with the Gaussian kernel because the 

OU solution is exact and the number of parameters is less. We then used this approach to 

analyze a large-scale data set obtained from mice fed a diet containing 15N-labeled algae. 

The results have demonstrated that GP modeling substantially improves the fit to the 

experimental data, particularly for protein turnover in liver, which in a previous model 

produced negative rate constants. We also applied the model to the carnitine 

palmitoyltransferase of SSM of cardiomyocytes that were studied to infer the effects of the 

induced heart failure. This experiment had used heavy-water labeling.

In future studies, we plan to extend the model to include relative isotope fractions for each 

peptide of a protein. A similar approach has employed a mixed-effects modeling for growth 

curves resulting from the Gompertz model.42 Using each point of peptide data separately 

rather than averaging the peptide data will allow us to estimate the variability due to the 

heavy-isotope labeling of peptides. In addition, we will extend the model to describe the 

turnover of proteins that are not in a steady-state condition.43

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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LC–MS liquid-chromatography–mass spectrometry

ODE ordinary differential equation

OU Ornstein–Uhlenbeck
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Figure 1. 
Modeling of protein turnover rate constants from stable-isotope-labeling experiments. The 

time-course of heavy-isotope labeling, extracted from the full scan spectra of tryptic 

peptides, is modeled as a GP with OU kernel.

Rahman et al. Page 15

J Proteome Res. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Comparison of the residual sum of squares obtained by using exponential curve fitting44 (y-

axis) and GP (x-axis). The red line is the line of unity. The shown data is for the liver 

proteome.
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Figure 3. 
Experimental (empty circles) data and model fits (green line, GP; blue line, exponential 

curve fitting) for mitochondrial trifunctional protein, subunit α (Q8BMS1). The GP 

produced a fit with RSS about 70 times smaller than that from the two-exponent fit.
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Figure 4. 
Scatter plot of the decay rates constants as computed by the GP (x-axis) and two-exponent 

curve fitting (y-axis). In general, the rate constants computed by the GP model were larger 

(mouse liver proteins).
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Figure 5. 
Synthesis rate constants as computed using two-exponent curves (y-axis) and GP (x-axis) for 

mouse liver data proteome.21
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Figure 6. 
GP modeling of RIF for CPT protein from normal (experimental data is shown with blue 

triangles and the fit in blue line) and induced heart failure (the experimental data is shown 

with black crosses and the fit in black line) interfebrullar mitochondria.41
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