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Abstract

Genetic variation modulates protein expression through both transcriptional and post-

transcriptional mechanisms. To characterize the consequences of natural genetic diversity on the 

proteome, here we combine a multiplexed, mass spectrometry-based method for protein 

quantification with an emerging outbred mouse model containing extensive genetic variation from 

eight inbred founder strains. By measuring genome-wide transcript and protein expression in livers 

from 192 Diversity outbred mice, we identify 2,866 protein quantitative trait loci (pQTL) with 

twice as many local as distant genetic variants. These data support distinct transcriptional and 

post-transcriptional models underlying the observed pQTL effects. Using a sensitive approach to 

mediation analysis, we often identified a second protein or transcript as the causal mediator of 

distant pQTL. Our analysis reveals an extensive network of direct protein–protein interactions. 

Finally, we show that local genotype can provide accurate predictions of protein abundance in an 

independent cohort of collaborative cross mice.

Regulation of protein abundance is vital to cellular functions and environmental response. 

According to the central dogma1, the coding sequence of DNA is transcribed into mRNA 
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(transcript), which in turn is translated into protein. Although rates of transcription, 

translation and degradation of both transcript and protein vary, under this simplest model of 

regulation, the cellular pool of a protein is determined by the abundance of its corresponding 

transcript. Genetic or environmental perturbations that alter transcription would directly 

affect protein abundance. In reality, many layers of regulation intervene in this process, and 

numerous studies have been carried out to determine whether and to what extent transcript 

abundance is a predictor of protein abundance2–6. Several studies have reported that there is 

generally a low correlation between the two. An emerging consensus is that much of the 

protein constituent of the cell is buffered against transcriptional variation4,7, but a global 

perspective of protein buffering has not been put forward.

Genetic variants can influence transcript and protein levels in a quantitative manner. 

Mapping quantitative trait loci (QTL) that affect transcript (eQTL) or protein (pQTL) 

abundance in model organisms or human cell lines can identify causal variants and provide a 

tool to dissect the mode of regulation of gene expression8. Analyses of eQTL have yielded a 

global but incomplete understanding of the regulatory mechanisms associated with gene 

expression9–13. Until now, pQTL analysis has been applied to a modest set of proteins 

through shotgun proteomics or targeted protein analysis5,7,14–19. Much of the pioneering 

work behind pQTL analysis has been conducted in yeast crosses using mass 

spectrometry14–16 or green fluorescent protein (GFP) fusions20. Recent advances in 

quantitative proteomics21,22 present the possibility of near-comprehensive, genome-wide 

pQTL analysis.

To investigate how genetic variation affects transcript and protein abundance globally 

requires a broad set of perturbations. The diversity outbred (DO) mouse model is a 

heterogeneous stock derived from the same eight founder strains as the collaborative cross 

(CC) mice23–25 (Fig. 1a). The founder strains are fully sequenced26 and capture a 

considerable cross-section of the genetic variation present in laboratory and wild mouse 

populations. The balanced allele frequencies and simple population structure of the DO mice 

provides high power and precision for mapping QTL with relatively small sample sizes 

relative to human mapping studies. We designed a QTL mapping approach that takes 

advantage of these unique properties of the DO and our knowledge of the founder 

genomes27. For each individual DO mouse, we imputed the founder strain ancestry at 64,000 

evenly spaced loci across the diploid genome.

Gene and protein expression profiling

We first applied multiplexed proteomics to evaluate the extent of protein abundance variation 

among the eight DO/CC founder strains. Founder strain liver proteins were analysed in 

duplicate from both sexes (Extended Data Fig. 1a, Supplementary Table 1). Protein 

abundance was highly variable across the eight founder strains; hierarchical clustering and 

principal component analysis suggested that strain was the major factor driving variation 

followed by sex. This analysis confirmed our expectation that the wild-derived founder 

strains CAST/EiJ (CAST) and PWK/PhJ (PWK) were most distinct, underlying much of the 

genetic variability in protein expression (Extended Data Fig. 1b–d).
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We next profiled protein and transcript levels in liver tissue from 192 DO mice, including 

both females and males, with half of the animals fed standard rodent chow and the other half 

fed a high-fat diet (Methods, Fig. 1b and Supplementary Tables 2 and 3). In total, we 

measured 6,756 proteins and 16,921 transcripts with detection in at least half of the samples. 

Both transcript and protein abundance were highly variable, and principal component 

analysis identified sex and diet as major drivers of this variation (Extended Data Fig. 2a). As 

expected, many proteins displayed sex- or diet-specific protein expression. Known female- 

and male-specific proteins were selectively expressed in a sex-dependent manner (Extended 

Data Fig. 2b, c). Likewise, many proteins showed diet-specific expression such as PPAR 

signalling, fat and cholesterol metabolism enzymes (Extended Data Fig. 2d, e), and many of 

these had concordant transcriptional responses (Extended Data Fig. 2f–j). These results 

demonstrate that sex and diet induced expected changes in transcript and protein expression.

Genetic regulation of protein abundance

In the subsequent analyses, we focused on 6,707 proteins for which both the protein and its 

corresponding transcript were detected in at least half of the DO liver samples. Genetic 

factors explained a substantial portion of variation in the abundance of protein and 

transcripts in the DO population (Extended Data Fig. 3a–f). To identify these, we performed 

QTL mapping analysis on transcript (eQTL, Supplementary Table 4) and protein (pQTL, 

Supplementary Table 5) abundance.

We identified 2,866 pQTL for 2,552 distinct proteins at a genomewide significance level of 

P < 0.1 (Fig. 2a). This is the largest set of pQTL identified so far, with tenfold greater 

numbers than other mass spectrometry (MS)-based approaches. Significant local pQTL were 

more common than distant pQTL (1,736 local and 1,130 distant pQTL) (Extended Data Fig. 

3g). In addition, we identified 4,188 significant eQTL among 3,706 genes, with threefold 

more local than distant associations at the transcript level (3,211 local and 977 distant eQTL; 

Fig. 2a, Extended Data Fig. 3h, i). Finally, to examine the replication rate, we analysed a 

replication set of 192 separate DO mice treated under identical conditions for eQTL (see 

Methods and Extended Data Fig. 4).

To determine whether the same genetic loci acted on transcript and protein abundance, we 

first compared the QTL maps. We observed a significant overlap of proteins with pQTL and 

eQTL (n = 1,400; hypergeometric P < 1 × 10−16; Fig. 2a). As expected, genes with 

concordant QTL had generally higher correlations between protein and transcript abundance 

compared to those having only pQTL, only eQTL or neither (Fig. 2b). Among local QTL 

only, we observed a high degree of overlap with 80% of local pQTL having a corresponding 

local eQTL. The small number of local pQTL that lack corresponding eQTL (n = 344) could 

result from genetic variation that regulated protein abundance via post-transcriptional 

mechanisms such as coding variation that affected protein stability without altering 

transcript levels. In contrast, distant genetic variants that affected both transcript and protein 

levels seem to be nearly mutually exclusive (Fig. 2a). This observation leads to the 

intriguing hypothesis that most distant pQTL affected the abundance of a target protein via 

post-transcriptional mechanism(s).
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For each of the 6,707 expressed proteins, we chose the most significant local and distant 

QTL, regardless of whether the log odds ratio (LOD) scores at each locus exceeded the 

pQTL detection threshold. We regressed out the transcript abundance and examined the 

effect on the peak LOD scores (Fig. 2c). Proteins with pQTL that are mediated through their 

corresponding transcript should show a reduced LOD score when transcript abundance is 

included in the regression model. Most local pQTL had significantly lower LOD scores after 

conditioning on their corresponding transcript (1,136 out of 1,736 dropped by ≥20%), while 

most distant pQTL were unaffected after conditioning on their transcript (164 out of 1,007 

dropped by ≥20%). This suggests that local pQTL were largely mediated through 

transcriptional mechanisms, whereas distant pQTL were more likely to regulate protein 

abundance without affecting transcript abundance.

We carried out a model selection analysis using Bayesian information criterion (BIC) to 

identify the most probable path relating a locus genotype to a protein and its corresponding 

transcript. We evaluated all 6,707 proteins using the best local and distant markers identified 

in the pQTL mapping, and recorded the path that best explained the observed expression 

data (Fig. 2d, Extended Data Fig. 5 and Supplementary Tables 6 and 7). We illustrate these 

models in Fig. 2d in a more simplified form and present a more complete version of these 

models in Extended Data Fig. 5. Three of the models had no path connecting the locus to 

protein abundance. For most proteins, these were the best-fitting models for the local QTL 

(n = 4,505) and for the distant QTL (n = 5,944). The remaining models linked the abundance 

of a protein to either a local QTL or a distant QTL. Among local QTL, we found that most 

had effects that were mediated at least partially through the transcript (n = 1,579), while a 

minority affected protein abundance independently of the transcript (n = 623). Among 

distant QTL, a much smaller proportion acted through the transcript (n = 17), and most 

affected protein abundance independently of the transcript (n = 746). We conclude that most 

local pQTL affected both protein and transcript abundance, consistent with a transcriptional 

mode of regulation. However, distant pQTL affected protein abundance independently of the 

transcript, consistent with a posttranscriptional mode of regulation.

Local pQTL effect on protein abundance

We highlight two examples that illustrate the most common models of local regulation. 

DHTKD1 exemplifies a pQTL in which a local genetic variant affected transcript abundance 

that was transmitted to the protein (Fig. 3a, b). This simple transcript-to-protein model of 

regulation was evidenced by the high correlation between transcript and protein abundance 

(Fig. 3b, inset) and loss of the pQTL when transcript abundance was added as a covariate in 

the regression model (Supplementary Table 8). Founder strain allelic contributions derived 

from the pQTL mapping model suggested that four founder strain alleles (129S1, CAST, 

PWK and WSB) shared the genetic variant and exhibited higher protein expression levels. 

To validate these findings, a comparison of these expression coefficients to founder strain 

data showed the same expression profiles (Fig. 3c). Using genome sequences of the founder 

strains26, we identified a candidate causal genetic variant—a 1-kb deletion in intron 1 of the 

gene. The same variant was previously reported as a pQTL in the DBA mouse strain17. 

DHTKD1 was just one of almost 1,600 cases in which QTL-to-transcript-to-protein 
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regulation was identified as the best local model. Additional examples include Ces2h and 

Pipox (Extended Data Fig. 6).

A total of 623 proteins had local pQTL that affected protein abundance directly, including 

OMA1 (Fig. 3d–f). These proteins were uncoupled from their transcript, as evidenced by the 

lack of correlation between protein and transcript abundance (Fig. 3e, inset). For Oma1, 

founder allele contributions in the DO population pointed to an allele from the CAST strain 

causing reduced protein levels. This was validated by protein expression in the founder 

strains (Fig. 3f). Genome analysis identified four missense mutations in Oma1 (H73N, 

R97Q, I127K and V283L), suggesting that protein structure may be affected and not the 

transcript. Other examples of variants that influenced protein expression that were not 

mediated through transcripts include Entpd5 and Lars2 (Extended Data Fig. 6).

Causal intermediates of distant pQTL

Unlike local pQTL, in which the causative variant is directly linked to the target protein-

coding gene, distant pQTL exert their effects on target proteins in trans through a causal 

intermediate. To determine whether a distant pQTL acts proximally through the transcript of 

the affected protein or directly on the protein bypassing the transcript, we used mediation 

analysis (see Methods). We examined 1,130 distant pQTL and identified at least one 

candidate protein or transcript mediator for 743 (Supplementary Table 8). In total, we found 

618 unique protein/transcript mediators, of which 534 regulated a single protein, 61 

regulated two proteins, and 23 regulated three or more proteins. Furthermore, 84% of the top 

candidate protein mediators were themselves driven by a local pQTL. This illustrates that a 

single local QTL, acting proximally on a transcript or protein intermediate, can effectively 

control the abundance of a distant protein or multiple distant proteins, uncoupling them from 

their transcriptional control mechanisms.

We highlight examples in which mediation analysis identified the regulatory protein or 

transcript underlying the distant pQTL. TMEM68 protein exemplified a post-transcriptional 

model of regulation (Fig. 4a). TMEM68 has a distant pQTL peak on chromosome 13, and 

the Tmem68 transcript has a local QTL on chromosome 4 (Fig. 4b, Supplementary Table 4). 

The protein and transcript levels were uncorrelated (Fig. 4d, left). We identified both NNT 

protein and Nnt transcript on chromosome 13 as candidate mediators of the distant pQTL for 

TMEM68 (Fig. 4c). The Nnt protein and transcript shared a local QTL indicating a 

transcriptional mechanism. Both Nnt protein and transcript were highly correlated with 

TMEM68 abundance (Fig. 4d). Founder allele expression patterns inferred at the distant 

pQTL suggest that a variant in B6 mice causes a downregulation in NNT protein levels, 

which was validated by proteomic analysis of the founder strains (Fig. 4e). This effect on 

Nnt expression has been previously attributed to a small exonic deletion found only in the 

B6 strain28–30. Using this same approach, we reconfirmed numerous known protein–protein 

associations including SNX7–SNX4, PGAM1–PGAM2 and LRRFIP1–FLII (refs 31–33), 

and inferred many new associations (Extended Data Fig. 7).

The chaperonin containing TCP1 (CC T) complex illustrates how mediation analysis can 

reveal larger co-regulated complexes and pathways (Fig. 4f). All eight subunits of the CC T 

Chick et al. Page 5

Nature. Author manuscript; available in PMC 2017 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



complex shared a distant pQTL (but not distant eQTL) on chromosome 5 with the same 

pattern of allele effects. We identified the transcript and protein abundance of Cct6a as 

mediators of this post-transcriptional distant effect (Fig. 4g, h). This relationship is evident 

by the high correlation in protein–protein and protein–transcript abundance between Cct6a 
and other complex members (Fig. 4i, Extended Data Fig. 8). Founder strain allele effects 

inferred at the distant pQTL showed that DO animals containing the NOD strain allele on 

chromosome 5 expressed lower overall levels of the entire complex. This same pattern was 

observed in the founder strains (Fig. 4j). Genome sequence analysis identified a variant 

(rs228180583) in a conserved KLF4-binding domain in the Cct6a promoter region that was 

present only in the NOD strain. From these data, we propose that the variant lowers Cct6a 
transcript and protein abundance, which results in a stoichiometric imbalance and 

degradation of excess unbound complex members. These examples highlight the power of 

mediation analysis to identify protein–protein associations and co-regulated groups of 

proteins.

Genetic perturbations reveal protein networks

By leveraging the large number of distant pQTL and mediation analysis of each, we created 

a network of pQTL-regulated proteins (Extended Data Fig. 9a). Each distant pQTL is 

causally linked to its target protein with mediators and other co-regulated proteins to form a 

network. When merged across all 1,130 distant pQTL, the network comprises 5,794 causal 

or co-regulatory relationships among 3,938 proteins or QTL. Markov cluster algorithm 

(MCL) clustering defined 671 clusters of variable sizes (Extended Data Fig. 9b). 

Approximately 44% of clusters included members with shared biological functions as 

assessed by Gene Ontology (GO) enrichment (Extended Data Fig. 9c). As an example, 

almost all cholesterol synthesis enzymes were determined to be co-regulated and associated 

with just two distant pQTL that affected the protein expression for Lss and Cyp51 
(Supplementary Table 8). Clusters found within the larger regulatory network tended to 

associate proteins with shared biological properties. Some clusters grouped proteins 

according to subcellular localization, as seen for complex I of the electron transport chain 

(Extended Data Fig. 9d), SUCLG1/SUCLG2 and associated mitochondrial proteins 

(Extended Data Fig. 9e), and IMMT/SAMM50 with other mitochondrial proteins (Extended 

Data Fig. 9f). Each corresponds to a well-studied complex, suggesting that the regulatory 

network emerging from mediation analysis provides an accurate snapshot of mouse liver 

gene regulation.

To probe further the correspondence between protein co-regulation and physical association, 

each pQTL and its co-regulated proteins were mapped onto an ongoing and recently 

published human interactome network34. Physical associations accounted for a significant 

subset of protein regulatory networks, especially among distant QTL (Extended Data Fig. 

9g–l). Through these findings, we propose that a considerable fraction of distant pQTL were 

the direct result of post-transcriptional regulation of proteins that had similar biological 

functions, cell locations, and/or complex membership.
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Genotype is a predictor of protein abundance

For many genes with pQTL, founder strain allele patterns inferred from the DO pQTL 

mapping model closely matched protein abundance measured in the founder strains 

themselves. To determine the extent to which genotype can be a predictor of protein 

abundance, we examined all significant pQTL and compared the founder strain coefficients 

observed at the pQTL location to the protein levels measured in the founder strains (Fig. 5a). 

We found that predictive power increased with the significance of the pQTL (Fig. 5a, 

Extended Data Fig. 10). Because of their tight linkage to the controlled gene, local pQTL 

tended to have higher predictive power than distant loci (local pQTL median r = 0.72; distant 

pQTL median r = 0.11). However, highly significant distant pQTL (>10 LOD) have 

comparable predictive power to local pQTL of similar significance.

We further validated our strains predictions using the quantitation of ~6,500 proteins from 

four CC strains (Supplementary Table 9). For each pQTL, we identified the genotype in the 

CC strains and predicted the protein abundance using the DO proteomics data. Our data 

suggest that strain genotype is also predictive of protein abundance in the CC strains (Fig. 

5b). The predictive power was higher for local pQTL than distant ones. As an example, 

LYPLAL1 was identified with a local pQTL in the DO population and was predicted to have 

lower protein abundance in the CC 001 and CC 003 strains (Fig. 5c). For distant pQTL with 

high LOD scores, the predictive power was also high. For distant pQTL, these predictions 

were made by comparing the measured protein and the genotype at the QTL location. For 

example, GLYCTK protein abundance was predicted using the genotype at the Nags gene 

location where the variant was detected (Fig. 5d).

This study quantified both protein and transcript abundance in a genetically diverse 

population of mice, mapping their genetic architecture. We identified the largest catalogue of 

pQTL so far, which can be attributed to two variables in our experimental design. First, we 

have improved the accuracy and sensitivity of quantification for both protein and transcript 

abundance. Second, our experimental population captured genetic diversity far in excess of 

the human population and standard laboratory mouse strains. Earlier studies reported a 

disconnect between transcript and protein abundance2,3,6, which has also been a conclusion 

drawn from several recent eQTL–pQTL analyses4,7,17,35. Data here show that local QTL 

tend to abide by the central dogma as demonstrated by concordant effects on transcripts and 

proteins, whereas distant pQTL are conferred by post-transcriptional mechanisms. Our 

mediation analysis provided the ability to identify causal protein intermediates underlying 

distant pQTL and led to the identification of hundreds of protein–protein associations. Our 

experimental design provides an advantage over protein interaction maps because genetic 

mapping is not dependent on physical interactions. This conclusion is further exemplified by 

the co-regulation of protein complexes or biochemical pathways in this study. Stoichiometric 

buffering provides one explanation for co-regulation of protein complexes and may account 

for earlier observations that protein abundances (but not transcript abundances) of 

orthologues are well-conserved across large evolutionary distances36,37.

These findings suggest a new predictive genomics framework in which quantitative 

proteomics and transcriptomics are combined in the analysis of a discovery population like 
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the DO to identify genetic interactions. Next, pathways relevant to the tissue/physiological 

phenotype of interest are intersected with the list of significant pQTL. Pathways enriched for 

proteins with significant pQTL should be amenable to manipulation in the founder and CC 

strains. That is, the founder allele effects inferred at the pQTL can be combined in such a 

way via crosses of CC strains to tune pathway output. Moreover, as we better understand the 

types of mutation that can affect protein abundance, we can introduce specific mutations 

with gene editing into sensitized or robust genetic backgrounds. We foresee this strategy 

being used to design reproducible rodent models that span a range of human-relevant 

phenotypes, for example, in drug metabolism or toxicology studies.

Methods

The sample size (192 animals) was calculated based on previous experimental RNA-seq data 

and was determined to be sufficient to detect genetics effects that explain 10% or more 

genetic variation with 90% power and 10−6 type I error rate. Randomization was used to 

assign mice to treatments and samples to batches, bar codes, and TMT tags in both the 

RNA-seq and proteomics experiments. Data collection was carried out by automation, and 

as such there was no need for blinding the sample identifiers.

Animals and genotyping: DO mice

Diversity Outbred mice (DO, stock no. 009376) were obtained from The Jackson Laboratory 

(JAX) at 3 weeks of age, housed at JAX, and fed either standard rodent chow (6% fat by 

weight, LabDiet 5K52; LabDiet, Scott Distributing) or a high-fat diet (44.6% kcal fat and 

34% kcal sucrose by weight, TD.08811, Harlan Laboratories) from wean age throughout the 

study. In total, 192 DO mice were analysed in the current study, including 50 females and 48 

males raised on standard chow, and 48 females and 46 males raised on the high fat diet. At 

26 weeks of age, animals were euthanized, dissected, and liver samples were sent for RNA-

seq analysis at JAX (samples stored in RNAlater solution; Life Technologies) and 

proteomics analysis at Harvard Medical School (HMS; samples sent as snap frozen tissue).

Animals and genotyping: founder strain and CC mice

Two male and two female mice from each of the eight DO/CC founder inbred strains and 

four (3 males and 3 females) CC recombinant inbred strains (CC strains CC 001, CC 003, 

CC 004, and CC 017) were obtained from and housed at JAX, raised on the standard chow 

diet. Founder strain mice were euthanized at 26 weeks of age, and the CC mice were 

euthanized at 8–16 weeks of age. Liver samples were dissected from each mouse, snap 

frozen and sent to HMS for proteomics analysis. All procedures on mice were approved by 

the Animal Care and Use Committee at JAX.

Multiplexed quantitative proteomic analysis of mouse livers: sample preparation and TMT 
labelling

A total of 192 DO mouse livers (~50 mg), 32 founder strains livers (8 founders strains, 2 

male and 2 female replicates for each strain) and 24 CC strain livers (4 strains, 3 male and 3 

female replicates for each strain) were homogenized in 1 ml lysis buffer (1% SDS, 50 mM 

Tris, pH 8.8 and Roche complete protease inhibitors). Samples were reduced with 5 mM 
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dithiothreitol for 30 min at 37 °C followed by alkylation with 15 mM for 30 min at room 

temperature in the dark. The alkylation reaction was quenched by adding 5 mM 

dithiothreitol for 15 min at room temperature in the dark. A 500 µl aliquot was then 

methanol/chloroform precipitated. The samples were allowed to air dry before being 

resuspended in 1 ml of 8 M urea and 50 mM Tris, pH 8.8. The urea concentration was 

diluted down to ~1.5 M urea with 50 mM Tris. Proteins were quantified using a BCA assay. 

Protein was then digested using a combination of Lys-C/trypsin at an enzyme-to-protein 

ratio of 1:100. First, protein was digested overnight with Lys-C followed by 6-h digestion 

with trypsin all at 37 °C. Samples were then acidified using formic acid to approximately pH 

3. Samples were then desalted using a SepPak column. Eluents were then dried using a 

vacuum centrifuge. Peptide pellets were resuspended in 110 µl of 200 mM HEPES buffer, 

pH 8, and peptides were quantified by a BCA assay. Approximately 70 µg of peptides (100 

µl of sample + 30 µl of 100% acetonitrile) were then labelled with 15 µl of 20 µg µl−1 of the 

corresponding TMT 10-plex reagent (DO or founder strains) or TMT 8-plex reagent (CC 

strains) for 2 h at room temperature. The reaction was quenched using 8 µl of 5% 

hydroxylamine for 15 min. Peptides were then acidified using 150 µl of 1% formic acid, 

each set of 10 samples were mixed and desalted using a SepPak column. In total, 25 TMT 

10-plex reactions and 3 8-plex reactions were performed (21 DO mice, 4 founder strains and 

3 CC strains). The full labelling schemes for the DO mice, the founder strains and CC 

strains are provided as supplementary tables (Supplementary Tables 1, 3 and 7).

Basic reverse-phase fractionation

Each of the 28 TMT experiments was separated by basic, reversed-phase chromatography. 

Samples were loaded onto an Agilent 300 Extend C18 column (5 µm particles, 4.6 mm ID 

and 220 mm in length). Using an Agilent 1100 quaternary pump equipped with a degasser 

and a photodiode array detector (set at 220- and 280-nm wavelength), peptides were 

separated using a 50 min linear gradient from 18% to 40% acetonitrile in 10 mM ammonium 

bicarbonate, pH 8, at a flow rate of 0.8 ml min−1. Peptides were separated into a total of 96 

fractions that were consolidated into 24. Samples were subsequently acidified with 1% 

formic acid and vacuum centrifuged to near dryness. Each fraction was desalted via 

StageTip, dried via vacuum centrifugation, and reconstituted in 1% formic acid for liquid 

chromatography tandem mass spectrometry (LC–MS/MS) processing.

Liquid chromatography electrospray ionization tandem mass spectrometry (LC–ESI-
MS/MS)

Peptides from every odd fraction (12 fractions total) from basic reverse-phase fractionation 

were analysed using an Orbitrap Fusion Tribrid mass spectrometer (Thermo Scientific) 

equipped with a Proxeon ultra high pressure liquid chromatography unit. Peptide mixtures 

were separated on a 100 µm ID microcapillary column packed first with ~0.5 cm of 5 µm 

Magic C18 resin followed by 40 cm of 1.8 µm GP-C18 resin. Peptides were separated using 

a 3-h gradient of 6–30% acetonitrile gradient in 0.125% formic acid with a flow rate of ~400 

nl min−1. In each data collection cycle, one full MS scan (400–1,400 m/z) was acquired in 

the Orbitrap (1.2 × 105 resolution setting and an automatic gain control (AGC) setting of 2 × 

105). The subsequent MS2–MS3 analysis was conducted with a top 10 setting or a top speed 

approach using a 2-s duration. The most abundant ions were selected for fragmentation by 
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collision induced dissociation (CID). CID was performed with a collision energy of 35%, an 

AGC setting of 4 × 103, an isolation window of 0.5 Da, a maximum ion accumulation time 

of 150 ms and the rapid ion trap setting. Previously analysed precursor ions were 

dynamically excluded for 40 s.

During the MS3 analyses for TMT quantification, precursors were isolated using a 2.5-Da 

m/z window and fragmented by 35% CID in the ion trap. Multiple fragment ions (SPS ions) 

were co-selected and further fragmented by HCD. Precursor ion selection was based on the 

previous MS2 scan and the MS2–MS3 was conducting using sequential precursor selection 

(SPS) methodology. HCD used for the MS3 was performed using 55% collision energy and 

reporter ions were detected using the Orbitrap with a resolution setting of 60,000, an AGC 

setting of 50,000 and a maximum ion accumulation time of 150 ms.

Database searching and reporter ion quantification

Software tools were used to convert mass spectrometric data from raw file to the mzxml 

format34. Erroneous charge state and monoisotopic m/z values were corrected as per 

previous publication34. MS/MS spectra assignments were made with the Sequest 

algorithm41 using an indexed Ensembl database (mouse: Mus_musculus NCBIM37.61). 

Databases were prepared with forward and reversed sequences concatenated according to the 

target-decoy strategy42. All searches were performed using a static modification for cysteine 

alkylation (57.0215 Da) and TMT on the peptide N termini and lysines. Methionine 

oxidation (15.9949 Da) was considered a dynamic modification. Mass spectra were searched 

with trypsin specificity using a precursor ion tolerance of 10 p.p.m. and a fragment ion 

tolerance of 0.8 Da. Sequest matches were filtered by linear discriminant analysis as 

described previously, first to a data set level error of 1% at the peptide level based on 

matches to reversed sequences42. Peptide probabilities were then multiplied to create protein 

rankings and the data set was again filtered to a final data set level error of 1% false 

discovery rate (FDR) at the protein level. The final peptide-level FDR fell well below 1% 

(~0.2% peptide level). Peptides were then assigned to protein matches using a reductionist 

model, where all peptides were explained using the least number of proteins.

Peptide quantitation using TMT reporter ions was accomplished as previously 

published21,22. In brief, a 0.003 Da m/z window centred on the theoretical m/z value of each 

reporter ion was monitored for each of the 8–10 reporter ions, and the intensity of the signal 

closest to the theoretical m/z value was recorded. TMT signals were also corrected for 

isotope impurities based on the manufacturer’s instructions. Peptides were only considered 

quantifiable if the total signal-to-noise for all channels was >200 and an isolation specificity 

of >0.75. Within each TMT experiment, peptide quantitation was normalized by summing 

the values across each channel and then each channel was corrected so that each channel had 

the same summed value. Protein quantitation was performed by summing the signal-to-noise 

for all peptides for a given protein. Protein quantitative measurements were then scaled to 

100 (equal expression across all channels would be a value of 10). Normalization across 

each of the 10plex experiments was then performed using quantile normalization.
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Statistical analyses

Principal component analysis was performed using Cluster 3.0 (ref. 43). Hierarchical 

clustering, K-means clustering and ANOVA were performed using Multi experiment Viewer. 

Analysis on the founder strains proteomics data sets was performed using an ANOVA and 

adjusted for multiple testing using the Benjamini–Hochberg FDR procedure.

Implications of multiplexed quantitative proteomics platform

Improvements in several aspects of the analysis pipeline enabled the increase in scale. Our 

quantitative proteomics technology proved instrumental as it supported multiplexing with 

ten different mouse livers in the same analysis. Accurate expression measurements were 

obtained by applying a notched isolation waveform on an Orbitrap Fusion instrument. The 

time required to collect expression profiles from each 10-plex was 36 h or ~4 h per mouse 

liver of mass spectrometry analysis time. The proteome-wide analysis of 192 livers thus 

required 35 days. As a result of these methodology improvements, we detected tenfold more 

pQTL than previous MS-based reports.

Genotyping of DO and CC samples: DO samples

Genomic DNA was extracted from each DO mouse (n = 192 total samples) and genotyped at 

57,973 single nucleotide polymorphisms (SNPs) on the Mega-MUGA platform 

(Geneseek)44. A total of 177 out of 192 samples passed SNP quality control metrics. For 

these samples, founder haplotypes were inferred from SNP probe intensities using a hidden 

Markov model implemented in the DOQTL R package27,45, and then used to interpolate a 

grid of 64,000 evenly-spaced genetic intervals. In addition, founder haplotypes were 

independently inferred from the RNA-seq data by genotyping by RNA-seq (GBRS) protocol 

(see next section) and interpolated to the same 64,000 interval grid.

For each sample, we verified that the haplotype reconstructions agreed between the DNA 

Mega-MUGA and GBRS reconstructions by calculating the Pearson correlation between 

each pair of samples. When a Mega-MUGA sample had a correlation below 0.4 with the 

same sample ID in the RNA-seq data, we assumed that this sample was mismatched. We 

searched the RNA-seq data for the correct match to the Mega-MUGA sample by looking for 

another sample that was more highly correlated. If we found an RNA-seq sample with a 

correlation >0.4 that was not assigned to another sample, we matched it with the Mega-

MUGA sample. When a sample was removed from the Mega-MUGA data for technical 

reasons, we used the GBRS haplotype reconstructions (samples F326, F328, F362, F363, 

F368, M377, M388, M392, M393, M394, M404, M408, M411, M419 and M425).

Genotyping of DO and CC samples: CC samples

Founder haplotypes for the CC strains were downloaded from the CC strain database 

(csbio.unc.edu/CCstatus/gstemp/AllImageHapAndGenotypeFiles.zip) maintained at the 

University of North Carolina.
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Transcriptome profiling and GBRS

Total liver RNA was isolated from each of the 192 DO mice and sequenced by single-end 

RNA-seq as previously described46. We aligned raw reads against pooled transcriptomes of 

the eight founder strains. To construct the pooled transcriptome, we incorporated founder 

strain-specific SNPs and insertions/deletions (Sanger REL-1410) into the reference strain 

genome sequence (GRCm38/mm10) to produce strain-specific genomes. We derived 

transcript sequences for all annotated genes (Ensembl version 75 gene annotation) from each 

strain genome, and then combined the eight founder allele sequences for each transcript into 

one pooled transcriptome for read alignment. After alignment, we quantified expected read 

counts expressed from each transcript allele using an expectation maximization algorithm 

(EMASE, https://github.com/churchill-lab/emase). We repeated the same process for liver 

RNA-seq data from the eight founder strains to assess how specifically each founder read 

aligns back to their origin strain when exposed to all other founder alleles simultaneously in 

the alignment pool. We then evaluated the genotype probability of each transcript using a 

hidden Markov Model (HMM), where we bring those read counts together and calculate (1) 

how likely allele-specific read counts are generated from a specific genotype, and (2) how 

much those likelihoods comply within the context of neighbouring transcripts. Finally, we 

re-quantified total and allele-specific expression with EMASE by repeating the similar 

process but using individualized diploid transcriptomes reconstructed along our genotype 

calls.

QTL mapping of transcript and protein abundance

Quantitative proteomics combined with transcript quantitation by RNA-seq makes it 

possible to define the relative contributions of transcriptional versus post-transcriptional 

mechanisms and local versus distant effects on protein abundance. For example, a local QTL 

is a genetic variant near the target gene that influences its expression; it might be expected to 

act in cis and affect both transcript and protein levels. By contrast, distant QTL exert their 

effect on a target gene’s expression in trans, most likely via a causal intermediate such as 

another protein or RNA species. Identifying causal intermediates of distant QTL effects may 

reveal novel protein–protein associations and their biological consequences. Our 

comprehensive pQTL analysis yielded a global network of interactions that shed new light 

on the regulation of protein abundance.

QTL mapping

For mapping of pQTL and eQTL, we included only proteins that were present (non-0) in 

≥96 samples and corresponded to gene identifiers in the RNA-seq data that were also 

expressed in ≥96 samples. A total of 6,707 proteins met these criteria. For pQTL mapping 

with the proteomics data, protein abundance values were first quantile-normalized and 

transformed to rank normal scores, and then pQTL were mapped with the R package 

DOQTL27, using a linear mixed model with sex, diet and TMT tag as additive covariates and 

a random polygenic term to account for genetic relatedness among the DO animals47. For 

eQTL mapping from the RNA-seq data, gene-level counts were first normalized to the upper 

quartile value and transformed to rank normal scores, and then eQTL were mapped with 

DOQTL including sex, diet and batch as additive covariates and a random polygenic term to 
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account for relatedness. We used the 64 k genotype matrix derived from Mega-MUGA DNA 

genotypes as input for pQTL and eQTL mapping, with the exception of samples with 

missing or low quality DNA genotype results where we used GBRS-derived genotypes.

Statistical analyses

Significance thresholds were established by performing 10,000 permutations and fitting an 

extreme value distribution to the maximum LOD scores48. Permutation derived P values 

were then converted to q-values with the QVALUE R package, using the bootstrap method 

to estimate π0 and the default λ tuning parameters49. The significance threshold for 

declaring a QTL was set at a genome-wide significance level of P < 0.1 (FDR = 10%).

eQTL replication analysis

To detect a pQTL and eQTL requires a strong statistical signal to exceed stringent genome-

wide significance thresholds. We considered the possibility that lack of concordance 

between distant pQTL and eQTL could be explained by low power, especially for the distant 

pQTL. The proteomics data in this study were obtained on a subset (discovery set) of DO 

mice from an earlier study46. We created a replication set for the eQTL by random sampling 

of 192 additional DO samples. As expected, the likelihood of replicating an eQTL depended 

on the significance of the QTL in the discovery set (Supplementary Fig. 4a). Local eQTL 

tend to be more significant and replicated well across experiments (76% replication, n = 

2,448), while distant eQTL replicated poorly (5% replication, n = 52; Supplementary Fig. 

4a). The distribution of LOD scores is similar for distant pQTL and distant eQTL 

(Supplementary Fig. 4b), suggesting that we had similar low power to detect distant pQTL 

as distant eQTL. While the overlap between distant pQTL and eQTL is lower than what we 

had expected (<1%, n = 9; Supplementary Fig. 4c), it is still difficult to rule out low rate of 

detection as a possible explanation. We provide additional evidence that distant pQTL act 

through post-transcriptional mechanisms.

Model selection by BIC

For each of the 6,707 proteins in the discovery set with detectable transcript and protein 

abundance, we identified (1) the locus within ±10 Mb of the gene midpoint with the highest 

LOD score (local), and (2) the locus on a separate chromosome with the highest LOD score 

(distant), regardless of their statistical significance. Next, for each local and distant locus, we 

considered all possible relationships among locus genotype, transcript abundance, and 

protein abundance. We computed the BIC score for each of eight possible models. For each 

protein, we recorded the optimal local and distant locus model (that is, model that yields the 

lowest BIC score). In addition, we calculated the Bayesian posterior probability (assuming a 

uniform prior over relationships), and from these posterior probabilities estimated the 

expected number of proteins for each model.

Mediation analysis to identify distant regulators and co-regulated proteins

For proteins with distant pQTL, mediation analysis was used to identify proteins and 

transcripts in that region that were likely to be the causal mediator of the QTL. Mediation 

analysis in this context is adapted from the general approach outlined previously50 to 
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differentiate moderator from mediator variables in social psychology research51. We 

implemented our method as the function ‘intermediate’ for the open statistical language R. 

In brief, for a given distant pQTL, we first identified all expressed proteins and transcripts 

within 10 Mb of the peak SNP—these genes are candidate mediators of the distant pQTL. 

We then included the protein abundance of each candidate individually as an additive 

covariate in the pQTL mapping model and re-ran the regression at the peak distant SNP. We 

performed the same analysis with transcript abundance as the additive covariate. Our 

expectation was that many distant pQTL would be mediated by the protein and/or transcript 

abundance of a gene in that locus. For distant pQTL where this is true, including the 

abundance of the mediator protein/transcript in the pQTL mapping model should 

significantly decrease or abolish the distant pQTL effect—as evidenced by a decrease in 

LOD score. We calculate LOD scores using the ‘double-lod-diff ’ method in r/intermediate 

to minimize the effects of missing data in the proteomics and RNA-seq data sets.

Statistical analysis

To assess the significance of the LOD drop for a given candidate mediator on a given distant 

pQTL, a null distribution of LOD scores was estimated by re-running the regression at the 

peak SNP and including all expressed proteins and transcripts outside of the candidate 

regions as additive covariates. In total, this yields mediation LOD scores for 8,050 proteins 

and 21,454 transcripts for each distant pQTL. Mediation LOD scores are then scaled to z-

scores, and any candidate with a conservative z-score ≤ −6 is recorded as a potential causal 

mediator. Further, any protein/transcript outside of the pQTL window with a z-score ≤ −6 is 

recorded as a potential co-regulated partner of the target protein. We examined 1,130 distant 

pQTL and identified at least one candidate protein or transcript mediator for 743. In total, 

we found 618 unique protein/transcript mediators, of which 534 regulated a single protein, 

61 regulated two proteins, and 23 regulated three or more proteins. Furthermore, 84% of the 

top candidate protein mediators were themselves driven by a local pQTL.

Analysis of distant pQTL for transcriptional modes of regulation

We observed that a small subset of local pQTL and nearly all distant pQTL lacked 

corresponding eQTL. For these proteins, transcript and protein abundance appeared to be 

largely uncoupled (buffered). For the minority of local pQTL lacking corresponding local 

eQTL, we expected that mutations altering protein stabilization but not affecting transcript 

abundance conferred this effect. The paucity of distant pQTL with corresponding eQTL is 

especially puzzling given our initial expectation that trans effects on protein abundance 

would likely stem from transcription factors or chromatin modifying proteins. We detected 

few transcription factors and fewer transcription factor pQTL in our protein data set (n = 132 

expressed out of 2,243 annotated transcription factors; n = 21 out of 132 transcription factors 

with pQTL; n = 9 local transcription factor pQTL, n = 12 distant transcription factor pQTL), 

suggesting (as others have noted52) that their regulation is more evolutionarily constrained 

and less tolerant of genetic variation, or alternatively, that the effects of any individual 

polymorphism in a transcription factor may be buffered by other transcriptional components. 

Results from recent large population genetics data sets53 support the former explanation, and 

consequently distant effects from transcription factors may resist detection by genetic 
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mapping methods and account for the lack of distant pQTL that affect both transcript and 

protein abundance

Assembly and clustering of the distant pQTL regulatory network

We assembled the distant pQTL regulatory network by drawing directed edges to connect 

each trans-pQTL with its primary target protein. Each target protein was then connected to 

co-regulated proteins via directed edges. For purposes of graph assembly, each distant pQTL 

was represented by the protein most likely to be responsible for the effects of the QTL as 

indicated by mediation analysis. To identify clusters of co-regulated proteins, the directed 

network was converted to undirected form and subjected to MCL clustering54 using an 

inflation parameter of 1.5. Each cluster was then evaluated for enrichment of PFAM 

domains55, subcellular localizations56, or GO categories57 using a hypergeometric test with 

subsequent multiple testing correction58. P < 0.05 after multiple testing correction was 

considered indicative of enrichment.

Mapping distant pQTL and co-regulated proteins onto the BioPlex protein interaction 
network

To quantify the extent to which direct physical interactions could explain distant pQTL 

regulation, each distant pQTL and its regulated proteins were associated with their human 

homologues using official gene symbols and mapped to the BioPlex network of human 

protein interactions31. Any protein that could not be mapped to the BioPlex network, either 

because a human homologue was not known or because the protein did not occur in the 

network, was excluded. Physical interactions connecting the pQTL and its co-regulated 

proteins were counted and compared against the maximum number of pairwise connections 

to calculate the density of physical interactions. A binomial model was used to identify sets 

with unusually high numbers of interactions assuming the probability of an interaction 

occurring between two randomly selected proteins in the BioPlex network was 9.42 × 10−4 

(the BioPlex graph density). P values were adjusted for multiple hypothesis testing using the 

method of Benjamini–Hochberg58 and those smaller than 0.05 after correction were taken to 

be significant.
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Extended Data

Extended Data Figure 1. Proteomic profiling of the eight founder strains used to create the DO 
mouse population
a, A multiplexed TMT proteomics method was used to characterize protein expression for 

the eight founder strains with two biological replicates for each strain using both sexes. In 

total, just over 400,000 peptides were quantified corresponding to 7,699 proteins. b, 

Hierarchical clustering and principal component analysis determined that the major source 

of variation in protein expression is due to genetic variation among the eight strains and the 

sex within strains. c, K-means clustering and gene set enrichment determined that each of 

the clusters was specifically enriched for metabolic pathways, biological process or cellular 

components. d, Proteins representing each of the displayed clusters from c. These proteins 
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have specific patterns of expression as exemplified by PCK1, which was highly expressed in 

the NOD strain. Other examples include SCD1, which was highly expressed in C57BL/6J 

and NZO strains (n = 4 mice for each founder, 2 male and 2 female, black bars represent 

median values). Protein abundance is shown as the percentage contribution of that mouse’s 

protein levels to its respective 10-plex.

Extended Data Figure 2. The influence of sex and diet on protein and transcript abundance
a, Principal component analysis aligns well with sex and diet as major experimental 

contributors of variation in protein abundance. b, Female-specific protein abundance profiles 

for SULT2A1 and FMO3. c, Male-specific protein abundance profiles for CYP4A12A and 

MUP3. d, e, Diet also resulted in the regulation of many proteins, which are represented by 

proteins such as SCD1 and ACACA that increased in abundance and proteins such as 

HMGCR and SQLE that decreased in abundance. f, Principal component analysis aligns 

well with sex and diet as major experimental contributors of variation in transcript 

abundance. g–j. Transcript scatter plots for the proteins in b–e. Transcript abundance data 

were transformed to rank normal scores for plotting.
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Extended Data Figure 3. Genetic effects drive much of the observed expression variance in the 
RNA-seq and proteomics data
Liver transcript and protein abundance are highly variable in the DO population. Among the 

discovery set (n = 6,707 proteins, 6,647 genes), much of this variance can be attributed to 

one or more experimental variables and/or genetic effects. a–c, The experimental covariates 

sex and diet influence many transcripts and proteins in an additive manner, however, the 

interaction of sex and diet does not seem to affect many genes. The effects from sex and diet 

are not biased towards one molecular species—that is, similar numbers of transcripts and 
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proteins are similarly affected by these experimental variables. Genetic variation underlies 

many of the most variable transcripts and proteins. d, e, Local genetic variation in particular 

is a strong driver of expression variation for many genes, while distant genetic effects are 

observed but more subtle. Among the discovery set, we observe more and larger genetic 

effects (both local and distant) on transcript abundance than protein abundance. f, For most 

transcripts and proteins detected in this study, expression variation is minimal, cannot be 

attributed to a known experimental or genetic variable, and is plotted as noise. g, pQTL map 

for all 6,707 proteins tested from genetic linkage analysis. h, i, QTL mapping identified the 

genetic loci that underlie variability in transcript abundance (eQTL). For the discovery set of 

transcripts with detected proteins and the larger set of all expressed genes, the location of the 

eQTL is plotted on the x axis and the location of the controlled gene is plotted on the y axis. 

Most genetic effects are local and map to the same location as the gene, as evidenced by the 

prominent diagonal line in both maps.

Extended Data Figure 4. Replication rates for eQTL are highly correlated with effect size, and 
local eQTL replicate at higher rates than distant eQTL
a, To assess replication of eQTL, an independent set of 192 DO liver RNA-seq samples was 

analysed (‘replication set’) and compared to the discovery set. A total of 16,839 genes were 

expressed in half or more samples in both data sets. For each gene, the most significant 

proximal locus (within ± 10 Mb of gene) and distant locus (located on a different 

chromosome from the gene) were identified from the discovery set—LOD scores at these 
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loci are plotted on the x axis (local in red; distant in blue). Next, the most significant loci 

within a 10-Mb window flanking the local and distant loci from the discovery set were 

identified in the replication set and plotted on the y axis. LOD scores are highly correlated at 

these peak loci (local Pearson r = 0.91; distant r = 0.84). b, For the core set of 6,707 proteins 

(6,647 gene ids), pQTL and eQTL overlap were compared at multiple genome-wide P value 

thresholds from 0.01 to 0.2. Again, one maximum proximal locus and one maximum distant 

locus were identified for each gene/protein, and recorded if it met the P value cut off. Local 

pQTL exhibit high overlap with both the discovery eQTL set and replication eQTL set, 

regardless of P value threshold (67–80%). Distant pQTL exhibit slightly higher overlap with 

eQTL at the most stringent P value cut off, however, overlap is consistently low for distant 

pQTL (<1–2%). Local eQTL overlap well with the replication eQTL set regardless of P 
value threshold (75–77%). Distant eQTL replicate poorly overall (3–31%), but overlap rate 

is highest (31%) at the most stringent P value threshold, suggesting that larger sample sizes 

will be required to fully and accurately characterize distant effects on gene expression. c, 

The maximum proximal locus and distant locus were identified for each of the 6,707 

proteins and transcripts, and the cumulative distribution of their LOD scores is plotted (blue 

= proteins, green = transcripts). LOD score is plotted on the x axis, and the proportion of 

total QTL is plotted on the y axis. Local eQTL as a group exhibit higher LOD scores 

(consistent with higher effect sizes) than local pQTL (ninetieth percentile LOD = 23.9 for 

local eQTL, 13.6 for pQTL), while distant eQTL and pQTL are of similar scale (ninetieth 

percentile LOD = 7.9 for distant eQTL, 8.2 for distant pQTL). d, Comparison of pQTL from 

the discovery set to eQTL from the discovery set (left set of Venn diagrams) and eQTL from 

the replication set (right). As expected given that they derive from the same samples, local 

pQTL and eQTL overlap is observed to be higher in the discovery set (1,392 out of 1,736 = 

80%), however, local pQTL still overlap well with eQTL from the replication set (1,273 out 

of 1,736 = 73%). Distant pQTL overlap poorly with both eQTL sets (9 out of 1,048 in 

discovery set); 8 out of 1,048 in replication set), however, 6 of 9 distant pQTL that do 

overlap with eQTL in the discovery set are also identified as overlapping in the replication 

set.
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Extended Data Figure 5. BIC model selection reveals transcriptional mechanisms driving most 
local pQTL and post-transcriptional mechanisms underlying most distant pQTL
We identified the local and distant QTL with the maximum LOD score (regardless of 

significance) for each of the 6,707 proteins, and used BIC to assess eight models linking 

QTL genotype to transcript and protein abundance. Most proteins are not affected by the 

local or distant QTL, and fall in one of the three groups below outlined by the dotted line. 

Among the five models where a QTL effect on protein abundance is detected, two are 

transcriptional in nature (L1, L2; D1, D2); the QTL effect on protein abundance is conferred 

at least partially through the transcript. The remaining three genetic models are post-

transcriptional (L3–5; D3–5); the QTL effect on protein abundance is not mediated through 

the transcript. The transcriptional L1 and L2 models are identified as the best models for 
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most local pQTL, while the post-transcriptional D3 and D4 models are optimal for most 

distant pQTL.

Extended Data Figure 6. Examples of local pQTL that are due to an underlying eQTL and those 
that are due to post-transcriptional mechanisms
a, The protein DHTKD1 contained a local acting eQTL and pQTL, which was associated 

with increased transcript and protein abundance derived from 129S1/SvImJ, CAST/EiJ, 

PWK/PhJ and WSB/EiJ strains. Mice were divided into three groups depending on whether 

or not their genomes contained 0, 1 or 2 of the alleles found to be associated with the pQTL. 
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These increases in protein abundance were further validated using the proteomic analysis of 

the founder strains. b, c, Similarly, Ces2h and Pipox had both a local acting eQTL and 

pQTL that could be associated with specific strains (CAST/EiJ, PWK/PhJ and WSB/EiJ). 

These protein abundance measurements were further validated using the founder strains data 

set. d, e, Alternatively, 10% of the genes had local pQTL but lacked local eQTLs, which is 

evident in proteins such as ENTPD5 and OMA1. The founder allele expression patterns 

inferred at the pQTL were validated by protein abundance measurements in the founder 

strains, which could be explained CAST/EiJ specific missense mutations in both genes. f, 
Likewise, Lars2 also contained a pQTL that had no observable eQTL that showed a decrease 

in protein abundance in the 129S1/SvImJ, CAST/EiJ, PWK/PhJ and WSB/EiJ strains. 

Genome sequencing determined that these strains share four missense mutations (*P < 0.01 

using a Student’s t-test; for founder strains, n = 4 mice for each founder, 2 male and 2 

female, error bars represent s.d.).

Extended Data Figure 7. The causal relationship between genetic variation and protein 
expression was determined for over 700 proteins as inferred by mediation analysis
a–d, Many of the causal relationships between proteins have been previously documented 

such as the associations between SNX7–SNX4, PGAM1–PGAM2, LRRFIP1–FLII and 

PPIF–PPIE. e–h, In addition, many of the protein associations had not be previously 

documented such as UPB1–MTR, FOC AD–AVEN, AGPAT9–CHP1 and ANXA1–

ARAD1A. i–l, Protein associations were also identified for multimeric complexes such as 

ECSIT–NDUFAF1–TMEM126B, DMXL2–ROGDI–WDR7, PIGU–PIGT–PIGS and 

IKBKAP–ELP2–ELP3.
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Extended Data Figure 8. Mediation analysis for CCT complex members details the effects of a 
QTL in Cct6a on protein abundance through post-transcriptional protein buffering
a–f, Mediation analysis for each of the Cct complex identifies Cct6a as the causal 

intermediate. A local QTL for Cct6a affects transcript and protein abundance, and CC T6A 

abundance sets the abundance of other CC T proteins regardless of variation in their 

transcripts. For each of the complex members tested, all other complex members are 

confirmed to be co-regulated providing additional supporting evidence for stoichiometric 

buffering.
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Extended Data Figure 9. Distant pQTL and co-regulated proteins frequently correspond to 
complexes of physically interacting proteins
a, Distant pQTL and co-regulated proteins assemble to form a regulatory network, which is 

defined by protein clusters with distinct topologies. A total of 3,938 proteins/QTL are linked 

by 5,794 associations. Distant pQTL are depicted as purple arrows pointing from the 

inferred causal protein to its regulated pair. Co-regulated proteins are connected with green 

arrows emanating from the primary target protein. b, MCL clustering decomposes the 

distant pQTL network into 671 clusters. Cluster size varies considerably, although most 
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clusters contain fewer than 20 proteins. c, Clusters extracted from the distant pQTL network 

frequently associate proteins with shared biological functions. More than half of clusters are 

enriched for at least one GO category, as depicted in the bar chart above. d–f, Three selected 

clusters of distant pQTL and co-regulated proteins. g, To understand the relationship 

between the distant pQTL associations and protein interactions, each distant pQTL and its 

co-regulated proteins were mapped to their human homologues in the BioPlex network of 

human protein interactions. To assess the tendency for these co-regulated proteins to cluster 

together, the median graph distance separating all pairs of co-regulated proteins was 

determined. The distribution of median distances observed for equal numbers of randomly 

selected proteins was also determined and used to assign a Z-score to each distant pQTL and 

its co-regulated proteins. h, Histogram depicting the Z-score distribution for distant pQTL 

and co-regulated proteins. Z-scores below −2.5 (highlighted in red) indicated that co-

regulated proteins were unusually close within the BioPlex network. i–l, Selected distant 

pQTL and co-regulated proteins, mapped onto the BioPlex network of protein interactions. 

All shortest paths connecting distant pQTL and their regulated proteins have been extracted 

from the BioPlex network and displayed. Proteins inferred to be responsible for each QTL 

are purple, while primary regulated proteins are red and secondary co-regulated proteins are 

green. Grey circles represent neighbouring proteins in the BioPlex network that were not 

found to be co-regulated. Grey edges indicate BioPlex interactions, while Blue edges denote 

co-regulation uncovered from trans-QTL analysis.

Extended Data Figure 10. Comparison of protein abundance in the DO and founder strains 
reveals a positive correlation between pQTL significance and predictive power
a, b, For all detected liver pQTL in the DO population, founder strain allelic contributions 

were derived from the mapping model and compared to protein abundance measured 

directly from the eight founder strains. Pearson correlations are plotted against the LOD 
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score of the pQTL for both local and distant pQTL. Predictive power tracks well with pQTL 

significance. Local pQTL tend to be more significant and yield higher predictive power than 

distant pQTL, however highly significant distant pQTL (>10 LOD) have comparable 

predictive power to local pQTL of similar significance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Tandem mass tag (TMT)-based liver proteomics in 192 DO mice
a, Overview of the breeding scheme to create the DO and CC mouse strains. b, 

Experimental overview of the genotyping, transcriptomics and proteomic analysis on 192 

DO mouse livers from both sexes on a high-fat or chow diet.

Chick et al. Page 30

Nature. Author manuscript; available in PMC 2017 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Global view of the liver proteome reveals distinct genetic models of protein regulation
a, Venn diagram showing the distribution of transcripts and proteins broken down into local 

or distant QTL. b, Histograms of Pearson correlations for each gene’s protein and transcript 

measurements after segregating into four groups (eQTL–pQTL (purple), pQTL–no eQTL 

(blue), eQTL–no pQTL (green) and no QTL (grey)). c, Local and distant pQTL LOD scores 

after transcript measurements were used as a covariate in the regression model showing that 

local pQTL were mediated through their cognate transcripts unlike distant pQTL. d, Model 

selection by Bayesian information criterion (BIC). Local pQTL (QTLL) were mostly 

transcriptionally controlled, whereas distant pQTL (QTLD) were regulated generally by 

post-transcriptional mechanisms.
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Figure 3. Examples of local pQTL that illustrate different models of regulation
a, DHTKD1 abundance is regulated by a local pQTL that probably acts proximally on 

transcript abundance. b, Dhtkd1 has a strong local eQTL (green) and local pQTL (blue), 

which corresponds to high correlation between transcript and protein abundance (inset; 

abundance data transformed to rank normal scores for comparison). c, The predicted founder 

strain abundance of DHTKD1 in the DO population mirrors the measured abundance of 

DHTKD1 in the founder strains (n = 4 mice for each founder, 2 male and 2 female, black 

bars represent median values). d, OMA1 follows a mode of regulation in which the pQTL 
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acts directly on protein abundance without affecting transcript levels. e, OMA1 protein 

abundance is controlled by a strong local pQTL without a corresponding local eQTL, 

leading to low correlation (inset) observed between protein and transcript abundance. f, The 

predicted founder strain expression in the DO population is highly correlated to measured 

OMA1 abundance in the founder strains (n = 4 mice for each founder, 2 male and 2 female, 

black bars represent median values).
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Figure 4. Mediation of distant pQTL reveals network interactions in the liver proteome
a, The genetic variant underlying the distant TMEM68 pQTL acts proximally in cis on Nnt 
transcript and protein abundance. b, TMEM68 protein abundance is buffered against local 

genetic variation affecting transcript levels by a distant regulator on chromosome 13. c, 

Mediation analysis identified NNT protein and Nnt transcript as the likely mediator. d, 

TMEM68 protein is poorly correlated to its corresponding transcript, but highly correlated 

with both NNT protein and Nnt transcript abundance. e, TMEM68 strain abundance 

predicted at the chromosome 13 distant pQTL in the DO population is highly correlated to 
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TMEM68 and NNT abundance measured in the founder strains, and matches the predicted 

NNT strain abundance in the DO population (n = 4 mice for each founder, 2 male and 2 

female, black bars represent median values). In all cases the C57BL/6J allele is observed to 

be the low expressor. f, The chromosome 5 variant responsible for the distant effect on CC 

T2 abundance acts proximally in cis on Cct6a transcript and protein abundance. g, All 

members of the chaperonin containing Tcp1 (CC T) complex including CC T2 exhibit a 

distant pQTL that maps to distal chromosome 5. h, Mediation analysis identified Cct6a/CC 

T6A as the probable mediator of this effect. Protein mediation shows that the protein 

abundance of all CC T complex members is highly correlated as all members are pulled 

down in the background of the mediation plot. i, CC T2 protein abundance is highly 

correlated to CC T6A protein and Cct6a transcript abundance. All other CC T complex 

members show this same pattern. j, CC T2 abundance predicted at the chromosome 5 distant 

pQTL is highly correlated with CC T2 and CC T6A abundance measured in the founder 

strains, and tracks with CC T6A abundance predicted at the pQTL in the DO population (n = 

4 mice for each founder, 2 male and 2 female, black bars represent median values). DO 

animals that derive the chromosome 5 region from NOD/ShiLtJ have lower abundance of all 

CC T proteins.
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Figure 5. Genotype can be an accurate predictor of protein abundance
a, Founder strain protein abundance values inferred at significant pQTL in the DO 

population closely match measured abundance values from the founder strains themselves. 

The distributions of Pearson correlations are plotted for local pQTL and distant pQTL. Local 

pQTL are generally more predictive of abundance values in the founder strains (local 

median r = 0.72, distant median r = 0.11). b, Founder strain allele predictions from the DO 

were also assessed against protein abundance data collected from four CC strains (n = 6 

mice per strain). We observe that local pQTL are more predictive of protein abundance in 

the CC strains (local median r = 0.63; distant median r = 0.22). c, Predictive power depends 

largely on the significance of the pQTL. Local pQTL generally had higher LOD scores, and 

as such we had higher power to predict these proteins (n = 4 mice for each founder, 2 male 

and 2 female, black bars represent median values). An example is shown for LYPLAL1. d, 

Protein abundance could also be predicted for genes with significant distant pQTL in the DO 

population; however, as a group these predictions were modest compared to local pQTL. As 

an example, NAGS abundance in the CC strains could be predicted based on the local 

genotype at its mediator protein, GLYCTK (n = 6 mice for each CC strain, 3 male and 3 

female, black bars represent median values).
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