Four decades of inversion polymorphism in *Drosophila pseudoobscura*

(evolution/genetic change/chromosome inversions)

Wyatt W. Anderson^a, Jonathan Arnold^a, David G. Baldwin^b, Andrew T. Beckenbach^c, Celeste J. Brown^a, Stephen H. Bryant^d, Jerry A. Coyne^e, Lawrence G. Harshman^f, William B. Heed^b, Duane E. Jeffery^g, Louis B. Klaczko^h, Betty C. Mooreⁱ, Jean M. Porter^a, Jeffrey R. Powell^j, Timothy Prout^f, Stephen W. Schaeffer^k, J. Claiborne Stephens^l, Charles E. Taylor^m, Monte E. Turnerⁿ, Gabriel O. Williams^g, and John A. Moore^{io}

^aDepartment of Genetics, University of Georgia, Athens, GA 30602; ^bDepartment of Ecology and Evolution, University of Arizona, Tucson, AZ 85721; ^cDepartment of Biological Sciences, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada; ^dDepartment of Biology, California Polytechnic University, Pomona, CA 91768; ^cDepartment of Ecology and Evolution, The University of Chicago, Chicago, IL 60637; ^fDepartment of Genetics, University of California, Davis, CA 95616; ^sDepartment of Zoology, Brigham Young University, Provo, UT 84602; ⁱDepartment of Biology, University of California, Riverside, CA 92521; ^jDepartment of Biology, Yale University, New Haven CT 06511; ^mDepartment of Biology, University of California, Los Angeles, CA 9024; ⁱDepartment of Biology, University of Akron, Akron, OH 44325; ^hDepartment of Genetica, Universidade Estadual de Campinas, Brazii; ^kDepartment of Biology, Pennsylvania State University, University Park, PA 16802; and ^lLaboratory of Viral Carcinogenesis, National Cancer Institute, Frederick, MD 21702

Contributed by John A. Moore, August 14, 1991

ABSTRACT We report data that continue the studies of Dobzhansky and others on the frequencies of third-chromosome inversions in natural populations of *Drosophila pseudoobscura* in North America. The common gene arrangements continue to be present in frequencies similar to those described four decades ago, and the broad geographic patterns also remain unchanged. There is only one pronounced trend over time: the increase in frequency of the Tree Line inversion in Pacific coast populations.

For more than 40 years Dobzhansky and his associates have monitored the frequencies of third-chromosome inversions in natural populations of *Drosophila pseudoobscura* (1–5). This species, like many others in the genus, has an extraordinary amount of chromosome polymorphism. *D. pseudoobscura* and its sibling species *Drosophila persimilis* are polymorphic for several dozen third-chromosome inversions (with only one in common) and are fixed for single-inversion differences on the X, second, and fourth chromosomes. Since polymorphism must be a transient stage in the establishment of interspecific differences, long-term monitoring of gene arrangement frequencies may be useful in understanding this process. In addition, such surveys offer the possibility of documenting balancing selection as well as stasis or microevolution over long periods of human observation.

The third-chromosome inversions of *D. pseudoobscura* are identified by differences in the banding patterns of polytene chromosomes in the larval salivary glands. Molecular data suggest that each inversion has arisen only once and that the polymorphism is at least 1 million years old (6). Because the inversions are overlapping and show very little recombination in heterokaryotypes, they form semi-isolated gene pools and, hence, have become genetically differentiated (6). The inversions also differ in fitness, as documented by laboratory experiments and observations in nature of seasonal cyling and differential mating success of males (1, 7-9). However, the ecological interactions that maintain the polymorphisms in nature are unknown.

Almost all of the data on inversion frequencies in this species have come from Dobzhansky's studies of seasonal, annual, and geographic variation. Many localities (mainly in the western United States) were monitored at roughly 10-year intervals between 1936 and 1973, and a three-decade overview was published in 1975 (4). We report here the results of the latest survey, conducted in the early 1980s and covering 48 localities in the northern part of the species range. Our methods were the same as those employed in previous studies: freshly collected females were allowed to oviposit on medium, and the salivary gland polytene chromosomes were analyzed in one to eight larvae from each female. Occasionally, wild-caught males were mated to tester females and chromosomes were analyzed in a sample of larvae (4).

Table 1 gives the data from our survey, along with a summary of previous observations from these localities, which are described in previous surveys (1-4). Eight gene arrangements reach a frequency of at least 10% in some localities: ST, AR, CH, PP, TL, SC, OL, and EP. Inversions OL, SC, and EP are rare in many localities but consistently appear in large samples. Eighteen rare arrangements have been described, and two more are undescribed, giving a total of 28 inversions segregating in North America. Fig. 1 shows the diversity of gene arrangements within localities, given as a contour map, whereas Fig. 2 summarizes the common inversions in each population.

The most important conclusion to be drawn from these data is that during half a century the common inversions have continued to segregate within populations at fairly similar frequencies. The general geographic pattern has also remained similar. ST is in highest frequency in Pacific Coast populations, especially west of the Sierra Nevada, where AR, CH, and TL are also common. AR becomes the predominant inversion between the Sierra Nevada and the Rocky Mountains and shares prominence with PP at the eastern edge of the species distribution. CH is predominant in southern California. Finally, western California has remained the region of highest diversity.

Superimposed on this temporal stability are significant fluctuations in frequencies in some populations. These fluctuations, which have been seen in previous surveys (4), should be viewed with caution, for most populations were sampled only once in a given survey and seasonal variation has been seen in some localities (refs. 7 and 8; J.A.M., B.C.M., and C.E.T., unpublished data). This source of error does not apply, however, to broad regional changes over time. Dobzhansky (ref. 3, p. 823) noted that the frequency of the PP

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviations: ST, standard; AR, arrowhead; CH, Chiricahua; PP, Pike's Peak; TL, Tree Line; SC, Santa Cruz; OL, Olympic; EP, Estes Park.

^oTo whom reprint requests should be addressed.

Table 1. Frequencies (in percent) of gene arrangements in D. pseudoobscura populations and n, the effective number of chromosomes on which they are based

						Frequency, %						
	Locality	Year	n	ST	AR	СН	PP	TL	SC	OL	EP	Others
1.	Lillooet, BC	1982	246	33.6	20.8	3.1	19.7	20.8			1.9	
2.	Port Coquitlam, BC	1981	162	13.2	13.8	9.6	1.8	58.7		1.8	1.2	
3.	Okanagan, BC	1940	30	36.7	46.7	10.0	3.3	3.3				
		1964	80	55.0	30.0	1.2	8.8	5.0				
		1972	180	34.4	36.7	0.5	0.0	13.1 28.3		0.5	0.5	
4.	Victoria, BC	1983	83	19.3	10.0	16.1	1.7	40.2		1.2	12.0	
5.	Bellingham, WA	1980	92	20.7	19.6	8.7	9.8	39.1			2.2	
6.	Methow, WA	1940	100	52.0	47.0	1.0						
		1964	208	79.3	17.8			2.9				
		1972	320	60.6	34.4		0.9	4.1				
-	Q 441- 337 A	1981	228	46.1	34.2	0.9	1.3	15.8		0.4	1.3	
7.	Seattle, WA	1940	44	52.5 7 1	11.4	29.5	0.6	0.8		1 2	5 8	
8	Gaston OR	1981	130 79	17.1	27.3	11 4	11	38.6		1.5	J.0 4.6	
9.	Sprav. OR	1940	88	25.0	56.8	11.4	4.5	2.3			4.0	
		1965	70	44.3	27.1	5.7	8.6	14.3				
		1972	148	17.6	29.1	5.4	10.8	37.2				
		1981-1982	185	12.1	46.5	2.3	6.1	24.7	0.5	0.5	7.4	
10.	Kerby, OR	1940	64	18.8	53.1	18.8		7.8	1.6			
		1965	30	43.3	30.0	13.3	3.3	6.7	3.3	14	07	21 (VE)
11	St Helena CA	1961-1962	123	17.0	44.5 20.4	4.0	0.2	17.6	12.0	1.4	0.7	2.1 (NE) 0.9 (new)
11.	St. Helena, CA	1957	200	51.0	19.5	2.0	5.0	13.5	7.5	1.5		0.7 (IICW)
		1963	362	51.4	14.9	2.5	6.1	22.9	1.1	0.3	0.8	
		1971–1972	166	51.8	12.1	1.8	0.6	32.5	1.2			
		1980-1981	70	28.6	17.1	4.3	4.3	37.1	2.9	4.3	1.4	
12.	Spieth Reserve, Davis, CA	1980	144	30.6	13.9	18.7	2.8	30.6		2.1	1.4	
10		1981	180	41.1	10.0	5.0	1.7	33.3	1.1	4.4	3.3	
13.	Georgetown, CA	1981	100	25.5	33.0	5.8	3.8	24.3 12.0	19 5	9.4 7 /		
14.	CA	1940	300	20.9 57 0	15.0	13	12.0	43	9.0	13		
	CA CA	1963	206	49.5	24.8	3.4	4.9	16.5	2.0	1.0		
		1979	82	11.0	9.8		14.6	37.8		12.2	14.6	
		1980–1982	242	30.2	19.4	5.3	9.9	22.7	0.8	7.8	4.8	
15.	Berkeley, CA	1962-1964	5221	46.6	9.1	19.1	2.8	14.0	1.4	0.7	6.2	0.04 (EB, BE)
		1980-1981	202	34.2	6.4	14.9	1.5	31.2	1.0	2.5	8.4	
16.	Mather, CA	1945	308	35./ 15.3	35./	1/.2	0.8	10.4	0./	0.3		
		1963	446	45.5 54 7	22 0	5.0 63	9.0 67	99	1.0	04		
		1971	390	34.3	33.1	11.5	2.8	17.2	0.3	0.5	0.3	
		1972	576	22.2	37.5	17.0	6.3	15.1	0.5	1.4		
		1974	746	29.5	32.6	6.6	6.4	19.2	3.2	2.6		
		1975	204	23.5	30.4	12.2	8.3	20.1	3.9	1.5		
		1976	222	18.0	38.3	14.0	4.5	21.6	1.4	1.8	0.4	
17	Tessesion Hot Springs Sente Lucio	1981	62 104	14.3 51.0	25.8	21.0	12.9	25.8	12 5	10		
17.	Mountains CA	1940	200	54.0	20.2	4.0	9.0	2.0	7.5	0.5		
	Mountains, CA	1962-1963	640	40.6	18.0	23.6	5.2	8.9	2.2	1.1	0.5	
		1972	296	52.3	11.1	26.6	0.3	7.4	2.0	0.3		
		1980	212	36.8	9.4	25.9		24.1	0.9	1.9	0.9	
18.	Lone Pine Canyon, Inyo National	1938	94	21.3	56.4	18.0		3.2		1.1		
	Forest, CA	1957	78 20	25.6	51.3 12 1	5.1	9.0 5 2	7.7	1.3			
		1983	56 20	28.4	13.2 54 7	7.4	3.3	63				
19.	Death Valley National Monument, CA	1705	,,	20.7	5 4.7	/.4	5.4	0.0				
19a	. Wildrose Canyon, Panamint	1937	224	13.8	67.4	18.8						
	Mountains	1940	360	30.8	44.4	21.1		3.1				0.6 (MA)
		1957	224	25.5	58.9	11.2	0.9	2.7	0.4			0.4 (MA)
		1963	132	24.3	40.9	5.3	12.9	16.7				
		1908	142 04	33.1 37 5	43.1 39.5	11.5	0.5	4.2				
		May 1980	134	26.9	39.6	23.9	3.7	4.5		0.7	0.7	
		July 1980	124	48.4	30.6	16.9	0.8	3.2				

Population Biology: Anderson et al.

Table 1. (Continued)

					Frequency, %						
Locality	Year	n	ST	AR	СН	PP	TL	SC	OL	EP	Others
19b. Furnace Creek	1980	334	8.7	78.4	7.8	3.0	1.2			0.6	0.3 (FC)
20. China Ranch, Tecopa, CA	1981	234	15.8	67.5	7.7	3.4	4.7		0.4	0.4	
21. Santa Barbara, CA	1940	438	47.5	20.8	16.2		7.3	7.8	0.5		
	1963	332	56.6	15.1	7.2	7.2	11.4	2.4			
	1973	204	52.9	10.8	16.7	0.5	18.1	1.0	26	67	
22 Santa Cruz Island CA	1981	312	22.4 54 8	0.4 16.7	33.3	1.0	24.7	1.U 28.6	2.0	6.7	
22. Santa Cluz Island, CA	1940	72	43.1	18.1	6.9			31.9			
	1963	400	62.2	12.8	9.8	1.2	4.8	7.2		2.0	
	1970	204	41.2	14.2	15.2	1.0	10.8	13.2	1.0	3.4	
	1980-1981	612	38.4	5.9	14.5	0.8	6.6	20.2	0.3	13.2	
23. San Gabriel Mountains, CA	1936–1937	101	34.7	27.7	26.7		10.9				
	1963-1964	134	68./ 28.0	10.4	/.)	0.8	6./ 20.8				1 A (SI)
	1975 1980_1981	155	26.5	3.9	52.9	2.0	20.8 12.3			13	1.4 (SJ)
24. Riverside. CA	1963	124	68.5	10.5	8.1	2.4	5.6	4.0	0.8	1.5	
	1980-1981	386	32.9	11.6	37.8	2.1	14.8	0.2	0.2	0.1	
25. San Jacinto Mountains, CA											
25a. Pinyon Flats	1939–1942	3021	40.9	26.4	28.0		4.0	0.6			
	1952–1956	5702	47.7	21.5	15.4	8.7	5.3	0.7	0.6	0.1	
	1963	1090	12.1 65 2	10.9	3.5	0.3	5.8	0.8	0.2		
	1970	201	58.2	18.4	10.5	2.0	9.5	0.1	0.5	1.5	
	1980	146	69.9	10.4	11.6	2.7	5.5			1.5	
25b. Keen Camp	1939-1940	4368	29.9	26.1	40.2		3.6	0.2			
	1948-1949	571	44.5	19.8	35.7						
	1955-1956	1838	33.6	25.8	32.5	5.3	2.8				
25- Indian Manuatain	1966	438	48.2	24.2	14.2	3.2	10.3			0.6	
25C. Indian Mountain 25d. James Reserve	19/4-19/3	000 414	44./ // 0	17.0	22.7	2.3	8.9	0.8	0.6	0.0	
25c. Andreas Canvon	1940-1942	782	58.7	25.8	12.5	1.9	2.9	0.2		0.2	
	1978–1979	86	55.8	16.3	11.6		16.3				
26. Anza Borrego State Park, CA	1938	132	53.8	30.3	13.6			2.3			
	1941	42	59.5	35.7	4.8						
	1966	200	69.5	16.0	3.0	2.0	9.0	0.5			
	1973	450	75.3	16.4	2.7	0.4	5.1			0.5	
27 Lamoille Canyon NV	1981	139	70.7 3 4	5.0 79.3	34	6.9	5 5			0.5	14 (TX LA)
28. Lehman Caves National Monument.	1950	100	7.0	84.0	6.0	1.0	5.5			2.0	1.4 (17, 27)
NV	1963	318	7.5	86.5	0.6	4.1				1.3	
	1973	264	1.9	96.2	1.1	0.4	0.4				
	1980	241	3.5	94.2	0.6	1.2	0.3				0.3 (new)
29. Charleston Mountains, NV	1937	256	12.1	68.8	19.1	<i>(</i>)					
	1955	126	24.6	55.6 60.4	9.5	6.3 7.5	4.0				
	1903	200	23.0	64 5	2.4	1.5	1.0				
	1980	174	17.8	58.6	13.8	4.0	2.9		0.6	1.7	0.6 (CM)
30. Ferron, UT	1950	110	6.4	87.3	4.5	1.8					
	1965	54	5.6	81.3	1.9	9.3	1.9				
	1980	132	• •	94.1	3.7						2.2 (EM, FE)
31. Bryce Canyon National Park, UT	1940	100	2.0	96.0	2.0						
	1930	84 190	4.8	92.9	2.4	26					
	1965	200	2.5	92.0	4.0	1.5					
	1973	136	0.7	99.3							
	1978	880	0.6	97.6	1.6		0.1				0.1 (BR)
32. Betatakin, AZ	1957	200	3.0	96.5		0.5					
	1980	191	2.0	91.3	4.1	0.5	2.0				
33. Grand Canyon National Park, AZ	1940	100	1.0	98.0 01 0	1.0	1 0					
	1957	200	5.5 25	96.5	2.3	1.0	05				
	1973	244	2.5	94.3	2.5	0.8	0.5				
	1980	245	0.8	98.4	2.0	0.4	0.4				
34. Flagstaff, AZ	1940	100	1.0	97.0	1.0	1.0					
	1957	200	6.5	89.0	2.0	2.5					

10370 Population Biology: Anderson et al.

Table 1. (Continued)

	·		n	Frequency, %								
	Locality	Year		ST	AR	СН	PP	TL	SC	OL	EP	Others
		1965	200	0.5	96.0	1.5	1.5					0.5 (new)
		1973	206		95.1	4.9						
		1980	132		95.3	4.0	0.7					
35.	Prescott, AZ	1940	100	11.0	79.0	9.0	1.0					
		1957	200	23.0	71.5	3.5	2.0					
		1963	412	10.4	82.3	5.1	2.2					
		19/3	238	5.0	80.0	8.0		0.4				
26	Terra 47	1980	1/8	4.5	91.0	3.9						
30. 27	Tempe, AZ	1981	203	0.5	90.7	0.0	24					
37. 29	Sensite A7	19/1	42	7.1	50.5	22.2	2.4					
30.	Sonolta, AZ	1941	200	2.0	39.J 80.0	15 0	3.0					
		1957	200	6.5	77 5	11.5	J.0 4 0	0.5				
		1905	122	0.5	86.1	9.0	22	0.5				
		1980	159	48	78.6	12.5	42					0.8 (SO)
30	Chiricahua Mountains A7	1940	192	0.5	88 5	63	4 2	0.5				0.0 (00)
57.	Chineanua Mountains, 742	1957	400	0.2	85.0	11.5	2.5	0.2				0.5 (CC)
		1959	200	0.2	84.0	11.5	4.0	0.2				0.5 (CC)
		1964	198	1.5	88.9	6.1	3.0	0.5				(,
		1973	262	0.4	92.4	4.9	2.3	0.0				
		1980	275		85.1	11.4	2.8		0.5			0.3 (EM)
40.	Muggins Gulch and Rist Canvon, CO	1941	64	4.7	17.2		57.8	7.8			12.5	
		1965	449	4.7	49.9		28.5	10.9			5.1	0.9 (CH, OL, SC)
		R 1968-1970	450	6.4	34.9		29.3	14.9			9.6	4.9 (CH, OL, SC)
		M 1969-1970	410	3.4	34.6		37.3	15.4			6.3	2.9 (CH, OL, SC
		1980	41	4.7	46.5		16.3	25.6		2.3	4.7	
41.	Black Canyon of the Gunnison	1950	152	3.3	81.6		8.6	1.3			5.3	
	National Monument, CO	1964	182	5.0	94.4		0.6					
		1981-1982	399	1.2	72.5	0.5	11.4	5.9	0.2		8.3	
42.	Rocky Mountain Biological Lab., CO	1970	48	4.2	83.3		6.2	4.2			2.1	
		1980	128		94.5	1.6	2.3	0.8	0.8			
		1981	74	2.7	73.0		12.2	9.5			2.7	
43.	Hayden Creek, CO	1950	24		41.7		20.8	29.2		4.2	4.2	
		1964	180	17.2	47.2	2.2	25.0	1.7			6.7	
		1982	122	0.7	67.1	2.1	26.7	2.1				1.4 (HC)
44.	Mesa Verde National Park, CO	1940	100		100.0							
		1957	200		96.5		1.5				0.5	1.5 (CC)
		1964	206	1.9	9/.6		0.5					
	- · · · · · · · · · · · · · · · · · · ·	1980-1981	14/		98.3	1.0	1.5	1.0				
45.	Katon, NM	1940	100		/8.0	1.0	20.0	1.0				
		1964	200	0.5	70.0	1.5	19.0	1.0				12 (CU)
	Coniton Handa Decidence and	1980	164		72.0 56.3	3.7	22.0	0.0				1.2 (CO)
46.	Capitan, Hondo, Kuldoso, and	1941	142	24	50.5 60.5	1.0	25.6	1.4				
	Lincoln, NM	1904	200	2.4	42.0	1.2	47.5	2.0			5.0	
		1905	200	0.3	57 7	20	35 0	2.0		19	0.3	
		1909	310	1.6	68.7	3 2	25.5	1.1		0.6	0.3	
		1970	247	0.7	81 1	42	11 7	07	04	0.0	0.4	0.8 (SO, RU)
47	Marta and Davis Mountains TX	1030_1041	148	14	33.8	34	56 1	47	0.1		0.7	000 (000, 100)
47.	Maila and Davis Mountains, 1A	1964	200	1.4	15.0	1.5	82.5	7.7			1.0	
		1973	200	0.5	32.6	2.2	61.6	2.7		0.4	1.0	
		1982	288	0.0	33.0	4.6	57.8	3.0	0.7	0.3	0.7	
40	Austin, TX	1939-1941	1279		20.6		71.0	6.3		1.5	0.7	
-10.	induity 1/2	1953	200	2.0	38.5		54.5	4.0			0.5	0.5 (TX)
		1964	300	2.6	16.4		72.0	3.5		4.3	1.3	
		1987	176		21.0	0.6	66.3	5.5	0.6	5.5		0.6 (HI)

See refs. 10 and 11 for discussion of n. In addition to the eight principal gene arrangements [Standard (ST), Arrowhead (AR), Chiricahua (CH), Pike's Peak (PP), Tree Line (TL), Santa Cruz (SC), Olympic (OL), and Estes Park (EP)], others in low frequency are listed under "Others." These include some previously described: Berkeley (BE), Cochise (CO), Cuernavaca (CU), East Bay (EB), Hidalgo (HI), Mammoth (MA), San Jacinto (SJ), Sonoita (SO), and Texas (TX). Many new arrangements were encountered and some of these have been given working names: Bryce (BR), Charleston Mountains (CM), Emory (EM), Fort Collins (FC), Ferron (FE), Hayden Creek (HC), Lamoille (LA), Ruidoso (RU). Other undiagnosed new arrangements were from St. Helena (locality 11), Lehman Caves (locality 28), and Flagstaff (locality 34).

inversion increased in many California localities in earlier surveys, but its frequency has since declined (4). The one clear directional trend in our data is the continuing increase in the frequency of TL along the entire Pacific coast, a pattern noted in 1975 (4). As Fig. 3 indicates, this trend has continued in 13 of our 16 west coast populations. With the exception of PP,

FIG. 1. Inversion diversity measured as $H = 1 - \sum p_{i^2}$, where p_i is the frequency of the *i*th inversion. The Mexican sites indicated are from earlier surveys and are not in Table 1.

none of the other common gene arrangements has shown such a trend over the four decades of sampling.

Apart from the recent change in the frequency of TL, inversions in North American populations of D. pseudoobscura constitute many locally stable polymorphisms with pronounced differentiation across the species range. The field and laboratory evidence that the inversions differ in fitness implies that the local stability probably results from

FIG. 2. Inversions >10% in each site. Inversion identity is given by the first letter of the two-letter acronym except for SC, which is denoted by Sc. For Mexican sites, see Fig. 1 legend.

FIG. 3. Frequency of TL on the west coast. On each graph the ordinate is % TL and the abscissa is years with 1940 and 1980 as indicated. Site numbers from Table 1 are given.

balancing selection. The relative stability is also indicated by the 1- to 2-million-year age of the system estimated from molecular analysis (6). The causes of the differentiation among populations remain a mystery.

The increase in frequency of TL may be due to an environmental change favoring carriers of TL or to the occurrence of a new favorable mutation linked to the arrangement. Further monitoring of natural populations combined with laboratory experiments may reveal the bases for stable polymorphism, geographic variation, and temporal changes in the frequency of these inversions.

This work was supported by National Science Foundation Grants DEB-7968493 and BSR-8516188 to W.W.A. by a grant from the Natural Sciences and Engineering Research Council of Canada to A.T.B., and by Intramural Research Funds of the University of California, Riverside, to J.A.M. and C.E.T. Preparation of the manuscript was supported by National Institutes of Health Grant GM38462 to J.A.C.

- 1. Dobzhansky, T. & Sturtevant, A. (1938) Genetics 23, 28-64.
- Dobzhansky, T. & Epling, C. (1944) Carnegie Inst. Washington Publ. 554.
- Lewontin, L. C., Moore, J. A., Provine, W. B. & Wallace, B. eds. (1981) Dobzhansky's Genetics of Natural Populations I-XLIII (Columbia Univ. Press, New York).
- 4. Anderson, W., Dobzhansky, T., Pavlovsky, O., Powell, J. R. & Yardley, D. (1975) Evolution 29, 24-36.
- 5. Anderson, W. W. (1989) Genome 31, 239-245.
- Aquadro, C. F., Weaver, A. L., Schaeffer, S. W. & Anderson, W. W. (1991) Proc. Natl. Acad. Sci. USA 88, 305-309.
- 7. Dobzhansky, T. (1943) Genetics 28, 162-186.
- 8. Epling, C. (1953) Evolution 7, 342-365.
- Salceda, V. M. & Anderson, W. W. (1988) Proc. Natl. Acad. Sci. USA 85, 9870-9874.
- 10. Arnold, J. (1981) Biometrics 37, 495-504.
- 11. Arnold, J. & Norrison, M. L. (1985) Genetics 109, 785-798.