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Understanding the causes of cis-regulatory variation is a long-stand-
ing aim in evolutionary biology. Although cis-regulatory variation has
long been considered important for adaptation, we still have a limited
understanding of the selective importance and genomic determinants
of standing cis-regulatory variation. To address these questions, we
studied the prevalence, genomic determinants, and selective forces
shaping cis-regulatory variation in the outcrossing plant Capsella
grandiflora. We first identified a set of 1,010 genes with common
cis-regulatory variation using analyses of allele-specific expression
(ASE). Population genomic analyses of whole-genome sequences
from 32 individuals showed that genes with common cis-regulatory
variation (i) are under weaker purifying selection and (ii) undergo less
frequent positive selection than other genes. We further identified
genomic determinants of cis-regulatory variation. Gene body meth-
ylation (gbM)was amajor factor constraining cis-regulatory variation,
whereas presence of nearby transposable elements (TEs) and tissue
specificity of expression increased the odds of ASE. Our results sug-
gest that most common cis-regulatory variation in C. grandiflora is
under weak purifying selection, and that gene-specific functional con-
straints are more important for the maintenance of cis-regulatory
variation than genome-scale variation in the intensity of selection.
Our results agree with previous findings that suggest TE silencing
affects nearby gene expression, and provide evidence for a link be-
tween gbM and cis-regulatory constraint, possibly reflecting greater
dosage sensitivity of body-methylated genes. Given the extensive
conservation of gbM in flowering plants, this suggests that gbM
could be an important predictor of cis-regulatory variation in a wide
range of plant species.
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Understanding the causes of regulatory variation is of major
importance for many areas of biology and medicine (1). Much

interest has centered on cis-regulatory variation, which has long been
thought to be particularly important for adaptation (2–5). Like other
quantitative traits, cis-regulatory variation is expected to be shaped
by the interplay of mutation, selection, and drift. However, the rel-
ative importance of these forces remains unclear in most species.
Recently, prospects for quantifying cis-regulatory variation

have greatly improved, and, as a result, ample heritable cis-reg-
ulatory variation has been identified in many species (6); this is
resulting in a growing consensus that a large amount of standing
cis-regulatory variation is under weak purifying selection (7–9).
Clarifying why the impact of purifying selection varies across the
genome is therefore important to understand the maintenance of
cis-regulatory variation.
Variation in the intensity of purifying selection across the ge-

nome can result from differences in selective constraint that are
due to the specific functions of the genes involved. For example,
according to the dosage balance hypothesis, genes that encode
interacting proteins are expected to experience stronger constraint
than other genes (10). In yeast, there is evidence that purifying
selection on expression noise constrains regulatory evolution of
dosage-sensitive genes (11–13), and, in plants, dosage sensitivity

affects the retention of duplicate genes following whole-genome
duplication (14). However, many other genomic features, in-
cluding expression level, tissue specificity and gene body methyl-
ation (gbM), are also known to be associated with constraint (15–
18) and could affect cis-regulatory variation.
Variation in purifying selection can also result from broad,

genome-scale forces that affect genes mainly as a result of their
genomic environment, and not due to their specific function. For
instance, in the self-fertilizing species Caenorhabditis elegans, var-
iation in the impact of background selection across the genome
had a major effect on the distribution of cis-regulatory variation
across the genome (8). If background selection is important, then
one might generally expect levels of cis-regulatory variation to be
associated with recombination rate and/or gene density (19). At
present, however, the relative importance of gene-level constraint
vs. genome-scale evolutionary forces for the distribution of cis-
regulatory variation remains unclear in most species.
In this study, we have investigated the selective importance

and genomic correlates of common cis-regulatory variation in the
outcrossing crucifer species Capsella grandiflora. This species is
particularly well suited for studying differences in the impact of
selection across the genome, as it has relatively low population
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structure (20) and a large, stable effective population size (21, 22).
Indeed, selection on both protein-coding (23) and regulatory
regions (18) is highly efficient in C. grandiflora, and high levels
of polymorphism enhance the power to detect cis-regulatory
variation and quantify selection. Genomic studies are facili-
tated by the close relationship between C. grandiflora and the
selfing species Capsella rubella, for which a genome sequence is
available (22).
Here, we identified genes with common cis-regulatory variation

inC. grandiflora based on analyses of allele-specific expression (ASE)
in deep transcriptome sequencing data. To quantify the impact of
positive and purifying selection on genes with cis-regulatory varia-
tion, we conducted population genomic analyses of high-coverage
whole-genome resequencing data from 32 C. grandiflora individuals.
Finally, we identified genomic predictors of cis-regulatory varia-
tion. Our results show that there is pervasive cis-regulatory varia-
tion in C. grandiflora, and genes that harbor cis-regulatory variation
are under weaker purifying selection and undergo less frequent
positive selection than other genes. We find no evidence for a role
of recombination rate or gene density in shaping cis-regulatory
variation, suggesting that gene-specific variation in functional
constraint is more important in this species. We further identify
gbM as a major factor constraining cis-regulatory variation,
whereas presence of nearby transposable elements (TEs) and
tissue specificity of expression increase the odds of ASE. Our
results provide evidence for a link between gbM and cis-regulatory
constraint, possibly reflecting greater dosage sensitivity of body-
methylated genes.

Results
Widespread Cis-Regulatory Variation in C. grandiflora. To identify
genes with cis-regulatory variation, we quantified ASE based on
deep whole transcriptome sequencing data (total 95.2 Gbp with
Q ≥ 30) from flower buds and leaves of three C. grandiflora F1s
(SI Appendix, Table S1). Each F1 harbored an average of about
235,700 high-confidence heterozygous coding SNPs, which were
phased before analyses of ASE. After filtering, ∼14,000 genes
per F1 were amenable to ASE analyses (Table 1).
We assessed ASE using a Bayesian method (24), accounting

for technical variation in allelic counts using high-coverage
whole-genome resequencing data for each F1 (mean coverage of
40×, total 26.6 Gbp with Q ≥ 30; SI Appendix, Table S2). We
estimated that a mean of 35% (range 33 to 39%) of analyzed
genes show ASE in individual C. grandiflora F1s (Table 1).
Similar proportions of genes had ASE in both leaves and flower
buds (Table 1), and allelic expression biases were moderate for
most genes with ASE, with strong allelic expression biases (0.2 ≤
ASE ratio ≥ 0.8) shown by an average of 5.1% of genes (Fig. 1
and SI Appendix, Figs. S1 and S2).
Out of a total of 11,532 genes that were amenable to analysis

of ASE in all F1s, there were 1,010 genes that showed ASE in
either leaves or flower buds, 313 genes showed that ASE in
flower buds but not leaves, 404 genes that showed ASE in leaf
samples but not flower buds, and 293 genes that had ASE in both

flower buds and leaves of all F1s (SI Appendix, Fig. S3). Among the
1,010 genes with ASE leaves or flower buds of all F1s, one Gene
Ontology (GO) category, GO:0006952, “defense response,” was
significantly enriched at false discovery rate (FDR) ≤ 0.01; this was
likely driven by genes with ASE in leaves, as there was no signifi-
cant enrichment of GO terms among genes with ASE in flower
buds, whereas six biological process GO terms associated with
photosynthesis and defense responses were significantly enriched
(FDR ≤ 0.01) among genes with ASE in leaves (SI Appendix, Table
S3). Among genes without ASE, there was a nominally significant
enrichment of genes in only two GO terms, protein binding
(GO:0005515) and zinc ion binding (GO:0008270) (Weighted
Fisher P ≤ 0.01), but this was not significant at FDR ≤ 0.01.

Lower Intensity of Purifying Selection on Genes with Cis-Regulatory
Variation. To assess the impact of selection on genes showing cis-
regulatory variation in C. grandiflora, we sequenced the genomes
of 21 individuals from one population in the Zagory region of
Greece (the “population sample”) as well as 12 individuals from
separate populations across the species range (the “range-wide
sample”) using 233.2 Gbp of high-quality (Q ≥ 30) paired-end
100-bp Illumina reads and a mean coverage of 25× per individual
(SI Appendix, Table S2).
We compared levels of polymorphism at genes that show ASE in

all of our F1s (1,010 genes; “ASE genes”), using as a control set the
10,552 genes that were amenable to ASE analyses in all F1s but did
not show significant ASE in leaves or flower buds (termed “control
genes”) (SI Appendix, Fig. S3). To reduce bias resulting from the
requirement of expressed polymorphisms for analyses of ASE, all
population genetic analyses were conducted only on these paired
gene sets, and genes that were not amenable to analysis of ASE
were not included. ASE genes had elevated polymorphism levels
compared with the control at all investigated site classes, as well as
an elevated ratio of nonsynonymous to synonymous polymorphism
(Table 2 and SI Appendix, Table S4), suggesting that the impact of
purifying selection might differ between ASE and control genes
(Table 2 and SI Appendix, Table S4).
To quantify the impact of purifying selection on ASE genes and

control genes, we used the DFE-alpha method (25, 26), which allows
estimation of a gamma distribution of negative fitness effects (DFE)
based on site frequency spectra at putatively neutral and selected
sites. We found that ASE genes have a significantly higher propor-
tion of nearly neutral nonsynonymous mutations than control genes,

Table 1. Genes amenable to analysis of ASE in flower buds (F)
and leaves (L), and ASE results

F1 Analyzed* ASE genes† ASE prop.‡ FDR

6.3 F 13,521 3,065 0.33 0.0013
7.2 F 14,390 3,829 0.36 0.0024
8.2 F 14,232 3,601 0.35 0.0020
6.3 L 12,390 3,425 0.34 0.0018
7.2 L 13,074 3,749 0.39 0.0024
8.2 L 12,796 3,550 0.34 0.0020

*Number of genes with expression data for at least one replicate, and with a
phased fragment containing at least three transcribed SNPs after filtering.
†Number of genes with posterior probability of ASE ≥ 0.95.
‡Estimated proportion of genes with ASE.

A B

C D

Fig. 1. The magnitude of ASE (deviation from equal expression of both
alleles) in (A and B) leaves and (C and D) flower buds of one representative
C. grandiflora F1. A and C show the deviation from equal expression for all
assayed genes. B and D show the magnitude of ASE for genes with strong
evidence for ASE (posterior probability of ASE ≥ 0.95).
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as well as a significantly reduced proportion of nonsynonymous
mutations under strong purifying selection (strength of purifying
selection Nes > 10) (Fig. 2). This result applies broadly, both for the
population and the range-wide samples, and when assuming a con-
stant population size as well as after correcting for population size
change (SI Appendix, Fig. S4). The result also holds after controlling
for differences in the expression level among genes with and without
ASE (SI Appendix, Figs. S5 and S6), when controlling for differences
in coding polymorphism level (SI Appendix, Figs. S5 and S7), and
when classifying genes based on a single F1 individual (SI Appendix,
Fig. S8), suggesting that the results hold broadly for common cis-
regulatory variation. Our results further remain unchanged after
removing defense response genes (GO:0006952) with ASE (SI
Appendix, Fig. S9) before DFE-alpha analyses, and thus strong bal-
ancing selection on these genes does not drive the patterns we
observe.
In contrast to the clear evidence for weaker purifying selection

on nonsynonymous sites for genes with ASE, there were no sig-
nificant differences in the DFE depending on ASE status at
5′-UTRs (SI Appendix, Fig. S10). For introns, results were in-
consistent, with some but not all analyses pointing to weaker pu-
rifying selection on control genes (Fig. 2 and SI Appendix, Fig. S10
and Table S5). This finding could suggest that patterns of selection
differ among coding and noncoding regions. However, at non-
coding regions other than introns, such as promoter regions 500 bp
upstream of the transcription start site (TSS) and at 3′-UTRs, there
was some evidence for relaxed purifying selection at ASE genes
(Fig. 2 and SI Appendix, Fig. S10 and Table S5). These results held
only under the 1-epoch model, which could in part be due to a lack
of power, as regulatory motifs are expected to make up a small
fraction of the analyzed sites. Consistent with this, we infer weaker
purifying selection on upstream regions and UTRs than on non-
synonymous mutations (SI Appendix, Fig. S10 and Table S5).

Genes with Cis-Regulatory Variation Undergo Less Frequent Adaptive
Evolution. To investigate the impact of positive selection on genes
with and without ASE, we obtained estimates of ωα, the rate of
adaptive substitutions relative to neutral divergence (27) in DFE-
alpha. For this purpose, we relied on genome-wide divergence
between Capsella and Arabidopsis, with fourfold synonymous sites
considered to be evolving mainly neutrally (Materials and Methods).
Using this method, we find that ASE genes show a significantly
lower proportion of adaptive nonsynonymous substitutions than do
control genes (Fig. 3). In contrast, we found no significant differ-
ences in ωα among ASE genes or control genes for UTRs or regions

500 bp upstream of the TSS (SI Appendix, Table S5). Second, we
estimated α, the proportion of adaptive fixations in the selected site
class, based on the approximate method of ref. 28, designed to yield
accurate estimates in the presence of linked selection. Results gen-
erated with this method were consistent with DFE-alpha, with a
significantly lower estimate of the proportion of adaptive non-
synonymous substitutions at ASE genes than at control genes (Fig. 3).

Determinants of cis-Regulatory Variation in C. grandiflora. To iden-
tify genomic factors and potential drivers of cis-regulatory vari-
ation, we conducted logistic regression analyses with presence/
absence of ASE as the response variable. We included a total of 12
predictor variables, chosen to include proxies for variation in mu-
tation rate, recombination rate, gene density, expression level, and
degree of constraint, which could be expected to affect levels of cis-
regulatory variation (Materials and Methods). The best-fit model
based on the Akaike Information Criterion (AIC) retained eight of
these predictor variables (Table 3). In this model, gbM had the
greatest effect on cis-regulatory variation, resulting in a reduction of
49% in the odds of observing ASE (Table 3), whereas the presence
of polymorphic TEs within 1 kb of the gene also had a substantial
effect, increasing the odds of ASE by 38%, followed, in turn, by
tissue specificity of expression, promoter diversity, expression level,
gene length, and nonsynonymous/synonymous polymorphism, all of
which increased the odds of ASE (Table 3). Including network
connectivity improved model fit, although the effect was not indi-
vidually significant (Table 3). Notably, gene density and recombi-
nation rate, which affect the intensity of linked selection, were not
included in the best-fit model based on AIC (Table 3) or the
Bayesian Information Criterion (BIC) (SI Appendix, Table S6) and
had low importance based on model averaging (SI Appendix, Table
S7). Similar results were obtained in an analysis that followed the
approach of ref. 29 to ensure orthogonality of predictors by using
principal components of all continuous predictors in logistic re-
gression analyses (SI Appendix, Tables S8−S10). These analyses

Table 2. Population genetic summary statistics and divergence
estimates for the different site classes, separately for ASE and
control genes

Sites* Genes Mean θW πsiteclass/π4-f† d

Fourfold ASE 0.029 NA 0.16
Control 0.024 NA 0.15

Zerofold ASE 0.011 0.32 0.04
Control 0.007 0.23 0.03

3′-UTR ASE 0.021 0.62 0.13
Control 0.018 0.62 0.12

5′-UTR ASE 0.016 0.55 0.12
Control 0.012 0.54 0.12

500 bp up ASE 0.020 0.6 0.16
Control 0.019 0.68 0.15

Intron ASE 0.022 0.69 0.15
Control 0.020 0.79 0.14

d, divergence between Capsella and Arabidopsis.
*Class of sites investigated, including fourfold degenerate sites (fourfold),
zerofold degenerate sites (zerofold), 5′-UTRs, 3′-UTRs, 500 bp upstream of
the TSS (500 bp up), and introns.
†Ratio of nucleotide diversity at focal site class to nucleotide diversity at
fourfold synonymous sites.

Fig. 2. The impact of purifying selection differs between genes with and
without ASE in C. grandiflora. The estimated proportion of mutations in
each bin of the distribution of negative fitness effects (DFE) is shown, with
whiskers corresponding to 95% confidence intervals. The strength of puri-
fying selection is given in units of the effective population size times the
selection coefficient (Nes). Shown are the DFE for (A) nonsynonymous sites
(zerofold degenerate sites), (B) introns, (C) promoter regions 500 bp up-
stream of the transcription start site, and (D) 3′-UTRs. Significance levels for
comparisons of ASE and control genes are indicated by asterisks (*P ≤ 0.05;
**P ≤ 0.01). These results are based on the population sample and the
1-epoch model.
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suggest that variation in gene-specific constraint is important for
the distribution of cis-regulatory variation across the C. grandiflora
genome, and that gbM and presence of nearby TEs are strong
predictors of cis-regulatory constraint.

Discussion
Our results show that genes that harbor common cis-regulatory
variation in C. grandiflora are under weaker purifying selection
and experience less frequent positive selection than other genes.
We further find that gene-specific features that likely reflect the
degree of functional constraint and mutational input are better
predictors of cis-regulatory variation than those that are expected
to shape the broad impact of linked selection across the genome.
These functional constraints do not appear to limit the potential
for adaptation at coding sequences, as positive selection had a
greater impact on coding divergence at genes that did not exhibit
common cis-regulatory variation in C. grandiflora.
Our findings support the view that most standing cis-regulatory

variation in natural populations is weakly deleterious (7), and our
robust inference of relaxed purifying selection on genes with
common cis-regulatory variation agrees well with those of a recent
expression quantitative trait locus mapping study in C. grandiflora
(9). Our results are also complementary to previous findings in
Arabidopsis, where genes with elevated divergence at upstream
putative regulatory regions also show elevated rates of non-
synonymous divergence (30). Our inference of relaxed purifying
selection on genes with common cis-regulatory variation does not
appear to be driven by balancing selection or conditional neu-
trality affecting a subset of defense-related genes that show ASE,
as our results remain unchanged after removing such genes.
The major association between gbM and cis-regulatory con-

straint that we detected is particularly interesting, because the
function of gbM is currently unclear (31, 32). The conservation of
gbM of orthologs in very distantly related plant species suggests
that gbM has functional importance, but, intriguingly, some plants
lack gbM (31–33). Body-methylated genes tend to be longer than
other genes, are expressed at intermediate levels, evolve slowly at
the sequence level (17, 34, 35), and are stably expressed under
different conditions (36). A recent study found that Arapidopsis
thaliana from northern Sweden show elevated gbM, mainly due to
trans-acting loci (36), but, as far as we are aware, no study has

directly linked gbM to cis-regulatory variation in natural plant
populations.
It is possible that these associations between genomic features

and cis-regulatory variation are caused by underlying drivers that
were not directly measured. One natural candidate is gene es-
sentiality. However, although gbM is significantly associated with
predicted gene essentiality (37) (Fisher exact test P < 0.001), our
results do not appear to be driven by essentiality, which was not
retained in our best-fit logistic regression model for cis-regulatory
variation. Instead, we hypothesize that selection for increased
stability of expression of dosage-sensitive genes could underlie
several of the associations we observe. Dosage-sensitive genes
exhibit less expression noise (12, 38), show less variation in ex-
pression among tissues, and are expected to be part of larger
regulatory network modules (10, 12). In our study, reduced tissue
specificity of expression and increased network connectivity were
associated with a reduced likelihood of ASE (Table 3). Further-
more, expression variation among three biological replicates of a
C. rubella genotype (39) that likely represents mainly noise is
significantly lower for genes with no ASE than for those with ASE
[median coefficient of variation of fragments per kilobase of exon
per million fragments mapped (FPKM) = 0.28 for genes with ASE,
0.18 for control genes, Wilcoxon rank sum test, P value < 10−5].
Finally, defense-related genes, which are thought to be dosage-in-
sensitive in plants (40), were significantly enriched among genes
with cis-regulatory variation in our study, whereas protein-binding
genes were nominally enriched among control genes without
ASE. Both promoter polymorphism and TE insertions, which can
impact expression in several ways (41), might be more likely to be
tolerated near dosage-insensitive genes. Our results are therefore
consistent with dosage sensitivity causing strong constraint on cis-
regulatory variation and shaping the impact of positive and pu-
rifying selection on coding variation. Thus, similar functional
constraints that shape duplicate gene retention after whole-genome
duplication (14) may also be key for the genomic distribution of cis-
regulatory variation in natural plant populations. Future studies
should explore the connection between dosage sensitivity, gbM,
and cis-regulatory variation in greater detail across a wider range of
plant species.

Materials and Methods
Plant Material. For analyses of ASE, we generated three intraspecific C. gran-
diflora F1s by crossing six individuals sampled across the range of C. grandiflora
(SI Appendix, Table S11). For population genomic analyses, we grew a single
offspring from field-collected seeds of each of 32 plants (“the population ge-
nomic sample”; SI Appendix, Table S12), representing 21 plants from one
population from Greece (the population sample), and 11 additional plants from
11 separate Greek populations covering the species’ range. Combined with an
individual from the population sample, these represent a 12-plant range-wide
sample. We grew plants at standard long-day conditions and collected leaves
and mixed stage flower buds for RNA sequencing, and collected leaves for
whole-genome sequencing as previously described (39).

A B

Fig. 3. A lower proportion of adaptive nonsynonymous fixations (α) at
genes with ASE. (A) Estimation of α using an asymptotic method that fits an
exponential function to estimates of α based on polymorphisms at different
frequencies. Orange dots show values for control genes, and green dots
show values for genes with ASE. The gray shaded area indicates 95% con-
fidence intervals. The point estimate for genes with and without ASE is 0.06
and 0.28, respectively. (B) The estimated proportion of adaptive fixations
relative to fourfold synonymous substitutions (ωα) for genes with and
without ASE. Whiskers correspond to 95% confidence intervals, and signif-
icance levels for comparisons of ASE and control genes are indicated by as-
terisks (*P ≤ 0.05; **P ≤ 0.01).

Table 3. Predictor importance for the best-fit logistic regression
model predicting ASE from genomic features, selected using AIC
(AIC = 3,086.9)

Model parameter Coeff. (SE) z value P value OR

gbM −0.67 (0.20) −3.41 <10−3 0.51
πN/πS 0.08 (0.04) 2.25 0.024 1.09
Expression level 0.20 (0.06) 3.31 <0.001 1.22
Promoter polymorphism 0.21 (0.05) 4.45 <10−3 1.23
Tissue specificity 0.30 (0.06) 5.03 <10−3 1.35
TE within 1 kb 0.32 (0.13) 2.50 0.013 1.38
Coexpression module size −0.08 (0.05) −1.59 NS 0.92
Gene length 0.08 (0.06) 1.49 NS 1.09
Intercept −2.60 (0.06) −42.91 <10−3 0.07

Regression coefficients (Coeff.) and their SE, z statistics and associated P
values, and odds ratios (OR) are shown.
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Sample Preparation and Sequencing. We extracted total RNA from the three
intraspecific F1s using a Qiagen RNEasy Plant Mini Kit (Qiagen). RNAseq
libraries were constructed using the TruSeq RNA v2 kit. For genomic rese-
quencing, we extracted genomic DNA using a modified cetyl trimethyl am-
monium bromide (CTAB) extraction method. Whole-genome sequencing
libraries with an insert size of 300 to 400 bp were prepared using the TruSeq
DNA v2 protocol. Sequencing of 100-bp paired-end reads was done on an
Illumina HiSeq 2000 instrument. All sequence data have been submitted to
the European Bioinformatics Institute (www.ebi.ac.uk), with study accession
numbers PRJEB12070 and PRJEB12072.

Sequence Quality and Trimming. RNA and DNA reads from the three F1s were
trimmed as previously described (39). Adapters and low quality sequence
were trimmed using CutAdapt 1.3. We analyzed genome coverage using
BEDTools v.2.17.0 (42) and removed potential PCR duplicates using Picard
v.1.92 (picard.sourceforge.net).

Read Mapping, Variant Calling, and Filtering. We mapped RNAseq reads from
the F1s to the v1.0 reference C. rubella assembly (22) using STAR software
v.2.3.0.1 (43) with default parameters. For genomic reads from F1s, we
mapped reads with STAR as in ref. 25. Genomic reads from the population
genomic sample were mapped using BWA-MEM software v.0.7.12 (44) using
default parameters and the –M flag.

Variant calling was done using GATK (The Genome Analysis Toolkit)
UnifiedGenotyper (45–47). We conducted duplicate marking, local realignment
around indels, and recalibrated base quality scores using a set of 1,538,085 SNPs
identified in C. grandiflora (18) as known variants, and retained only SNPs
considered high quality by GATK. An example script with all program versions
and flags used for read mapping and variant calling is found on Figshare.

We removed centromeric and pericentromeric regions where we have low
confidence in variant calls, and, before ASE analysis, we conducted additional
filtering to remove SNPs that showed strongly biasedallelic ratios in the genomic
data and thatwere located in regionswith overlapping genes, as in ref. 39. Using
this procedure, we identified an average of 235,719 heterozygous coding SNPs
in 17,973 genes in each F1. For population genomic analyses, we further filtered
all genomic regions annotated as repeats using RepeatMasker 4.0.1, and re-
moved sites with extreme coverage (depth of coverage < 15 or > 200) and too
many missing individuals (≥20%) using VCFtools (48). Indels and nonbiallelic
SNP were also pruned before analysis. Filtered vcf files are available on Figshare.

Expression Levels.Wemapped RNA seq reads of the three F1s to the C. rubella
v.1.0 reference genome using TopHat v.2.0.4 (49) using standard settings.
FPKM values were generated using Cufflinks v.2.0.2 (50) and standard set-
tings. We estimated overall expression by taking the maximum of the FPKM
measurements from leaves and flower buds in each F1, following ref. 16, and
averaging these FPKM values over all F1s.

Phasing. Before ASE analysis, we conducted read-backed phasing of genomic
variants in F1s using GATK v. 2.5-2 ReadBackPhasing (-phaseQualityThresh
10). RNAseq data from all F1s were then phased by reference to the phased
genomic variants. Read counts for all phased fragments were obtained using
Samtools mpileup. This resulted in a mean number of 31,313 contiguous
phased fragments per F1 (Table 1).

To validate our phasing procedure, we compared the phased fragments,
based on reads, with the phased chromosomes, based on heritage, in three
interspecific C. grandiflora × C. rubella F1s from ref. 39. For most genes, over
95% of SNPs were correctly phased in the interspecific F1s, demonstrating
that our phasing procedure is reliable (SI Appendix, Figs. S11 and S12). Ex-
ample scripts and phased vcf files are available on Figshare.

Analyses of Allele-Specific Expression. We analyzed ASE using a hierarchical
Bayesian method that requires phased data, in the form of read counts at
heterozygous SNPs for genomic and transcriptomic data (24). Genomic read
counts are used to obtain an empirical estimate of technical variation, which
is then used in analyses of the RNAseq data. We used this method to esti-
mate the posterior probability and degree of ASE, for the longest phased
fragment per gene with at least three transcribed SNPs. We excluded genes
with no read counts at the phased SNPs and analyzed ∼14,000 genes for ASE
in flower buds, and ∼13,400 genes in leaves (Table 1). We ran three in-
dependent chains per sample with 200,000 iterations sampled every 1,000
generations, resulting in a final posterior of 2,000 samples per chain. We
checked that the three chains converged to the same stationary distribution,
with sufficient mixing, by inspecting the trace plot for each parameter and
estimating the effective sample size. We used Gelman−Rubin−Brooks plots
(51) to estimate a shrink factor among chains (SI Appendix, Fig. S13) as

implemented in the R package “coda” (52). Runs were completed on a high-
performance computing cluster at Uppsala University (UPPMAX) using the
pqR version of R (www.pqr-project.org). The first 10% of each run was dis-
carded as burn-in, and parameter estimates were then obtained as in ref. 24.

Population Genomic Analyses. To assess whether patterns of polymorphism
differ among ASE and control genes, we tested for a difference in median
levels of polymorphism and Tajima’s D in the C. grandiflora population
sample, using Mann−Whitney u tests, with Benjamini−Hochberg correction
(53) for multiple comparisons. Estimates of nucleotide diversity (π), Watter-
son’s theta (θW), and Tajima’s D (DT) were obtained using custom R scripts.
Separate estimates were obtained for six classes of sites: fourfold de-
generate sites, zerofold degenerate sites, 3′- and 5′-UTRs, introns, and
intergenic regions 500 bp upstream of the TSS.

Selection on Genes with ASE. To test whether there was evidence for a dif-
ference in the strength and direction of natural selection on ASE and control
genes, we first estimated the distribution of fitness effects (DFE) as in ref. 25, and
the proportion of adaptive substitutions relative to the total number of syn-
onymous substitutions (ωα) (27). The DFE was estimated under a constant
population size model and under a model with stepwise population size
change. We obtained confidence intervals for our estimates of three bins of the
DFE (0 < Nes < 1; 1 < Nes < 10; 10 <Nes) and for α and ωα by resampling genes in
200 bootstrap replicates and tested for a difference in the DFE, and ωα among
sets of genes with ASE and control genes, as in ref. 26. Separate estimates were
obtained for zerofold degenerate sites, 3′- and 5′-UTRs, introns, and promoter
regions 500 bp upstream of the TSS likely enriched for regulatory elements,
using fourfold degenerate sites as neutral standard. For estimates of α and ωα,
we relied on divergence to Arabidopsis; specifically, we generated a whole-
genome alignment using lastz v. 1.03.54, with chaining of C. rubella, A.
thaliana, and Arabidopsis lyrata as described in ref. 54, and counted di-
vergence differences and sites as in ref. 18. DFE-alpha analyses were run using
Method I (26).

To assess the effect of expression level on our DFE-alpha inference, we
selected genes among the control set of genes to match the distribution of
expression levels of ASE genes (SI Appendix, Fig. S5). We first assigned genes
to 10 equal-sized bins with respect to overall expression level (average FPKM
over all F1s). We calculated the proportion of genes in each bin for the ASE
gene set, and then subsampled control genes to achieve the same pro-
portion of genes in each bin as in the ASE gene set. Finally, we excluded
extreme bins (first and last) for both ASE and control genes. Purifying and
positive selection were then reestimated in DFE-alpha for the subsampled
control gene set and ASE set.

To assess whether the differences in purifying selection we observed could
be an artifact of higher power to detect ASE for high-polymorphism genes,
we used a similar strategy of subsampling control gene sets to match the
distribution of π in control and ASE gene sets (SI Appendix, Fig. S5). We then
reran DFE-alpha on the matched gene sets. To assess whether our results
were robust to the sampling strategy for ASE, we based our classification of
ASE and control genes based on a single F1 individual and repeated the DFE
analyses. To test whether our results could be driven by the inclusion of
defense-related genes, we removed genes annotated as defense response
genes (GO:0006952), and repeated the DFE-alpha analyses.

Genomic Determinants of Cis-Regulatory Variation. We assessed the relative
importance of a number of genomic features for presence/absence ofASE using
logistic regression on a set of genes that was restricted to those for which we
could assess ASE. We included the following genomic features that may affect
linked selection: recombination rate and gene density (in 50-kbwindows). Gene
density was based on the annotation of C. rubella v1.0 reference genome (22).
By fitting a smooth spline, we obtained recombination rates per 50-kb win-
dows based on 878 markers from ref. 55. We further included gene length,
tissue specificity (τ; ref. 16), expression level (log FPKM values), and as a proxy
for mutation rate variation, we included fourfold synonymous divergence to
Arabidopsis (dS). Because promoter polymorphism may cause cis-regulatory
variation, we included nucleotide diversity (π) for the region 500 bp upstream
of the TSS. We included nonsynonymous/synonymous nucleotide diversity
(πN/πS) to reflect the level of constraint at the coding sequence level. According
to the dosage balance hypothesis, genes in smaller coexpression modules may
be under reduced regulatory constraint. We therefore included information
on A. thaliana coexpression module size (37) in our analyses. We further in-
cluded information on the presence of retained paralogs from the Brassicaceae
α whole-genome duplication or the β and γ whole-genome duplication (37).
We identified a set of genes with gbM in both C. rubella (33) and A. thaliana
(17), which are highly likely to also harbor gbM in C. grandiflora. Finally, we
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included information on polymorphic TEs within 1 kb of genes in the range-
wide sample. We identified TE insertions in our range-wide sample as in ref.
39, except that we required a minimum of five reads to call a TE insertion. A
collated data set with all of these variables is available on Figshare. All con-
tinuous variables were centered and scaled before analysis. We conducted a
logistic regression with ASE as the response variable and genomic features as
predictors. We conducted model selection using a stepwise procedure with
backward and forward selection of variables to find the best-fit model, using
AIC and BIC as selection criteria. We also evaluated all possible models, ranked
them using BIC and AIC, and calculated average coefficient and variable im-
portance based on the relative weight of each model. We conducted an ad-
ditional analysis using a strategy that is superior to partial correlation and
robust in the presence of noisy genomic data and multicollinearity of predictor
variables (29). We used a set of orthogonal predictor variables obtained by
identifying principal components for a data set including all of the continuous

variables using the “pls” package in R, as well as gbM and presence of het-
erozygous TEs as binary factors, and conducted AIC model selection as de-
scribed above. Code for these analyses is found on Figshare.
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