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Cisplatin is the most commonly used anticancer drug for the
treatment of testicular germ cell tumors (TGCTs). The hypersensi-
tivity of TGCTs to cisplatin is a subject of widespread interest.
Here, we show that high-mobility group box protein 4 (HMGB4), a
protein preferentially expressed in testes, uniquely blocks excision
repair of cisplatin-DNA adducts, 1,2-intrastrand cross-links, to poten-
tiate the sensitivity of TGCTs to cisplatin therapy. We used CRISPR/
Cas9-mediated gene editing to knockout the HMGB4 gene in a
testicular human embryonic carcinoma and examined cellular re-
sponses. We find that loss of HMGB4 elicits resistance to cisplatin as
evidenced by cell proliferation and apoptosis assays. We demon-
strate that HMGB4 specifically inhibits repair of the major cisplatin-
DNA adducts in TGCT cells by using the human TGCT excision repair
system. Our findings also reveal characteristic HMGB4-dependent
differences in cell cycle progression following cisplatin treatment.
Collectively, these data provide convincing evidence that HMGB4
plays a major role in sensitizing TGCTs to cisplatin, consistent with
shielding of platinum-DNA adducts from excision repair.

platinum anticancer drug | testicular cancer | high-mobility group protein

Testicular germ cell tumors (TGCTs) are among the few tumor
types that can be clinically cured with chemotherapy owing to the

potency of cisplatin (1). The introduction of cisplatin in combination
chemotherapy helped advance cure rates from 5% to the current
level of 90% (2). In the clinic, cisplatin is used with bleomycin and
either vinblastine or etoposide to treat metastatic testicular neo-
plasms (3–6). The well-studied antitumor activity of cisplatin involves
binding to DNA, inhibition of transcription, and induction of apo-
ptosis (7, 8). Cellular events leading to apoptosis are multifactorial
and begin with uptake followed by chemical transformation of cis-
platin. Following aquation, or replacement of the chloride ligands in
[Pt(NH3)2Cl2] by water, the activated drug binds to DNA, generating
mainly 1,2-intrastrand d(GpG) cross-links that block RNA poly-
merase II, ultimately signaling cell death (9–11). Recently, a cisplatin-
sequencing (cisplatin-seq) approach was used to confirm DNA as
the target for cisplatin at the genome scale by base resolution
analysis (12). High-mobility group proteins such as high-mobility
group box protein 1 (HMGB1) recognize these specific cisplatin-
DNA adducts and promote the toxicity of cisplatin to tumors by
interfering with excision and other repair pathways (13, 14).
HMGB1 binds selectively to cisplatin 1,2-intrastrand d(GpG)

and d(ApG) cross-links, which account for ∼90% of all platinum
(Pt)-DNA adducts (15, 16). Studies of the interaction of HMGB1
and other cisplatin-DNA recognition proteins such as Irx1 in yeast
(17, 18) with cisplatin-modified DNA revealed bending of the
DNA with attendant shielding from excision repair in vitro and
subsequent sensitization of cancer cells to cisplatin treatment (13,
19). Related studies showed cooperative HMGB1 and XPA–RPA
binding to DNA interstrand cross-links (ICLs) induced by psolaren
(20, 21) and, recently, concluded that HMGB1–XPA interactions
favor the ICL repair process (22). There are three cysteine residues
in HMGB1, two of which (Cys22 and Cys44) are located in the A
domain directly involved in binding to cisplatin-DNA 1,2-d(GpG)

intrastrand cross-links (23). These cysteines can form a disulfide
bond under mild oxidizing conditions, which significantly reduces
their ability to bind to cisplatin-modified DNA (24). Because the
intracellular redox potential, buffered by glutathione, will generate
a mixture of oxidized and reduced forms of HMGB1, HMGB1
sensitization of cancer cells to cisplatin by repair shielding can be
compromised and will depend on cell type (25).
HMGB4 has two tandem HMG domains, A and B, homologous

to those in HMGB1, and a shortened C-terminal tail that lacks the
string of 30 acidic residues present in HMGB proteins 1–3. HMGB4
is preferentially expressed in the testes in contrast to HMGB1, which
is ubiquitous (26). The amino acid sequence of HMGB4 revealed
the presence of tyrosine in place of Cys22 in domain A, thereby
avoiding the redox-dependent platinated-DNA binding observed for
HMGB1 that we postulate to be the cause of the variable cellular
response (Fig. 1). Moreover, purified HMGB4 protein at 1 μM in-
hibits nucleotide excision repair of 1,2-intrastrand d(GpG) cross-link
damage by >90%, whereas the inhibitory property of purified
HMGB1 of the same substrate is ∼45% (27). Conceivably, HMGB4
might be a critical player in promoting the hypersensitivity of TGCTs
to cisplatin by blocking excision repair, thus conveying significant
clinical success.
To investigate this hypothesis at the molecular level, we ge-

netically modified an embryonic carcinoma cell line (NTera2/D1)
using CRISPR/Cas9-mediated gene editing to eliminate endoge-
nous expression of HMGB4. Following cisplatin treatment, we
found differences in the DNA-repair efficacy for parental NTera2
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and HMGB4 gene-edited NTera2 cells (NTera2 HMGB4−/−). In
addition, different cell cycle and apoptotic induction patterns were
observed. Taken together, our results point to a major role for
HMGB4 in sensitizing TGCTs to cisplatin therapy.

Results
HMGB4 and Cisplatin in Testicular Cancer Cells. The structure of the
ternary HMGB1–Pt-DNA complex provides a basis for under-
standing HMG recognition of the platinum-induced DNA dis-
tortion (23) and led to the analysis of the protein sequence of
human HMGB4 and its computed structure in complex with
platinated DNA (Fig. 1). The HMGB1 phenylalanine that inserts
into the hydrophobic notch created in the minor groove by the
platinum 1,2-d(GpG) cross-link in the major groove is preserved
in HMGB4. However, in place of two cysteine residues found at
positions Cys44 and Cys22 in HMGB1, the corresponding residues
in HMGB4 are Cys44 and Tyr22. This difference confers redox
indifference for HMGB4 binding to cisplatin-modified DNA by
eliminating the potential for disulfide bond formation that is pre-
sent in HMGB1.
Because HMGB4 has not been well studied in relation to human

testicular cancer, we first measured the levels of HMGB4 in a
panel of TGCTs. TGCTs are classified according to their histo-
pathology as either seminoma or nonseminoma (SI Appendix, Fig.
S1A). Immunoblotting experiments revealed that different TGCTs
of human origin, including the embryonic carcinomas NTera2 and
Tera2 as well as the testicular teratoma GCT27, express appre-
ciable levels HMGB4 (SI Appendix, Fig. S1B).
Cisplatin and its analogs, oxaliplatin and carboplatin, induce

DNA damage by forming intrastrand 1,2-d(GpG), 1,2-d(ApG), and
1,3-d(GpNpG) cross-links, with fewer interstrand and DNA–protein
cross-links. There is substantial evidence that HMGB4 binds 1,2-
d(GpG) cross-links in vitro (27). To investigate the effect of cis-
platin on HMGB4 in testes, NTera2 and GCT27 cells were treated
with 2 μM of the drug for several time points and the protein level
was monitored by Western blotting. Cisplatin treatment reduced
HMGB4 expression over time by comparison with controls (Fig. 2),

a phenomenon possibly associated with posttranslational modifi-
cation of the target protein (28).
To investigate the alternative possibility that the diminution in

HMGB4 recognition by the antibody after 72 h was a consequence
of HMGB4 interaction with cisplatin-DNA adducts, we treated
NTera2 and GCT27 cells with cisplatin and a Re(V) complex (1)
that induces necroptosis but not DNA cross-link formation (Fig. 2)
(29). Necroptosis is a specialized caspase-independent pathway of
programmed necrosis that relies on the signaling activity of re-
ceptor interacting serine/threonine protein kinase 1 and 3 (RIP1/
RIP3) to phosphorylate each other to form necrosomes (30, 31).
Subsequent phosphorylation of mixed lineage kinase domain
(MLKL) by necrosomes facilitates necroptosis. Characteristic
features of necroptosis are swollen organelles and disintegrated
plasma membrane. As seen in Fig. 2, there was no significant
difference in HMGB4 recognition in NTera2 cells treated with 1.

CRISPR/Cas9 KO of HMGB4 in Human Testicular Embryonic Carcinoma.
The Cas9 endonuclease of Streptococcus pyogenes (SpCas9) as-
sociated with CRISPR can be reprogrammed to target genomic
loci of mammalian cells in a specific fashion using single guide
RNA (sgRNA) (32–34). We used this gene-editing strategy to
target HMGB4 in the human embryonic testicular cancer cell line,
NTera2. Using RT-PCR, we observed a >80% change in HMGB4
mRNA expression levels in the KO relative to the parental
NTera2 cells (Fig. 3B). We also confirmed a corresponding de-
crease in HMGB4 protein levels using Western blot analysis of the
single clone HMGB4 KO NTera2 cells (Fig. 3C). The KO cell
lines afford us a biological tool to explore our hypothesis that
HMGB4 conveys DNA-repair shielding, which leads to sensitiza-
tion of TGCTs to cisplatin treatment.

Loss of HMGB4 Desensitizes TGCTs to Cisplatin. To assess the in-
volvement of HMGB4 in mediating cellular sensitivity to cisplatin, we
investigated the effect of HMGB4 on the viability of human TGCT
cells treated with cisplatin using RNAi knockdown or CRISPR/Cas9
KO of HMGB4 in NTera2 cells. First, we used RNAi-mediated
knockdown to obtain NTera2 cells with varying HMGB4 expression
levels. As confirmed by quantitative PCR (qPCR) and Western blot,
we generated NTera2 cell lines that enabled the correlation of
HMGB4 expression with cisplatin sensitivity in an MTT (3-(4,5-di-
methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric

Fig. 1. Structural representation of the ternary HMGB1/HMGB4–Pt-DNA
complex. (A) Schematic representation of the crystal structure of domain A
of HMGB1 in complex with platinated DNA superimposed with a computed
structure of the similar domain of HMGB4. Significant homology is observed
between HMGB4 and HMGB1 domain structures. SWISS-MODEL (46) with
input from the human HMGB4 sequence was used to compute the HMGB4
structure. (B) Schematic representation of a simplified structure of HMGB1
protein (ribbon) highlighting Cys22 and Cys44 (space filling), critical residues
implicated in disulfide bond formation under oxidizing conditions. (C) Sche-
matic representation of a simplified structure of HMGB4 (ribbon) displaying
Tyr22 and Cys44 (space filling). All structures were rendered using Pymol.
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Fig. 2. Effect of metal complexes on HMGB4. (A) Chemical structures of
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assay (SI Appendix, Fig. S2). Notably, reduced levels of HMGB4 in
silenced NTera2 cells conferred relative cisplatin resistance com-
pared with WT cells, and a correlation was observed between
cellular resistance and HMGB4 expression level. Second, we in-
vestigated cisplatin sensitivity in HMGB4 KO NTera2 cells from
different clones compared with WT NTera2 cells. We observed a
4.5-fold difference in cisplatin sensitivity of the KO compared with
WT NTera2 cells (Fig. 4 A and B). This result underscores the
ability of HMGB4 to increase cellular sensitivity to cisplatin.
Next, we investigated the ability of HMGB4 to promote

cisplatin-induced apoptosis in NTera2 and CRISPR/Cas9-
mediated HMGB4 KO NTera2 cells. Taking advantage of the
translocation of phosphatidylserine to the exterior of apoptotic cells
for annexin V recognition, we used a dual-staining annexin V/SYTOX
green apoptosis dead cell assay to study the apoptotic behavior of
NTera2 and NTera2 HMGB4−/− after 72 h of exposure to cisplatin
(Fig. 4 C and D). The apoptotic and necrotic populations in NTera2
HMGB4−/− cells were reduced by approximately twofold compared
withWT cells, indicative of the role of HMGB4 in effecting cell death
by cisplatin-induced apoptosis.
To further confirm our findings, we carried out two comple-

mentation studies to ensure that the observed desensitization of
NTera2 to cisplatin is a consequence of the loss of HMGB4. We
transiently transfected NTera2 HMGB4−/− cells with a plasmid
encoding HMGB4 and assessed the cellular response of the
transfected cells to cisplatin. The HMGB4 transfected cells restored
sensitivity to cisplatin to the level of NTera2 WT cells (Fig. 5). In
addition, the triple-negative breast cancer cell line MDA–MB-231,
known to be highly resistant to cisplatin treatment, was transfected
with the HMGB4 cDNA. HMGB4 expression was confirmed by
Western blot and cisplatin sensitivity was assessed by an MTT assay
(SI Appendix, Fig. S3). The IC50 (50% inhibitory concentration)
values generated from dose–response curves showed twofold en-
hanced sensitivity for MDA–MB-231 transfected cells over WT
cells. Collectively, our results establish that HMGB4 plays a role in
sensitizing TGCTs to cisplatin.
Because HMGB4 specifically recognizes and binds 1,2-(GpG) Pt-

DNA cross-links, we studied the effect of a monofunctional platinum
agent on NTera2 and NTera2 HMGB4−/− cells. Monofunctional

platinum adducts, unlike their bifunctional counterparts, do not
significantly distort the 3D structure of duplex DNA (35). There-
fore, if sensitization of TGCTs to cisplatin arises from HMGB4
recognition and repair shielding of the 1,2(GpG) cisplatin-DNA
cross-link, monofunctional adducts would not elicit the same re-
sponse. Indeed, phenanthriplatin, a highly potent anticancer agent
developed within our laboratory (36), did not discriminate between
the two different isogenic lines, at least with respect to IC50 values
(SI Appendix, Fig. S4). This result supports our hypothesis that
sensitivity of TGCTs to monofunctional platinum complexes is in-
dependent of HMGB4.

HMGB4 Dictates Cell-Cycle–Specific DNA-Repair Events. Cellular
DNA is under constant threat by endogenous and exogenous
agents that inflict damage. In response, cells deploy sophisticated
repair machinery to remove cytotoxic lesions and maintain geno-
mic integrity. DNA repair is regulated throughout the cell cycle.
We therefore examined the role of HMGB4 in cell cycle pro-
gression after exposure of both NTera2 and NTera2 HMGB4−/−

cells to cisplatin. It is conceivable that lack of repair in NTera2
cells resulting from the repair-shielding role of HMGB4 will block
S-phase progression because the lesions impede DNA polymer-
ases (37). To investigate this possibility, we treated NTera2 and
NTera2 HMGB4−/− cells with cisplatin (2 μM) and used flow
cytometry to assay cell cycle progression using ModFit. NTera2 cells
displayed a clear S-phase delay 24 and 48 h following cisplatin
treatment, whereas NTera2 HMGB4−/− cells did not (SI Appendix,
Fig. S5). These data support the hypothesis that HMGB4 shields
repair, inducing S-phase blockage and imparting cisplatin sensitivity
to testicular cancer cells. We found that the G0/G1 and S-phase
checkpoints of NTera2 HMGB4−/− cells did not change significantly
at various time points, suggesting that, in the absence of HMGB4,
DNA damage repair is unimpeded and S-phase blockage is not
observed, properties that confer cellular resistance to cisplatin.

Shielding of DNA-Excision Repair by Constitutive HMGB4 Is Important
for Sensitivity of TGCTs to Cisplatin. Excision repair has long been
known as the major mechanism for removing the major DNA
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adducts formed by cisplatin (19, 38). To study the role of NER in
TGCTs, we examined the biological consequences of cisplatin
treatment on the expression of genes encoding proteins involved in
the repair complex. The repair mechanism comprises damage
recognition by proteins, unwinding or opening of the DNA helical
structure, excision of the damaged DNA strand by endonucleases,
and the subsequent action of DNA polymerases and ligases to
complete the repair using the undamaged strand as template (39).
With the use of qPCR to interrogate selected genes within the NER
pathway, we found that endonucleases XPF-ERCC1 (xeroderma
pigmentosum group F-excision repair cross-complementation
group 1) and XPG (xeroderma pigmentosum group G) mRNA
transcripts were consistently up-regulated by approximately twofold
in NTera2 HMGB4−/− relative to NTera2 cells, following treatment
with cisplatin (SI Appendix, Fig. S6 A–D). Consistent with the report
that mouse HMGB4 acts as a transcription repressor (26), this
difference might result from HMGB4 transcriptionally regulating
NER-associated proteins required to repair cisplatin-DNA adducts
and that its absence in NTera2 HMGB4−/− cells derepresses exci-
sion repair. In addition, the mRNA levels of XPC (xeroderma
pigmentosum group C), which is considered to function in DNA-
damage recognition within the global genome repair arm of NER
(GG-NER), showed a sustained increase over a 48-h period in
NTera2 HMGB4−/− compared with WT NTera2 cells.
Given that XPB (xeroderma pigmentosum group B) is a

helicase in transcription factor II human (TFIIH) that facilitates
DNA duplex unwinding for transcription and repair within the
NER machinery, we investigated the role of XPB in NTera2 and
NTera2 HMGB4−/− cell lines following cisplatin treatment. We
used a small molecule inhibitor, spironolactone (SI Appendix,
Fig. S7A), to inactivate XPB and evaluated cisplatin-induced
cytotoxicity by MTT (SI Appendix, Fig. S7B). In addition, using
shRNA to target the XPB gene, we knocked down XPB (SI
Appendix, Fig. S7C) and examined the response of the mutated
NTera2 and NTera2 HMGB4−/− cells to cisplatin, as shown in SI
Appendix, Fig. S7D. A threefold increase in sensitivity was ob-
served in NTera2 HMGB4−/− having reduced XPB compared
with the XPB-containing parental HMGB4−/− cell line (SI Ap-
pendix, Fig. S7D). Reduced XPB activity in NTera2 showed little
effect on the cellular sensitivity to cisplatin (SI Appendix,
Fig. S7E).
To further validate these results, we studied the impact of

HMGB4 on DNA repair using a human excision nuclease assay
performed with cell-free extracts (CFEs) derived from NTera2
and NTera2 HMGB4−/− cells. The assay of cisplatin-damaged

DNA repair was carried out by first preparing the substrates
shown in Fig. 6A, formed by annealing and ligating a short olig-
omer containing cisplatin 1,2-d(GpG) cross-links with four other
overlapping oligomers, as previously described (19). The oligomer
containing the Pt damage was labeled with [γ32P] ATP such that the
146-bp duplexes contained a radiolabel at the fifth phosphodiester
bond 5′ to the cisplatin d(GpG) adduct. When these substrates were
incubated with NTera2 and NTera2 HMGB4−/− CFE, the adducts
were released in oligonucleotides that were mainly 25- to 30-nt long
(Fig. 6B), as observed by polyacrylamide gel electrophoresis. The
removal of cisplatin-modified fragments requires active nucleotide
excision repair in the TGCTs with depleted HMGB4. In support of
the repair-shielding hypothesis, we observed that, in NTera2 cells
with normal HMGB4 levels, there was reduced 25- to 30-nt frag-
ment removal compared with results for NTera2 HMGB4−/− cells
(Fig. 6C). Site-specifically platinated control oligonucleotides pre-
pared in an identical manner failed to produce the characteristic
25- to 30-nt fragments when incubated without CFE.

Discussion
Understanding the high cure rates of TGCTs by cisplatin is of
longstanding interest and could be of clinical value for treatment
of refractory solid tumors. Given that cisplatin forms both intra-
and interstrand cross-links on DNA that ultimately result in
apoptosis if not removed, the observation that DNA-recognition
proteins, including HMG-family proteins, can block the repair
pathway is of potential clinical relevance. We previously demon-
strated that HMG proteins potentiate sensitivity of mammalian cells
to cisplatin by binding to 1,2-intrastrand d(GpG) cross-links using
excision nuclease assays (40), which implies that NER proteins may
be implicated in regulating cisplatin sensitivity in malignancies.
Here, we expanded our investigation of HMG proteins to include
HMGB4, a testes-specific protein involved in spermatogenesis.
In this study, we report an unexplored role of HMGB4 in sen-

sitizing TGCTs to cisplatin at the molecular level. Higher IC50 and

Excision 
products 

146 

28 

+ - Repair

Pt
5

A 

C 

B NTera2 CFE - + + 
Control WT HMGB4-/- 

NTera
2 

NTera
 2 

HMGB4-
/-

0

10

20

30

%
 E

xc
is

io
n

NTera2 
NTera 2 HMGB4-/-

Fig. 6. Human excision nuclease assay. (A) Schematic representation of
human excision nuclease assay. (B) Excision of 1,2-d(GpG) cisplatin cross-links
by excinuclease activity in testicular cancer cell extracts. The substrate (146 bp,
Pt-DNA probe) was incubated with CFEs from NTera2 and NTera2 HMGB4−/−

cells. The reaction was run for 75 min and the excision products were resolved
on 10% (wt/vol) polyacrylamide denaturing gels (TE buffer, 55–46 mA for 5 h).
The position of the main excision product, a 25–30 nt is indicated by a bracket.
Replicates of this experiment with two independently prepared cell-free ex-
tract sets are reported in SI Appendix, Fig. S8. (C) Percent excision products
from the NER assay using CFEs from NTera2 and NTera2 HMGB4−/− cells in B.
Error bar represents SD (n = 3).

-actin 

HMGB4 
NTe

ra2
 H

MGB4-
/- 

NTe
ra2

 H
MGB4-

/- +HMGB4

Cell type IC50 (µM) Fold 

NTera2 HMGB4-/- 3.20 ± 0.26 1 
NTera2 HMGB4-/-+HMGB4 0.85± 0.04 ~4.0 

NTera2 HMGB4-/-+HMGB4NTera2 HMGB4-/- 

A B 

C D 

0

1

2

3

4

IC
50

 V
al

ue
 / 
µM

NTera2-HMGB4-/-

NTera2 HMGB4-/-+HMGB4

APC-Annexin V 

S
Y

TO
X

 G
re

en
 

Untreated Treated 

NTera2 HMGB4-/- 

NTera2 HMGB4-/-+HMGB4

Fig. 5. HMGB4 complementation assay. (A) Western blot analysis of
HMGB4 expression in NTera2 HMGB4−/− cells. Transient transfection with
pcDNA3.1 encoding human HMGB4. (B) Cisplatin toxicity in NTera2
HMGB4−/− cells and NTera2 HMGB4−/− cells transiently transfected with
HMGB4. (C) Quantification of IC50 and fold change extrapolated from
dose–response curves. (D) APC-annexin V/SYTOX green double staining of
NTera2 HMGB4−/− and NTera2 HMGB4−/− + HMGB4 after cisplatin treat-
ment (2 μM) for 72 h.

Awuah et al. PNAS | January 31, 2017 | vol. 114 | no. 5 | 953

BI
O
CH

EM
IS
TR

Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615327114/-/DCSupplemental/pnas.1615327114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615327114/-/DCSupplemental/pnas.1615327114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615327114/-/DCSupplemental/pnas.1615327114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615327114/-/DCSupplemental/pnas.1615327114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615327114/-/DCSupplemental/pnas.1615327114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615327114/-/DCSupplemental/pnas.1615327114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615327114/-/DCSupplemental/pnas.1615327114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615327114/-/DCSupplemental/pnas.1615327114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615327114/-/DCSupplemental/pnas.1615327114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615327114/-/DCSupplemental/pnas.1615327114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615327114/-/DCSupplemental/pnas.1615327114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615327114/-/DCSupplemental/pnas.1615327114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615327114/-/DCSupplemental/pnas.1615327114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615327114/-/DCSupplemental/pnas.1615327114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615327114/-/DCSupplemental/pnas.1615327114.sapp.pdf


lower apoptosis induction associated with CRISPR/Cas9-mediated
HMGB4 KO NTera2 cells reveals increased cisplatin resistance in
the absence of HMGB4. Genome-wide screens in Saccharomyces
cerevisiae identified genes that, when disrupted, confer cisplatin re-
sistance (41). Several of the identified genes had not been previously
linked to cisplatin resistance and functioned in RNA Pol II-
dependent gene regulation, DNA repair, and genome stability.
Complementation of individual inactivated genes eradicated cis-
platin resistance. In a similar manner, we here identify the specific
involvement of HMGB4 in conferring sensitivity in the cisplatin-
resistant human breast cancer cell line (MDA–MB-231) by com-
plementation with a HMGB4-encoding plasmid (SI Appendix, Fig.
S3). The sensitivity doubled upon expression of the protein. Our
observation that the cisplatin-resistant phenotype of the deleted
HMGB4 cell line is due to the specific disruption of HMGB4 sug-
gests that changes to HMGB4 in testicular germ cell tumors, such as
posttranslational modifications, may also confer cisplatin resistance.
Given that HMGB1 undergoes hyperacetylation and phosphoryla-
tion upon interaction with cisplatin-DNA adducts (28), the same or
similar behavior seems highly plausible for HMGB4, considering
that the two proteins share significant homology. The clinical con-
sequence is that patients with TGCTs with cisplatin resistance are
likely to have HMGB4 mutations or modifications. To explore this
possibility, we are currently studying human biopsy samples from
patients with TGCTs experiencing cisplatin-resistant phenotypes to
determine whether they can be correlated with HMGB4 levels and
associated mutations or modifications. Furthermore, the parallel of
HMGB4 expression levels, as quantified by qRT-PCR, in transient
knockdown cells with their cytotoxicity profiles verifies the specific
involvement of HMGB4 in determining cisplatin sensitivity. For
TGCTs, this report demonstrates that the platinum DNA-damage
recognition protein, HMGB4, correlates with cisplatin sensitivity.
Accumulation of cells at the G2/M cell cycle transition reflects

unrepaired Pt-DNA lesions in NTera2 HMGB4-proficient cells and
follows delayed S phase after cisplatin treatment. The Pt lesions
block DNA polymerases required for replication (42) and the
transcription of the mitotic spindle apparatus needed for cell divi-
sion. In cells containing HMGB4, failure to repair the damaged
DNA during G1 results in replication stalling and ultimately leads to
cell death. Conversely, in HMGB4-deficient cells, we propose that
DNA damage is sufficiently well repaired during the G1 phase by
unimpeded NER proteins to account for the unchanged S phase
observed. Notably, no significant accumulation of cells at G2/M over
the analysis period following cisplatin treatment was observed in
NTera2 HMGB4−/−. In further support of this argument, a persistent
G1 phase was observed, as indicative of growth and NER activity.
The involvement of HMGB4 in sensitizing TGCTs to cisplatin

prompted our investigation of DNA repair mediated by NER in
human TGCT cells. Inefficient repair of cisplatin-induced DNA
damage in TGCTs has been associated with reduced XPA protein
levels (43). It is possible that HMGB4 interacts with XPA to shield
repair activity, although careful experiments are needed to support
this presumption. Considering that cisplatin is an effective antican-
cer drug used to cure metastatic testicular cancer, our understanding
of whether or not the predominant DNA lesion, the 1,2-d(GpG)
intrastrand cross-link, is an important substrate for human excision
nucleases has clinical therapeutic implications not only for testic-
ular neoplasms but other cancer types. In this study, we used
the excision nuclease assay to demonstrate that cisplatin-induced
1,2-d(GpG) intrastrand cross-links are substrates for a human
excision repair system derived from the embryonic carcinoma cells,
NTera2, and related genetically modified NTera2 HMGB4−/−.
The detection of radiolabeled 25- to 30-nt-long products generated
by excinuclease activity supports our repair-shielding hypothesis.
The result demonstrates specific inhibition of repair of the 1,2-d(GpG)
intrastrand cisplatin cross-link by HMGB4. This result is con-
sistent with our previous report showing that yeast mutants

lacking the HMG-domain protein Ixr1 were significantly less
sensitive to cisplatin compared with WT cells (18).
Whereas numerous studies have investigated the effect of

genotoxic drugs on the NER machinery (7), little work has been
done in elucidating the effect of DNA-recognition proteins. We
therefore, evaluated the ability of HMGB4 to impart an effect on
DNA-repair processes, particularly NER. The structure-specific
endonucleases, XPG and ERCC1–XPF, which cleave damaged
DNA strands on the 3′ and 5′ sides of the Pt-DNA lesion, re-
spectively, are key excision proteins within the NER pathway.
ERCC1 has also been proposed as a predictive marker to assess
the therapeutic benefit of cisplatin-based chemotherapy in a per-
sonalized medicine setting (44). In TGCTs, up-regulation of
ERCC1 and XPF has been associated with disease progression
(45). In our quest to understand how HMGB4 affects protein
regulation in the NER pathway, we confirmed that the absence of
HMGB4 in testicular cancer cells facilitates the action of XPG,
ERCC1–XPF endonucleases, as well as XPC, consistent with their
up-regulation in gene profiling studies. It is possible that cells
lacking HMGB4 readily detect DNA damage and up-regulate
other transcription factors for their excision repair.
As already mentioned, recruitment of NER proteins to Pt-DNA

damage sites involves TFIIH, which has XPB as a principal compo-
nent. Our examination of NTera2 and NTera2 HMGB4−/− cells with
reduced levels of XPB shows differential sensitivity to cisplatin treat-
ment. This result suggests that the loss of HMGB4 and NER genes, in
particular those involved in the initiation steps including XPB, are
required for cisplatin sensitivity. However, exclusive loss of HMGB4 in
NTera2 cells is sufficient to induce significant resistance to cisplatin. It
would be of interest to analyze patient genomic data from TGCTs
treated with cisplatin to determine possible correlation with HMGB4
levels. Experiments of this kind are currently in progress.
In NTera2 cells, which are cisplatin sensitive relative to NTera2

HMGB4−/−, p-ERK1/2 (phosphorylated extracellular signal-regulated
kinase) and p-c-Jun (phosphorylated c-Jun) expression decreased
over a 72-h period following cisplatin treatment. Interestingly, basal
levels of p-ERK1/2 and p-c-Jun were relatively diminished in NTera2
HMGB4−/− compared with normal NTera2 cells (SI Appendix, Fig.
S9). Additionally, the proapoptotic protein expression for NTera2
HMGB4−/− cells treated with cisplatin was significantly lower than
that of the WT cells, whereas the antiapoptotic Bcl-xL protein ex-
pression was higher in NTera2 HMGB4−/− than in NTera2 cells (SI
Appendix, Fig. S10). This imbalance supports the differential apo-
ptosis response observed for the TGCT cells under study.
In conclusion, our results are consistent with a repair-shielding

model in which HMGB4 recognizes and binds cisplatin-DNA
intrastrand d(GpG) cross-links, stalling the NER machinery
recruited to the damage site, which otherwise would have excised
and ultimately repaired the damage. Although we do not rule out
transcriptional activity imposed by HMGB4 to regulate genes in the
NER pathway, we conclude, based on the present findings, that a
significant component of the hypersensitivity of TGCTs to cisplatin is
a result of repair shielding by HMGB4. We speculate that HMGB4
may also impart transcriptional activity by regulating NER genes
based on the evaluation of mRNA transcripts in NTera2 or NTera2
HMGB4−/− treated with cisplatin. Consistent with this suggestion is
the G2/M accumulation in HMGB4-proficient NTera2 cells and the
relatively lower levels of XPC, XPG, ERCC1, and XPF mRNA
transcripts in NTera2 cells compared with HMGB4NTera2-deficient
cells, which leads to significant sensitivity of the former to cisplatin.

Materials and Methods
All cell lines were grown at 37 °C under a humidified atmosphere of 5% (vol/vol)
CO2. The TGCT, NTera2, and the breast cancer cell line MDA–MB-231 were
purchased from American Type Culture Collection. An NTera2 HMGB4−/− cell line
was generated via CRISPR/Cas9-mediated KO. Detailed experimental procedures,
including gene editing, transfection, cell cycle, apoptosis, and human excision
nuclease assays, are provided in SI Appendix.
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