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Summary

A near-ubiquitous pathology in very low birth weight infants is neonatal apnea, breathing pauses 

with slowing of the heart and falling blood oxygen. Events of substantial duration occasionally 

occur after an infant is discharged from the NICU. It is not known whether apneas result from a 

predictable process or from a stochastic process, but the observation that they occur in seemingly 

random clusters justifies the use of stochastic models. We use a hidden-Markov model to analyze 

the distribution of durations of apneas and the distribution of times between apneas. The model 

suggests the presence of four breathing states, ranging from very stable (with an average lifetime 

of 12 hours) to very unstable (with an average lifetime of 10 seconds). Although the states 

themselves are not visible, the mathematical analysis gives estimates of the transition rates among 

these states. We have obtained these transition rates, and shown how they change with post-

menstrual age; as expected, the residence time in the more stable breathing states increases with 

age. We also extrapolated the model to predict the frequency of very prolonged apnea during the 

first year of life. This paradigm – stochastic modeling of cardiorespiratory control in neonatal 

infants to estimate risk for severe clinical events – may be a first step toward personalized risk 

assessment for life threatening apnea events after NICU discharge.
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Introduction

Apnea of prematurity is the occasional breathing cessation and accompanying bradycardia 

and oxyhemoglobin desaturation that is experienced by nearly all infants born at very low 

birth weight (<1500 grams, VLBW). While clinically significant apnea events usually 

resolve by 9 months from conception, apparent life-threatening events (ALTEs) occasionally 

occur after discharge from the neonatal intensive care unit (NICU) (Darnall, 2009, 

Ramanathan et al., 2001). Such prolonged apnea events have been postulated to be related to 

sudden infant death syndrome (SIDS), the leading cause of infant death after the neonatal 

period (Kinney and Thach, 2009, Willinger et al., 1991).

Foreknowledge of impending apnea in premature infants might lead to better management 

and earlier safe discharge. However, some clinical experience and scientific study suggest 

that prolonged apnea events may appear without warning (Darnall, 2009, Ramanathan et al., 

2001), making their prediction and prevention impossible. On the other hand, it is known 

that apneas often appear in clusters, and these clusters of apnea events have been modeled as 

transient combinations of oscillatory breathing dynamics (Waggener et al., 1982, Waggener 

et al., 1984). The observation of clustering raises fundamental questions about the nature of 

neonatal apnea – is it a deterministic and predictable process, with a proximate cause for 

every individual apnea, or, on the other hand, does it result from a random or stochastic 

process? Control of breathing is maintained in the brain stem through gating of CO2 and pH 

sensitive ion channels – a mesoscale process at the borderline between true quantum 

unpredictability, (e.g. radioactive decay), and randomness in the sense of Laplace (Laplace, 

1840), (that is, too many processes to account for) – and we therefore reasoned that apneas 

might also have random kinetics. Indeed, stochastic switching of respiratory drive between 

normal rhythm and attenuated or abolished respiration has been demonstrated in animal 

models (Paydarfar and Buerkel, 1995). Clustering of apneas viewed in this way takes on 

features of a random walk – the best predictor of whether an inebriated gentleman will 

appear beneath a solitary streetlight in the next few minutes is that he had appeared there a 

short time ago.

In this paper we develop a predictive statistical model based on the hypothesis that apneas 

can be described by a stochastic hidden-Markov model. The model works well, but 

nevertheless, we warn in advance that success of a stochastic model is not proof that apneas 

can only occur randomly, and such success should not deter search for deterministic models 

with better predictors of prolonged apnea. Indeed, algorithmic complexity theory indicates 

that distinction between random and deterministic mechanisms in long time series can rarely 

be achieved (Chaitin, 1975).

In this paper, we study the kinetics of apnea events in the data set used to validate an apnea 

detection algorithm (Lee et al., 2012). We begin by presenting the empirical distributions of 

apnea events and the time between events in a large, clinically-annotated database. We next 

build statistical models for neonatal breathing and apnea as a function of post-menstrual age 

using a hidden Markov model – this type of model represents internal states of neonatal 

breathing as transitions among hidden states having varying degrees of stability. We present 

the concordant relation between model estimates and empirical values of apnea duration and 
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burden. These parameters show steady development toward more stable neonatal breathing 

with PMA, represented by transitions in the models to favor more stable (longer-lived) 

breathing states and away from the apnea and the proximal (shortest-lived) breathing state. 

Finally, we extrapolate the rates obtained from hidden Markov modeling to estimate the rate 

of substantial breathing cessations within the first year of life. We suggest that measuring 

transition rates for neonatal breathing control might identify infants at increased risk for 

prolonged, potentially-fatal apnea events.

Materials and Methods

Ethical approval

The UVA Institutional Review Board approved this study under a waiver of consent. 

Computerized apnea detection results were not available to the patient care team, and 

decisions about apnea management and discharge readiness were based on nursing 

documentation of events and standard NICU monitor alarm data.

Patient population

We analyzed cardiorespiratory waveforms from 298 VLBW infants consecutively admitted 

to the UVA NICU between January 2009 and June 2011. Demographic information, 

including birth weight, gestational age at birth, birth date, and types and times of respiratory 

support, were collected from patient medical records. Table 1 shows the demographic 

characteristics of the infants. Median gestational age at birth was 27 weeks and median birth 

weight 1010 grams. The number of infants discharged home includes those that were 

discharged with respiratory support. Figure 1 shows a histogram of the number of patients 

with data available at each postmenstrual age (PMA, gestational age plus age from birth), 

with distinction made by disposition at discharge.

We also analyzed patients within the 8 days preceding discharge to home: we found 196 

VLBW infants that had data available for analysis immediately preceding discharge to 

home. Table 1 shows the demographic characteristics of this sample of infants.

Data Acquisition

All patients in the UVA NICU have continuous cardiorespiratory monitoring. We collected 

signals from 3 electrocardiograph leads digitized at 240 Hz, the chest impedance 

pneumograph digitized at 60 Hz, and pulse oximetry digitized at 120 Hz from the GE 

bedside monitors using a central network server (Bedmaster Ex, Excel Medical, Jupiter, FL) 

behind the clinical firewall. We also collected heart rate, respiratory rate, and oxygen 

saturation vital signs derived by the monitor. Data were transmitted to our centralized 

computing and storage cluster and analyzed in parallel.

Of the total NICU stay for all patients (55 patient years) (Clark et al., 2012), 51% of data 

were deemed unsuitable for analysis due to epochs where recording was interrupted. Data 

were analyzed in 16 minutes epochs, and we required continuous time series of 3 ECG 

leads, chest impedance, and heart rate from the physiological monitor to define epochs as 

suitable for analysis. Missing chest impedance and dropped data packets from the data 

Clark et al. Page 3

Physiol Meas. Author manuscript; available in PMC 2017 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acquisition system were the most common causes for excluding an epoch. Of the remaining 

data (26.5 patient years), 10% were excluded to avoid the times during which the infants 

were being treated with mechanical ventilation.

Apnea detection

Apnea events were identified in this data set as part of a previous study by our group – the 

apnea detection algorithm has been validated with accuracy > 90% by comparison with 

clinical inspection of waveform time series (Lee et al., 2012, Vergales et al., 2013). Briefly, 

apnea was detected as low variance epochs in the chest impedance pneumograph after notch 

filtering in heart-clock time to eliminate cardiac artifact and high-pass filtering to remove 

movement artifact. Heartbeats were detected using a threshold-based algorithm (Pan and 

Tompkins, 1985) as implemented by Clifford and co-workers (Li et al., 2008, Tarassenko et 

al., 2001). For the current analysis, apnea was defined as breathing cessation of at least 10 

seconds with both associated bradycardia and desaturations. We consider this definition for 

apnea clinically relevant because the breathing cessation caused both a decrease in heart rate 

and a decline in oxygen level in the blood – this is a stricter definition than that given by 

Finer et al. (Finer et al., 2006) in order to assure clinical relevance. The thresholds for 

bradycardia (HR<100, within 50 seconds from the beginning of the apnea or 25 seconds 

from the end of the apnea) and desaturation (SPO2<80%, within 55 seconds from the 

beginning of the apnea or 38 seconds from the end of the apnea) are based on detailed 

inspection of 932 central apnea events by clinical personnel, see the Appendix of (Lee et al., 

2012). This apnea detection method is based on chest movement and therefore identifies 

only central apnea events (obstructive events as breathing identified as breathing). While this 

algorithm does not explicitly exclude epochs of periodic breathing (Poets and Southall, 

1991, Barrington and Finer, 1990), breathing pauses in periodic breathing epochs are shorter 

than 10 seconds and seldom induce sufficient bradycardia and desaturation to meet our 

thresholds (Khan et al., 2005, Wilkinson et al., 2007).

The results of (Lee et al., 2012) show an acceptable false positive rate (5%) throughout a 

NICU stay. Near discharge, however, the rate of false positives may be higher due to the 

reduced apnea rate and increased noise due to movement. We filtered out false positive 

apnea events within 8 days of NICU discharge as detailed in Appendix A, section Filtering 
out false positive apnea events near discharge.

Empirical distribution of apnea and inter-apnea epochs

We studied the duration and timing of 26,088 apnea events occurring from admission 

through discharge for the patient population in Table 1. Figure 2(a) shows the cumulative 

distribution of the apnea durations (dots). For each patient we identified sequential apnea 

events and calculated the time between each – the inter-apnea epochs. Inter-apnea epochs 

that started or ended at missing data were excluded as these are periods where apnea may 

occur but not be detected. Figure 2(b) shows the cumulative distribution of observed inter-

apnea epochs for all infants regardless of PMA (dots).
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Statistical modeling of neonatal apnea

We modeled apnea of prematurity as a Markov process based on the interpretation of apnea 

as the result of transitions through decreasingly stable breathing states. One type of Markov 

model is a Markov chain, which has a large or infinite number of states and transitions only 

between adjacent neighbors. These models have diffusion-like behavior and have been used 

to model the tail of inter-breath interval distributions in infants (Frey et al., 1998). These 

models result in power law distributions that may be useful for fitting apnea durations (Frey 

et al., 1998) but are not appropriate for fitting multimodal distributions (McManus et al., 

1988) – no single power law can fit the distribution of inter-apnea epochs in Figure 2(b), 

thus no solvable diffusion or fractal model describes the statistics of apnea in VLBW infants.

In the second type of Markov model a small number of states are postulated, with transitions 

occurring randomly from each state to others. Generally transitions are allowed directly 

from every state to every other state. Models of this type are used in a wide range of fields, 

e.g., speech recognition (Lee and Jean, 2013, Schafer and Jin, 2014), disease tracking 

(Robertson et al., 2011, Detilleux, 2008), and ion channel recording (Colquhoun and 

Hawkes, 1982). In ion channel models, states are defined for open, closed, and blocked 

channels and transition rates are determined empirically. Knowledge of these transition rates 

allows for determination of important behaviors, for example mean open lifetime, mean time 

between openings, and number of ion channel openings per cluster. This type of Markov 

modeling also has important applications in medicine (Sonnenberg and Beck, 1993) and has 

been used to evaluate obstructive sleep apnea in adults (Kim et al., 2009) and detect apnea of 

prematurity in short heart rate time series for preterm infants (Altuve et al.).

Markov model parameter estimation

Parameters of Markov models were derived following methods from analysis of single ion 

channel recordings (Colquhoun and Hawkes, 1977, Colquhoun and Hawkes, 1982). A 

Markov model is specified by the number of distinct observables M, the number of states N, 

the observation symbol probability distribution B = bj, the state transition probability 

distribution C or the related transition rate matrix K, and the initial state distribution P(0) 

(Rabiner, 1989). We define M = 2 distinct observables for neonatal breathing: breathing and 

apnea. Derivation of parameters N and bj are given in the following section. Details on the 

remaining parameters are provided in Appendix A.

Neonatal breathing Markov model definition

The number of states N in a Markov model is chosen from study of the distribution of dwell 

times and transition rates (Sigworth and Sine, 1987), in our case apnea durations and time 

between apnea events, the dots in Figure 2. If a Markov model with discrete states and 

continuous time is correct, then the probability q that an infant will stay in any given state 

for time t with no transition to another state decreases with time exponentially, q(t)=exp(−t/
τ) where τ is the expected duration in the state. The corresponding cumulative distribution, 

which in our case is the probability that the duration is less than t, is given by Q(t) = 1 − 

exp(−t/τ). Similarly, the probability that the infant will stay among m hidden breathing states 

is a superposition of exponentials, and the corresponding cumulative distribution for the time 

between apneas is
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(1)

Here τi and αi are the mean of the distribution and relative magnitude for exponential mode 

i, respectively.

The cumulative distribution of apnea durations was modeled with a single exponential, Eq. 

(1) with α=m=1 (Figure 2(a), solid curve), with parameter τA, the mean apnea duration, by 

maximizing the log likelihood of the parameter given the observed durations (Sigworth and 

Sine, 1987). The mean apnea duration based on the model for apnea events greater than 10 

seconds was τ = 24.9 seconds, and a single exponential function provided an accurate fit (R2 

= 0.99).

In contrast, multiple distributions are evident in the cumulative distribution of inter-apnea 

epochs, Figure 2(b) dots. We fit the data with increasing number of exponentials until the 

goodness-of-fit R2 ≥ 99.9%. The goal was to minimize the complexity of the model (i.e. as 

few states as possible) while accurately fitting the data. We optimized the parameters using 

maximum likelihood and found that the sum of four exponentials, Eq. (1) with m=4 (Figure 

2(b), solid curve), adequately describes the data. The parameters are provided in Table 2. 

Based on these results we defined the number of states in the Markov model for neonatal 

breathing to be N = 5, including 4 breathing states and one apnea state, S = [B1, B2, B3, B4, 
A].

As stated above, the observables are that the infant is breathing or that the infant is not 

breathing, and the observation matrix B gives the probability of observing Oj given that the 

model is in state Si. For the apnea model this is trivial; the probability of observing breathing 

is 1 in each breathing state and 0 in the apnea state,

(2)

In order to characterize changes in breathing control with post-natal development, we 

created Markov models at weekly post-menstrual ages – for each, we used a 3-week epoch 

centered on the one of interest. Specifically, we optimized the transition rate matrix K of a 

Markov model for each PMA from 25 to 40 weeks, 16 models in all. At each PMA a time 

series was created for each infant with data at that PMA, where each time series was a 

number each second: “0” if the infant is breathing and “1” if the infant is apneic. It is 

possible to have multiple time series per patient due to missing data or excluded epochs of 

mechanical ventilation. Each model was developed using B from Eq. (2) and the initial state 

distribution P(0) was taken to be,
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(3)

where τi were determined using the exponential distribution fits to the data in Figure 2, and 

are listed in Table 2. Note that the same observation matrix B and initial state distribution 

P(0) were used for each PMA and these were not allowed to vary during optimization. The 

transition rate matrix K for each PMA was determined using the optimization technique 

described in Appendix A using the initial estimate from Eq. (A4). The transition probability 

density C was calculated as the matrix exponential of the transition rate matrix K.

Transition rate confidence intervals

At each PMA 40 bootstrap runs were completed (Harrell, 2001, Feng et al., 1996). For each 

run the n patients at that PMA (see Figure 1) were randomly resampled with replacement – 

for each run some patients were used multiple times and some patients not used. For each 

bootstrap run we calculated the transition rates using the same procedure described above 

and in the Appendix. At each PMA, and for each transition rate, we calculated the 95% 

confidence interval by identifying the 2.5 and 97.5 %-tiles of the 40 samples – for 40 

samples, the 95% confidence interval is defined by the minimum and maximum values.

Results

Apnea in VLBW infants

Inspection of the waveform data from bedside monitors revealed clusters of apnea separated 

by longer periods without apnea. Figure 3(a) shows a cluster of three clinically significant 

apneas within three minutes. Only the events labeled with black bars were identified as 

apnea by the algorithm (because, as stated above, the algorithm selects breathing cessations 

of at least 10 seconds accompanied by bradycardia and desaturation). Throughout, we use 

ABDX to indicate apnea events of at least X seconds accompanied by bradycardia and 

oxygen desaturation. The first apnea is an ABD20. This is followed by two subclinical 

apneas, or breathing cessations that do not cause critical slowing of heart rate and declining 

oxygen saturation in the blood. Subsequently there are two clinical apneas; the first is 30 

seconds and the second is 25 seconds, an ABD30 and an ABD25. Figure 3(b) depicts the 

number of ABD10 events for a single preterm infant from 33 to 35 weeks PMA. Each half 

hour is represented by a vertical band, with the intensity of the band indicating the number 

of ABD events longer than 10 seconds during that time period (0 events per half hour is 

white, 6 is black). In this example apnea occurs at highly variable intervals; there are 

instances of multiple apneas within a half-hour as well as days without apnea. From day 21–

24 there are no apnea events (the infant was not on mechanical ventilation during this time, 

and data were available more than 90% of the time). Subsequently, there is another cluster of 

apnea. These results suggested breathing states of varying stability, with apnea accessible 

from any state.
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We also identified breathing cessations of substantial duration, many times longer than the 

30 second duration characterized as ALTE (Ramanathan et al., 2001). Figure 3(c) shows an 

example of an epoch of abnormal breathing control lasting nearly two minutes with 

bradycardia and oxygen desaturation. The detected event is labeled with a horizontal black 

bar. This epoch comes from an infant born at 27 weeks with a birth weight of 850 grams 

who was eventually discharged to home from the NICU. This event was detected as an 

ABD110 by the automated detection algorithm, starting at 20 seconds and ending at 131 

seconds. It is important to note that, although this episode represents a period of apnea 

detected as an ABD, isolated tiny fluctuations in the impedance signal may occur in long 

ABDs. This may permit these episodes to reach substantial lengths (Mohr et al., 2014).

Statistical models for central apnea in preterm infants

We studied Markov models with the state diagram shown in Figure 4(a), with one apneic 

state (A) and four breathing states (Bi, i=1,2,3,4) numbered from most to least stable. For 

each PMA we optimized the transition rate matrix K of a Markov model. Figure 4b and 4c 

show the dominant transitions (arrows) and states (bold) for 27 and 40 weeks PMA, 

respectively. The important findings are that the earlier PMA has higher probabilities of 

transitions towards and residence in less stable breathing and apnea states. The model at 

higher PMA is characterized by larger probability of the second-most stable breathing state, 

and lower probability of apnea.

The Markov model transition rates are shown in Figure 5 as a function of PMA. We found 

the average durations of these breathing states to be on the order of 10 seconds (B4), 10 

minutes (B3), 2 hours (B2), and 12 hours (B1), see Figure 5 and Appendix section 

Calculating apnea burden and mean apnea duration from a Markov model. Confidence 

intervals are shown for the transition rates and percent residence for each state.

The suitability of the model can be assessed by comparing its predictions to the observed 

data. We tested the goodness-of-fit of the model by comparing predicted and observed apnea 

burdens and the average duration of individual apneas. For each PMA, we calculated the 

apnea burden based on observed data as the number of seconds of apnea divided by the total 

monitoring time in days. We repeated the process for each Markov model being careful to 

censor apneas shorter than 10 seconds first, as apnea shorter than 10 seconds is not clinically 

significant (Finer et al., 2006). Details are described in Appendix A sections Calculating 
apnea burden and mean apnea duration from a Markov model and Censoring short apnea 
from the model. Figure 6 shows very good agreement between the predictions of the model 

and the observed data for apnea duration (Figure 6a) and apnea burden (Figure 6b). 

Observed data are shown as mean (circles) and 95% confidence interval (error bars) for the 

sample of patients at each PMA. This agreement is evidence that a Markov model with 5 (4 

breathing and 1 apnea) states and 2 observables (breathing and not breathing) can accurately 

characterize the kinetics of apnea in VLBW infants.

The rate of severe apnea after NICU discharge

Rare but clinically significant apnea events occur after discharge from the NICU. These 

ALTEs often lead to rehospitalization. We wish to estimate the rate of ALTE after NICU 
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discharge. Thus we constructed a Markov model based on data from the eight days before 

discharge home, see Table 1. We optimized the transition rate matrix K of a Markov model 

using the same methods described above: the mean residence time in each Markov state in 

this model are 18.1 hours (B1), 2.2 hours (B2), 13.9 minutes (B3), and 12.3 seconds (B4).

We used the optimal transition rate constants from the discharge Markov model to estimate 

the rate of prolonged apnea after discharge. An analytical expression to estimate the rate of 

extreme apnea after NICU discharge is derived in Appendix A section Estimating the rate of 
extreme apneas after discharge. This estimate is shown in Figure 7 – the figure addresses the 

question, “given that an infant is discharged from the NICU to home, what is the probability 

that that infant will go X days and have at least one apnea of duration at least Y”. The rate of 

an apnea event is shown as a function of days after NICU discharge on the abscissa and 

duration on the ordinate. For example, our model estimates that the rate at which infants 

discharged to home have at least one apnea > 128s within the first 6 months after NICU 

discharge is 1 in 100. This extrapolation predicts that the rate of severe apnea (~180 

seconds) occurring after discharge is on the order of 1 per 1000. This is on the order of the 

occurrence rate of SIDS in the US population (Moon and Syndrome, 2011).

Discussion

We modeled neonatal apnea in VLBW infants in intensive care using stochastic Markov type 

models. The choice of a stochastic model was motivated by the simplicity of such models. 

This choice does not require that the underlying mechanisms of neonatal breathing control 

actually be stochastic as opposed to deterministic and high order. Our model accurately fit 

the trend of declining apnea duration and apnea burden with post-natal development in a 

large clinical dataset, and allowed for the observations of apnea bursts as well as long apnea-

free epochs terminated by severe apnea events. We find that a small number of states, 4 

breathing and 1 apnea state, are sufficient to accurately model apnea durations and the return 

time to apnea, and the development of these transitions with PMA. An interesting extension 

would be to develop models based only on RR intervals, where bradycardia alone would act 

as surrogate for apnea with bradycardia and desaturation (Altuve et al.). Bradycardia 

duration and rate of descent are directly related to apnea duration and may be used to 

enhance such a model (Mohr et al., 2014).

The longest breathing state, with transitions at about 12 hours, is the most frequently 

occupied state regardless of PMA and most preferably transfers to apnea until 38 weeks 

PMA, Figure 5a. In Figure 5f, it is interesting that the moderately stable state, B3 with 

transitions at tens of minutes, is occupied 30% of the time until approximately 32 weeks 

PMA, after which it becomes less frequently occupied. Transitions from B3 into more stable 

breathing state B2 become increasingly likely with postnatal development in Figure 5c. 

These transitions may reflect the developing circadian and sleep cycles in neonatal 

brainstem physiology during this time. Circadian variations have been observed in the 

oxygen consumption of 31 week PMA infants (Bauer et al., 2009), but this physiology may 

not measurably begin developing until after 32 weeks PMA (Chen, 2010). The development 

of sleep-wake cycles has been observed as early as 28 weeks (Kuhle et al., 2001, Olischar et 
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al., 2004), though sleep states develop in stability and occupancy over a longer period 

(Giganti et al., 2006).

One speculative interpretation is that the most stable breathing state B1 represents 

wakefulness, the second most stable state B2 represents residence in various stages of sleep, 

and B3 and B4 represent transition states where the feedback from central and peripheral 

chemoreceptors to the respiratory centers in the neonatal brainstem may cause breathing to 

become unstable, leading to apnea. Early in neurological development the neonatal control 

centers do not vary oxygen consumption with day-night activity cycles and do not transition 

to stable sleep. This corresponds to the high probability of transition from the wakeful state 

B1 into apnea, a frequently occupied unstable state B3, and frequent transitions from 

unstable breathing B3 into apnea before 29 weeks PMA (see Figure 5(a), (c), and (f)). As 

circadian variation in oxygen consumption and control of breathing develop an infant spends 

more time in the stable sleep breathing state and less in unstable breathing, Figure 5(f) 

starting at 30 weeks PMA. As sleep-wake cycles begin to develop transitions from 

wakefulness into stable sleep become more likely, Figure 5(a) starting at 29 weeks PMA. 

Transitions out of stable sleep into unstable breathing (B2 to B3, Figure 5(b)) become 

increasingly likely to transition into another sleep cycle (B3 to B2, Figure 5(c)). If these 

changing transition rates of Markov models are indicative of more stable sleep and circadian 

patterns approaching discharge, investigating the model for an individual patient may inform 

on that patient’s postnatal brainstem development.

The rate of severe apnea events occurring after discharge from the NICU remains an 

unknown in neonatology. Though the data were collected during the 8 days prior to 

discharge from the NICU, we extrapolated our model to estimate the rate of such apparent 

life threatening events. Prolonged, potentially fatal apnea events after NICU discharge were 

studied by the CHIME study in the 1990’s. A surprising result was the very high incidence 

of apneas exceeding 30 seconds accompanied by bradycardia and O2 desaturation that were 

not associated with obvious untoward effects (Ramanathan et al., 2001). Our study also 

found clinically significant apnea events in the eight days prior to discharge home; many of 

these infants went home with respiratory support or on an apnea monitor. This suggests a 

great deal of resiliency in infants: our estimate of the rate of apnea lasting longer than 180 

seconds during the first year of life is 1 in 1000, as shown in Figure 7.

The implication is that information from breathing patterns might serve to identify infants 

that are more likely to experience prolonged potentially fatal apnea events during the first 

year of life. It is, counter-intuitively, the breathing durations and not the apnea durations that 

hold the information. Apnea durations were well-described by a single exponential decay 

function, a convincing argument for a single apnea state at all stages that allows for 

infrequent events of substantial duration. What is clinically important is how likely the 

current breathing state is to transition into apnea. On average, more stable breathing states 

are more likely with advancing development. A finding of improper maturation of transition 

rate constants might serve to identify the infants at highest risk for prolonged apnea after 

discharge to home.
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Limitations and strengths

A limitation of our study is the inconsistent quality of neonatal breathing measurements – a 

large proportion of patient data were missing or not of suitable quality for analysis. More 

accurate and robust monitoring would improve the estimate for severe apnea occurring after 

NICU discharge, and would allow the stability of neonatal breathing control to be more 

accurately assessed. Another limitation is that additional filtering was performed only for 

apnea events within 8 days of discharge. Filtering all 26,088 would likely increase the 

transition rates out of apnea in Figure 5 and reduce the residual apnea burden and duration at 

higher PMA in Figure 6. Another limitation is that, were data excluded due to movement, 

this may have led to a non-random distribution of missing data. If the more active infant is 

less likely to experience apnea, this would tend to skew our results towards shorter time 

periods between apneas. Whatever the imperfections of our algorithm, we emphasize that 

this continuous-monitoring system is far more accurate than nursing records.

Another limitation of our approach is that central apnea events are identified without 

distinction by cause. Some apneas near discharge may reflect poor sucking-swallowing-

breathing coordination during feeds, or changing sleep architecture. Other normal 

physiologic processes contribute to apnea, notably anemia (Zagol et al., 2012) and gastro-

esophageal reflux (Poets, 2004). Both of these normal physiologic phenomena may be 

progressing at the time of NICU discharge and may play a role in the stochastic distribution 

of apnea, with the possibility of very long time between apnea events as the chemoreceptors 

and other elements of the respiratory control system mature. Another limitation of our study 

is that we have considered only one of many manifestations of pathologic cardiorespiratory 

control. Future models for transitions between stable and abnormal cardiorespiratory control 

should include not only apnea (Darnall, 2009, Martin et al., 2002, Di Fiore et al., 2013), but 

also, for example, periodic breathing (Khan et al., 2005, Wilkinson et al., 2007, Mohr et al., 

2015), cardiorespiratory uncoupling (Clark et al., 2012, Godin and Buchman, 1996), and 

transient heart rate decelerations (Moorman et al., 2011, Dorostkar et al., 2005). A final 

limitation is that we model the rate of prolonged apnea after discharge using data from the 

last 8 days in the NICU, thus extrapolating the data as if neurological development were 

complete at discharge.

A major strength of this study is the use of computer algorithm-detected apnea based on 

chest impedance waveforms rather than nursing documentation or a tally of bedside monitor 

alarms, thus allowing us to accurately quantify occurrence and duration of events (Muttitt et 

al., 1988, Southall et al., 1983, Vergales et al., 2013). Automated detection algorithms could 

be continuously implemented at the bedside of preterm infants in intensive care, where all 

such infants already have routine cardiorespiratory monitoring. Such implementation would 

allow online estimation of the risk for apparently random transitions to isolated and severe 

apnea events following extended periods without apnea.
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Appendix A

Hidden Markov modeling

Hidden Markov models represent time series data as random transitions between states that 

are not visible to the observer. At each instant the probability that an infant is in any one of 

N states is described by a vector with N components, P(t)=(P1,P2,…,PN). In the context of 

neonatal apnea, there are states that represent apnea and others that represent breathing 

states with varying levels of stability that are hidden from observers. The change of that 

probability vector is given by,

(A1)

where C is a matrix that represents transition probabilities: the probability P that the system 

is in state j at time t + 1 given that it was in state i at time t is

(A2)

where S(t) represents the state of the system at time t. In a stationary Markov model, this 

transition probability matrix does not depend on time. After each step, there is a finite 

probability that the infant remains in the same state (i=j), and for each initial state Si

(A3)

The general theory of hidden Markov models includes also a collection of observables (Ok, 
k=1,2,…), and there is another matrix B that converts the state probability vector P(t) into 

the probability of observing each particular outcome (Ok). In our case this matrix is trivial: 

the two outcomes are breathing or not-breathing. If an infant is in any of the breathing states 

the probability of observing breathing is 1, while if the infant is in an apnea state the 

probability of observing breathing is 0. Thus, “hidden” refers to the fact that we cannot 

identify the stability of an infant’s respiratory control system solely by observing that the 

infant is breathing.

Maximum likelihood calculation of transition probabilities

Several algorithms are available for obtaining maximum likelihood estimates of the one-step 

transition probability matrix C and from that its matrix logarithm K. Here K is a time-

invariant N × N matrix of rate coefficients. The diagonal elements of K are negative, all 

others are positive, and each row of the matrix sums to zero. We used the Baum-Welch 

maximization algorithm to determine the optimal transition rate matrix K (Baum et al., 

1970, Juang and Rabiner, 1991) as implemented in MatLab® (The MathWorks, Natick, 

MA), though the Viterbi algorithm is also an option (Shinghal and Toussaint, 1979). These 
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optimization algorithms allow for non-zero transition rates between any pair of states. This 

method requires an initial estimate of C and of the initial vector of probabilities P(0). The 

initial estimate C0 was derived from an initial estimate K0 that was chosen to be,

(A4)

The transition rates were determined as a function of PMA using these parameters. The 

resulting coefficients of the transition rate matrix K are shown in Figure 5a–e. Note that the 

diagonal elements of K are negative to maintain a zero row sum. The coefficients are shown 

for the longest lifetime breathing state B1 (a), the next longest lifetime breathing state B2 (b), 

the third longest lifetime breathing B3 (c), the shortest lifetime breathing state B4 (d), and 

the apneic state A (e). The percentage of time spent in each state is shown in Figure 5f.

Calculating apnea burden and mean apnea duration from a Markov model

To check the consistency between the model and the data, we estimate the apnea burden and 

the mean apnea duration. At steady state, the probability of apnea is the value of the 

corresponding element of the normalized left-eigenvector of the transition rate matrix K 
having eigenvalue equal to zero. If this probability is multiplied by the number of seconds in 

a day, it gives the apnea burden (seconds of apnea per days of monitoring) predicted by the 

Markov model. The average apnea duration predicted by the model is −1/KAA, where KAA 

is the transition rate from the apnea state into the apnea state. For any state Si the average 

residence time in that state is −1/Kii.

Censoring short apnea from the model

A Markov model assumes the dwell time in each state is exponentially distributed. Apnea 

durations are censored below 10 seconds. Censoring an exponential probability distribution 

below a value x has the effect of increasing the mean of that distribution by x. The average 

residence time in the apnea state (A) must be decreased by 10 seconds to account for this 

fact. This is achieved by modifying transition rates KAi, i=1…N representing transitions out 

of apnea as,

(A5)
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Filtering out false positive apnea events near discharge

When modeling apnea during the 8 days prior to discharge home, the apnea detection 

algorithm produced a larger false positive rate than that during the rest of the stay. This is a 

result of the lower apnea rate and increased infant activity at this point in neonatal care. In 

order to reduce the rate of false positives and more accurately estimate the rate of apnea, we 

filtered events using an automated algorithm. For each apnea event we calculated two 

parameters: the area under the apnea probability (Lee et al., 2012) divided by the apnea 

duration, and the power in the chest impedance between 0.5 Hz and 2.0 Hz. These two 

parameters were calculated for 500 automatically-identified apnea events randomly selected 

throughout the entire stay of all infants in the study. Of these, 471 events were adjudicated as 

true apnea or false positive by agreement of two neonatologists. A logistic regression model 

was created using maximum likelihood estimation. The ROC area of this model is 0.93.

We used this model as an additional filter for apnea events, and determined a threshold 

below which apnea events were censored from our analysis. This threshold was determined 

by randomly selecting 100 events from the 8 days prior to discharge in 196 infants, of which 

96 events were adjudicated. We selected a threshold for the apnea filter such that the false 

positive rate was equal to the false negative rate: we used an apnea filter threshold of 0.81.

Estimating the rate of extreme apneas after discharge

We also computed a K matrix based on time series from the last 8 days prior to discharge 

home. We extrapolated the rate of apnea occurring after discharge from the NICU. We wish 

to estimate the probability that an infant will have at least one apnea event within N days 

after discharge, and that at least one of those events will have duration greater than d. Figure 

A1 shows the distribution of apnea durations in the 8 days before discharge (circles) and the 

modeled distribution (dashed). The rate of apneas longer than about 1 ½ minutes is 

extrapolated.

We now model the probability of having n apnea events in N days using a Poisson 

distribution. We consider each day as a trial, and estimate the probability of n “successes” 

(apnea events) based on the expected number of successes v. In this context, the probability 

of having exactly n apneas in N days is the Poisson probability density distribution,

(A6)

Here v, the expected number of apneas in N days, is

(A7)

where α= 86,400 seconds per day, KAA is the diagonal element of the rate matrix 

corresponding to the apneic state (i.e. the negative inverse of the mean apnea duration), and 

pA is the probability of apnea. At steady state, this probability of apnea pA is the value of the 
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corresponding element of the normalized left-eigenvector of the transition rate matrix K 
having eigenvalue equal to zero. The probability that an apnea is shorter than d seconds is 

the cumulative of the exponential distribution,

(A8)

The proposition that there are no apneas within N days of discharge, or that any apnea events 

occurring within N days are shorter than d, is,

(A9)

We use the distributions in Eqs. (A6) and (A8) to find the probability of this proposition,

(A10)

This simplifies to,

(A11)

(A12)

The proposition of having at least one apnea with duration greater than d is the negation of 

the proposition in Eq. (A9),

(A13)

The probability of prolonged apnea after discharge is therefore one minus the probability in 

Eq. (A11),

(A14)

This result is shown in Figure 7.
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Fig. A1. 
Probability density of automatically identified apnea durations during the eight days prior to 

discharge for 196 VLBW infants. Events longer than 60 seconds were identified as false 

positives by manual inspection, and were censored.

Glossary

A Markov state representing apnea

αi Relative magnitude of exponential mode i

ABDX Apnea event lasting at least X seconds with bradycardia and desaturation

ALTE Apparent life threatening event

Bi Markov state i representing breathing

B Observation symbol probability density

C Transition probability density

K Transition rate matrix

Kij Transition rate from i to j

M Number of distinct observables

N Number of Markov states

NICU Neonatal intensive care unit

Clark et al. Page 16

Physiol Meas. Author manuscript; available in PMC 2017 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ok Observable k

P Transition probability

P(t) State probability vector at time t

PMA Post-menstrual age

q(t) Exponential probability distribution

Q(t) Exponential cumulative distribution

ROC Receiver operating characteristic

Si Markov state i

SpO2 Peripheral oxyhemoglobin saturation

τi Expected value for exponential mode i

VLBW Very low birth weight, < 1500 grams

References and Notes

ALTUVE M, CARRAULT G, BEUCHEE A, PLADYS P, HERNANDEZ AI. On-line apnea-
bradycardia detection using hidden semi-Markov models. Conf Proc IEEE Eng Med Biol Soc. 
2011:4374–7. [PubMed: 22255308] 

BARRINGTON KJ, FINER NN. Periodic breathing and apnea in preterm infants. Pediatr Res. 1990; 
27:118–21. [PubMed: 2314939] 

BAUER J, JANECKE A, GERSS J, MASJOSTHUSMANN K, WERNER C, HOFFMANN G. 
Circadian variation on oxygen consumption in preterm infants. J Perinat Med. 2009; 37:413–7. 
[PubMed: 19292581] 

BAUM LE, PETRIE T, SOULES G, WEISS N. A Maximization Technique Occurring in Statistical 
Analysis of Probabilistic Functions of Markov Chains. Annals of Mathematical Statistics. 1970; 
41:164–&.

CHAITIN GJ. Randomness and Mathematical Proof. Scientific American. 1975

CHEN A. The circadian rhythm of expression of Bmal1 and Cry1 in peripheral blood mononuclear 
cells of preterm neonates. J Matern Fetal Neonatal Med. 2010; 23:1172–5. [PubMed: 20222832] 

CLARK MT, RUSIN CG, HUDSON JL, LEE H, DELOS JB, GUIN LE, VERGALES BD, PAGET-
BROWN A, KATTWINKEL J, LAKE DE, MOORMAN JR. Breath-by-breath analysis of 
cardiorespiratory interaction for quantifying developmental maturity in premature infants. J Appl 
Physiol. 2012; 112:859–67. [PubMed: 22174403] 

COLQUHOUN D, HAWKES AG. Relaxation and Fluctuations of Membrane Currents That Flow 
through Drug-Operated Channels. Proceedings of the Royal Society of London Series B-Biological 
Sciences. 1977; 199:231–262.

COLQUHOUN D, HAWKES AG. On the Stochastic Properties of Bursts of Single Ion Channel 
Openings and of Clusters of Bursts. Philosophical Transactions of the Royal Society of London 
Series B-Biological Sciences. 1982; 300:1–59.

DARNALL RA. ALTEs: still a puzzle after all these years. J Pediatr. 2009; 154:317–9. [PubMed: 
19874753] 

DETILLEUX JC. The analysis of disease biomarker data using a mixed hidden Markov model (Open 
Access publication). Genet Sel Evol. 2008; 40:491–509. [PubMed: 18694546] 

DI FIORE JM, MARTIN RJ, GAUDA EB. Apnea of prematurity – Perfect storm. Respir Physiol 
Neurobiol. 2013

Clark et al. Page 17

Physiol Meas. Author manuscript; available in PMC 2017 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DOROSTKAR PC, ARKO MK, BAIRD TM, RODRIGUEZ S, MARTIN RJ. Asystole and severe 
bradycardia in preterm infants. Biol Neonate. 2005; 88:299–305. [PubMed: 16113524] 

FENG Z, MCLERRAN D, GRIZZLE J. A comparison of statistical methods for clustered data 
analysis with Gaussian error. Stat Med. 1996; 15:1793–806. [PubMed: 8870161] 

FINER NN, HIGGINS R, KATTWINKEL J, MARTIN RJ. Summary proceedings from the apnea-of-
prematurity group. Pediatrics. 2006; 117:S47–51. [PubMed: 16777822] 

FREY U, SILVERMAN M, BARABÁSI AL, SUKI B. Irregularities and power law distributions in the 
breathing pattern in preterm and term infants. J Appl Physiol (1985). 1998; 85:789–97. [PubMed: 
9729549] 

GIGANTI F, FICCA G, CIONI G, SALZARULO P. Spontaneous awakenings in preterm and term 
infants assessed throughout 24-h video-recordings. Early Hum Dev. 2006; 82:435–40. [PubMed: 
16388922] 

GODIN PJ, BUCHMAN TG. Uncoupling of biological oscillators: a complementary hypothesis 
concerning the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med. 1996; 
24:1107–1116. [PubMed: 8674321] 

HARRELL, FE. Regression Modeling Strategies: With Applications to Linear Models, Logistic 
Regression, and Survival Analysis. Berlin: Springer; 2001. 

JUANG BH, RABINER LR. Hidden Markov-Models for Speech Recognition. Technometrics. 1991; 
33:251–272.

KHAN A, QURASHI M, KWIATKOWSKI K, CATES D, RIGATTO H. Measurement of the CO2 
apneic threshold in newborn infants: possible relevance for periodic breathing and apnea. J Appl 
Physiol. 2005; 98:1171–6. [PubMed: 15772056] 

KIM JW, LEE JS, ROBINSON PA, JEONG DU. Markov analysis of sleep dynamics. Phys Rev Lett. 
2009; 102:178104. [PubMed: 19518839] 

KINNEY HC, THACH BT. The sudden infant death syndrome. N Engl J Med. 2009; 361:795–805. 
[PubMed: 19692691] 

KUHLE S, KLEBERMASS K, OLISCHAR M, HULEK M, PRUSA AR, KOHLHAUSER C, 
BIRNBACHER R, WENINGER M. Sleep-wake cycles in preterm infants below 30 weeks of 
gestational age. Preliminary results of a prospective amplitude-integrated EEG study. Wien Klin 
Wochenschr. 2001; 113:219–23. [PubMed: 11383380] 

LAPLACE, PS. Essai Philosophique sur les probabilities. Paris: Paris Bachelier; 1840. 

LEE H, RUSIN CG, LAKE DE, CLARK MT, GUIN L, SMOOT TJ, PAGET-BROWN AO, 
VERGALES BD, KATTWINKEL J, MOORMAN JR, DELOS JB. A new algorithm for detecting 
central apnea in neonates. Physiol Meas. 2012; 33:1–17.

LEE LM, JEAN FR. Adaptation of Hidden Markov Models for Recognizing Speech of Reduced 
Frame Rate. IEEE Trans Cybern. 2013

LI Q, MARK RG, CLIFFORD GD. Robust heart rate estimation from multiple asynchronous noisy 
sources using signal quality indices and a Kalman filter. Physiol Meas. 2008; 29:15–32. [PubMed: 
18175857] 

MARTIN RJ, ABU-SHAWEESH JM, BAIRD TM. Pathophysiology mechanisms underlying apnea of 
prematurity. Neoreviews. 2002; 3:e59–e65.

MCMANUS OB, WEISS DS, SPIVAK CE, BLATZ AL, MAGLEBY KL. Fractal models are 
inadequate for the kinetics of four different ion channels. Biophys J. 1988; 54:859–70. [PubMed: 
2468366] 

MOHR M, VERGALES B, LEE H, CLARK MT, LAKE DE, MENNEN AC, KATTWINKEL J, 
SINKIN R, MOORMAN JR, FAIRCHILD KD, DELOS JB. Very long apnea events in preterm 
infants: systems failures in the NICUs. J Appl Physiol. 2014 Revision submitted. 

MOHR MA, FAIRCHILD KD, PATEL M, SINKIN RA, CLARK MT, MOORMAN JR, LAKE DE, 
KATTWINKEL J, DELOS JB. Quantification of periodic breathing in premature infants. Physiol 
Meas. 2015; 36:1415–27. [PubMed: 26012526] 

MOON RY, SYNDROME, T. F. O. S. I. D. SIDS and other sleep-related infant deaths: expansion of 
recommendations for a safe infant sleeping environment. Pediatrics. 2011; 128:1030–9. [PubMed: 
22007004] 

Clark et al. Page 18

Physiol Meas. Author manuscript; available in PMC 2017 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MOORMAN JR, CARLO WA, KATTWINKEL J, SCHELONKA RL, PORCELLI PJ, NAVARRETE 
CT, BANCALARI E, ASCHNER JL, WHIT WALKER M, PEREZ JA, PALMER C, 
STUKENBORG GJ, LAKE DE, MICHAEL O’SHEA T. Mortality reduction by heart rate 
characteristic monitoring in very low birth weight neonates: a randomized trial. J Pediatr. 2011; 
159:900–6 e1. [PubMed: 21864846] 

MUTTITT SC, FINER NN, TIERNEY AJ, ROSSMANN J. Neonatal apnea: diagnosis by nurse versus 
computer. Pediatrics. 1988; 82:713–20. [PubMed: 3186350] 

OLISCHAR M, KLEBERMASS K, KUHLE S, HULEK M, KOHLHAUSER C, RÜCKLINGER E, 
POLLAK A, WENINGER M. Reference values for amplitude-integrated electroencephalographic 
activity in preterm infants younger than 30 weeks’ gestational age. Pediatrics. 2004; 113:e61–6. 
[PubMed: 14702497] 

PAN J, TOMPKINS WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng. 1985; 
32:230–6. [PubMed: 3997178] 

PAYDARFAR D, BUERKEL DM. Dysrhythmias of the respiratory oscillator. Chaos. 1995; 5:18–29. 
[PubMed: 12780150] 

POETS CF. Gastroesophageal reflux: a critical review of its role in preterm infants. Pediatrics. 2004; 
113:e128–32. [PubMed: 14754982] 

POETS CF, SOUTHALL DP. Patterns of oxygenation during periodic breathing in preterm infants. 
Early Hum Dev. 1991; 26:1–12. [PubMed: 1914983] 

RABINER LR. A tutorial on hidden Markov models and selected applications in speech recognition. 
Proceedings of IEEE. 1989:257–286.

RAMANATHAN R, CORWIN MJ, HUNT CE, LISTER G, TINSLEY LR, BAIRD T, SILVESTRI 
JM, CROWELL DH, HUFFORD D, MARTIN RJ, NEUMAN MR, WEESE-MAYER DE, 
CUPPLES LA, PEUCKER M, WILLINGER M, KEENS TG. Cardiorespiratory events recorded 
on home monitors: Comparison of healthy infants with those at increased risk for SIDS. JAMA. 
2001; 285:2199–2207. [PubMed: 11325321] 

ROBERTSON C, SAWFORD K, GUNAWARDANA WS, NELSON TA, NATHOO F, STEPHEN C. 
A hidden Markov model for analysis of frontline veterinary data for emerging zoonotic disease 
surveillance. PLoS One. 2011; 6:e24833. [PubMed: 21949763] 

SCHAFER PB, JIN DZ. Noise-robust speech recognition through auditory feature detection and spike 
sequence decoding. Neural Comput. 2014; 26:523–56. [PubMed: 24320849] 

SHINGHAL R, TOUSSAINT GT. Experiments in text recognition with the modified viterbi algorithm. 
IEEE Trans Pattern Anal Mach Intell. 1979; 1:184–93. [PubMed: 21868847] 

SIGWORTH FJ, SINE SM. Data transformations for improved display and fitting of single-channel 
dwell time histograms. Biophys J. 1987; 52:1047–54. [PubMed: 2447968] 

SONNENBERG FA, BECK JR. Markov models in medical decision making: a practical guide. Med 
Decis Making. 1993; 13:322–38. [PubMed: 8246705] 

SOUTHALL DP, LEVITT GA, RICHARDS JM, JONES RA, KONG C, FARNDON PA, 
ALEXANDER JR, WILSON AJ. Undetected episodes of prolonged apnea and severe bradycardia 
in preterm infants. Pediatrics. 1983; 72:541–51. [PubMed: 6889069] 

TARASSENKO L, CLIFFORD G, TOWNSEND N. Detection of ectopic beats in the 
electrocardiogram using an auto-associative neural network. Neural Processing Letters. 2001; 
14:15–25.

VERGALES BD, PAGET-BROWN AO, LEE H, GUIN LE, SMOOT TJ, RUSIN CG, CLARK MT, 
DELOS JB, FAIRCHILD KD, LAKE DE, MOORMAN R, KATTWINKEL J. Accurate 
Automated Apnea Analysis in Preterm Infants. Am J Perinatol. 2013; 31

WAGGENER TB, FRANTZ ID, STARK AR, KRONAUER RE. Oscillatory breathing patterns leading 
to apneic spells in infants. J Appl Physiol Respir Environ Exerc Physiol. 1982; 52:1288–95. 
[PubMed: 7096153] 

WAGGENER TB, STARK AR, COHLAN BA, FRANTZ ID. Apnea duration is related to ventilatory 
oscillation characteristics in newborn infants. J Appl Physiol Respir Environ Exerc Physiol. 1984; 
57:536–44. [PubMed: 6469820] 

Clark et al. Page 19

Physiol Meas. Author manuscript; available in PMC 2017 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



WILKINSON MH, SKUZA EM, RENNIE GC, SANDS SA, YIALLOUROU SR, HORNE RS, 
BERGER PJ. Postnatal development of periodic breathing cycle duration in term and preterm 
infants. Pediatr Res. 2007; 62:331–6. [PubMed: 17622961] 

WILLINGER M, JAMES LS, CATZ C. Defining the sudden infant death syndrome (SIDS): 
deliberations of an expert panel convened by the National Institute of Child Health and Human 
Development. Pediatr Pathol. 1991; 11:677–84. [PubMed: 1745639] 

ZAGOL K, LAKE DE, VERGALES B, MOORMAN ME, PAGET-BROWN A, LEE H, RUSIN CG, 
DELOS JB, CLARK MT, MOORMAN JR, KATTWINKEL J. Anemia, apnea of prematurity, and 
blood transfusions. J Pediatr. 2012; 161:417–421 e1. [PubMed: 22494873] 

Clark et al. Page 20

Physiol Meas. Author manuscript; available in PMC 2017 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Press Release

Apnea of prematurity is the occasional breathing cessation that is experienced by nearly 

all very premature infants. These events usually become uncommon by 9 months from 

conception, but apparent life-threatening events occasionally occur even after discharge 

from neonatal intensive care units. Such prolonged apnea events have been postulated to 

be related to sudden infant death syndrome (SIDS), the leading cause of infant death after 

the neonatal period. Foreknowledge of impending apnea in premature infants might lead 

to better management and earlier safe discharge.

It is not known whether apneas result from a deterministic and predictable process, with a 

proximate cause for every individual apnea, or whether they result from a random or 

stochastic process. We use a stochastic model to analyze the distribution of lengths of 

apneas and the distribution of lengths between apneas. The model (called a hidden-

Markov model) suggests the presence of four breathing states, ranging from very stable 

(with an average lifetime of 12 hours) to very unstable (with an average lifetime of 10 

seconds). Although the states themselves are not visible, the mathematical analysis gives 

estimates of the transition rates among these states.

We have obtained these transition rates, and shown how they change with post-menstrual 

age. As expected, the residence time in the more stable breathing states increases with 

age. We also obtained transition rates for the last 8 days prior to discharge home from the 

NICU. Extrapolating these rates, we obtain a prediction of the rate of long apneas in the 

first year of life. This extrapolation shows that the probability that an apnea lasting more 

than three minutes occurs in the first year of an infant’s life (an event that is likely to be 

fatal) is about one in 1000. This is close to the observed rate of SIDS.
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Fig. 1. 
Patient data histogram. The histogram shows of the number of patients that had data 

available for analysis at each PMA. Distinction is made between infants who were 

discharged to home (white), those who were transferred to another unit or hospital (grey), 

and those who died (black). Only PMA up to term (40 weeks) are represented.
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Fig. 2. 
Statistics of apnea events. (a) Cumulative distribution of 26,088 apnea durations. Vertical 

banding in observed data (dots) results from rounding of apnea durations to integer values. 

The distribution is well-described by an exponential distribution (lines). (b) Cumulative 

distribution of the logarithm of times between apnea. The data (dots) are well-described by a 

sum of four exponential distributions (line).

Clark et al. Page 23

Physiol Meas. Author manuscript; available in PMC 2017 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Physiological time series during apnea events. (a) Heart rate, EKG, impedance 

pneumography, peripheral oxygen saturation (SpO2), and apnea probability for three 

minutes from a preterm infant. There is a cluster of three clinically significant apnea events 

within three minutes. (b) Time series of apnea events for a preterm infant over a two week 

period, from 33 to 35 weeks post-menstrual age. Each band represents the number of apnea 

events longer than 10 seconds in one half-hour; increasing density indicates more apnea. (c) 

Heart rate, EKG, impedance pneumography, peripheral oxygen saturation (SpO2), and apnea 

probability for three minutes from a preterm infant. A prolonged period of apnea with 

associated bradycardia and oxygen desaturation lasting nearly two minutes is apparent. 

Isolated breaths during this episode may allow the prolongation.
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Fig. 4. 
Markov state diagrams. The diagrams show (a) all possible transitions, (b) 27 weeks PMA, 

(c) 40 weeks PMA. In (b) and (c) only the most probable transitions are shown. Major 

differences between residence times in the two cases are identified by bold symbols.
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Fig. 5. 
Transition rates vs PMA. Transitions are shown from B1 (a), B2 (b), B3 (c), B4 (d), and A (e) 

into B1 (circles), B2 (triangles), B3 (plusses), B4 (crosses), and A (diamonds) as a function 

of PMA. The percentage of time spent in each state is shown in (f) as a function of PMA. 

Segments above and below each symbol identify the 95% confidence interval and are 

sometimes smaller than the symbol.
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Fig. 6. 
Apnea trends with PMA. Apnea duration (a) and apnea burden (b) as a function of PMA 

based on observation (circles) and modeling (solid). Error bars on the observations are 95% 

confidence intervals. The model results are adjusted to censor apnea events shorter than 10 

seconds.
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Fig. 7. 
Apnea rate (In color online). The rate of apnea in post-neonatal patients based on a Markov 

model of all patients discharged home during their last week in the NICU. Grayscale is the 

probability of having at least one apnea with duration at least that on the ordinate between 

NICU discharge and the day on the abscissa.
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Table 1

Demographic characteristics of the population used to model apnea (2nd column) as a function of PMA and 

(3rd column) in the eight days prior to discharge home. Data are presented as median (25th, 75th percentile).

Infants studied … As a function of PMA Prior to discharge home

N 298 196

Gestational age (weeks) 27 (25, 29) 28 (26, 29)

Birth weight (grams) 1010 (788, 1263) 1025 (795, 1298)

Males 143 108

Discharged home 223 196

Died 19 0

Transferred 56 0

PMA at discharge (weeks) 37 (35, 39) 37 (35, 39)

Days in NICU 52 (26, 93) 62 (36, 93)

Days on mechanical ventilation 3 (0, 29) 2 (0, 24)

ABDs: Apneas >10 sec with bradycardia (<100 bpm) and O2 desaturation (<80%) 26,088 1,577

ABDs >10 sec with bradycardia (<100 bpm) and O2 desaturation (<80%), after 
additional filtering

N/A 724

ABD events per patient per day of analyzable data 1.48 (0.37, 3.4) 0.7 (0.1, 2)†

†
ABDs per day during last 8 days of stay
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Table 2

Model parameters for time between apnea based on all patients at all times.

Bi Percent of distribution (100 α) Mean time between apneas (τi)

1 12.9 % 31.9 hours

2 59.5 % 3.9 hours

3 16.4 % 16 minutes

4 11.1 % 9.7 seconds
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