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ABSTRACT
FMRP is an RNA-binding protein involved in synaptic translation. Its absence causes a form of
intellectual disability, the Fragile X syndrome (FXS). Small neuroanatomical abnormalities, present
both in human and mouse FMRP-deficient brains, suggest a subtle critical role of this protein in
neurogenesis. Stable depletion of FMRP has been obtained in a mouse embryonic stem cell line
Fmr1 (shFmr1 ES) that does not display morphological alterations, but an abnormal expression of a
subset of genes mainly involved in neuronal differentiation and maturation. Inducing the
differentiation of shFmr1 ES cells into the neuronal lineage results in an accelerated generation of
neural progenitors and neurons during the first steps of neurogenesis. This transient phenotype is
due to an elevated level of the Amyloid Precursor Protein (APP), whose mRNA is a target of FMRP.
APP is processed by the BACE-1 enzyme, producing the b-amyloid (Ab) peptide accelerating
neurogenesis by activating the expression of Ascll. Inhibition of the BACE-1 enzyme rescues the
phenotype of shFmr1 ES cells.

Here we discuss the importance of the shFmr1 ES line not only to understand the
physiopathology of FXS but also as a tool to screen biomolecules for new FXS therapies.
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Silencing of the Fragile X Mental Retardation gene
(FMR1) causes the Fragile X Syndrome (FXS), the
most common form of inherited intellectual disability
(ID). FMR1 encodes the Fragile X mental retardation
protein (FMRP), an RNA-binding protein involved in
different steps of RNA metabolism, such as transla-
tional control, RNA transport along neurites and
RNA export from the nucleus to the cytoplasm.1 All
FXS patients are affected by cognitive impairment and
they may display attention deficit-hyperactivity disor-
der (ADHD), autistic behavior, seizures, anxiety and
language delay.2 Examination of brains from FXS
patients has shown an increased density of long and
tortuous dendritic spines. This abnormality is consid-
ered the cellular alteration underpinning FXS ID.3

The Fmr1 null mouse exhibits a phenotype with simi-
larities to humans including abnormal dendrite mor-
phology.4,5 In mice, it has been possible to associate
the altered dendritic spine morphology to some
abnormal forms of synaptic plasticity (e.g., increased
hippocampal LTD, reduced cortical LTP and epilepto-
genesis).6,7 The functional defects of these neuronal

structures characterizing Fmr1-null neurons have
been linked to the role of FMRP in the regulation of
translation of a subset of synaptic proteins (1,7; see
below). In addition, children with FXS (aged between
18 and 42 months) have larger brain volumes and dis-
play enlargement in the temporal lobe white matter,
cerebellar gray matter and caudate nucleus, but have a
smaller amygdala.8 In another study analyzing boys
aged 1 to 3 y the authors found, as in the adult
patients, increased caudate, fusiform gyrus, and thala-
mus gray matter volume (GMV) as well as reduced
superior temporal gyrus, hippocampus, and orbito-
frontal cortex GMV. Specifically, a reduced GMV in
the hypothalamus, insula, and medial and lateral pre-
frontal cortices was also described.9 In C57BL6/J
Fmr1-null mice, differences in brain volumes were
only observed in two deep cerebellar nuclei (fastigial
nucleus and nucleus interpositus).10 On the other
hand, FVB Fmr1 knockout mice display different
brain phenotypes compared with the same model in
the C57B6/J background. In fact, in FVB Fmr1 knock-
out mice significantly larger relative volume
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differences were found in major white matter struc-
tures throughout the brain. Moreover, a smaller stria-
tum and a larger parieto-temporal lobe volume were
observed.11 These neuroanatomical abnormalities are
likely to be generated early during development and
may be associated to defects in proliferation and/or
differentiation of neural progenitors, suggesting a crit-
ical role of FMRP in neurogenesis.12

Recent studies on the Down Syndrome, another
form of ID, showed the possibility to treat young
adults,13 but it was also underlined the importance to
start treatments as early as possible. Consequently,
some preclinical therapeutic approaches are targeting
not only neonatal but also prenatal life14 focusing on
those molecules that can act on neurogenesis
defects.15,16 Starting from these considerations and
from the fact that an effective specific therapy for FXS
is not available yet, a mouse embryonic stem cell line
displaying a reduced expression of Fmr1 by stable
transfection of a specific shRNA directed against Fmr1
(shFmr1 ES) has been generated.17 These cells do not
display morphological abnormalities and cell cycle
variations, however altered expression of a subset of
genes mainly involved in neuronal differentiation and
maturation determines a subjacent molecular pathol-
ogy. Indeed, stimulating the differentiation of shFmr1
ES cells into the neuronal lineage results in an acceler-
ated generation of neural progenitors and neurons
during the first steps of differentiation. This pheno-
type is transient, as the final number of neurons is not
affected at late phases of in vitro neurogenesis. Inter-
estingly, neurogenesis is also accelerated in the embry-
onic brains of Fmr1 KO mice, indicating that the
shFmr1 ES cell model recapitulates the molecular and
cellular alterations present in vivo.17 This phenotype
in shFmr1 ES cells is likely due to an elevated level of
the Amyloid Precursor Protein (APP), whose mRNA
is a known target of FMRP.18 APP is processed by the
BACE-1 enzyme, producing the b-amyloid (Ab) pep-
tide that is known to accelerate neurogenesis by acti-
vating the expression of achaete-scute family bHLH
transcription factor 1 (Ascll).19,20 It is interesting to
point out that the increased level of Ab peptide in
Fmr1-depleted ES cells induces the expression of
Ascll.17 This latter factor has a pivotal role in neuronal
differentiation21 and its induction in shFmr1 ES cells
represents a surprising event and the key point to
explain the subsequent altered neuronal differentia-
tion.17 Consistently, the cell phenotype is rescued not

only by re-expressing human FMR1, but also by
reducing the processing of APP by the specific BACE-
1 inhibitor LY2811376. The importance of the Ab
peptide in the physiopathology of FXS, as well as in
other forms of autism and ID, has been extensively
studied.22

ShFmr1 ES cells also present altered expression of
other genes that could explain the FXS pathology at
the molecular level. Indeed, a reduced expression of
Tropomyosin Receptor Kinase B (TrkB) is present.
Interestingly, treatment of adult Fmr1 knockout mice
with 7, 8-dihydroxyflavone (7, 8-DHF), an agonist of
TrkB, improves their spatial and fear memory.23 Fur-
thermore, expression of the small GTPase RhoA is
reduced in shFmr1 ES cells. The mRNA encoding
RhoA was already shown to be a target of FMRP24

and Rho GTPases and actin remodelling have been
already described as having a critical role in the phys-
iopathology of FXS.1,24

Collectively, these data underline the fact that the
absence of FMRP modulates the expression of pro-
teins and their related pathways spanning the earliest
steps of embryonic life to adult. Depletion of FMRP
alters the normal kinetics of neuronal differentia-
tion.17 We can speculate that this event uncoordinates
different brain maturation pathways and programs,
leading to subtle architectural abnormalities of several
brain regions and, ultimately, to intellectual deficit.

The phenotype of shFmr1 neural progenitors
appears surprising since cell models of neural precur-
sors for genes involved in other forms of ID/autism
rather display a delay of neuronal differentiation or a
disruption of neurogenesis.25-27 Indeed, premature
neurogenesis has been associated to gross brain abnor-
malities in a thalassemia/mental retardation syndrome
X-linked (ATRX), consistently with the microcephaly
observed in patients affected by this disorder.28,29 Simi-
larly, accelerated cell cycle and overproduction of
GABAergic inhibitory neurons were described in
iPSC-derived brain organoids of Autism SpectrumDis-
order (ASD) patients characterized by macrocephalia.
Molecularly, this abnormal neurogenesis was due to
the overexpression of the transcription factor
FOXG1.30 However, it is worth noticing that depletion
of Phosphatase and TENsin homolog (PTEN) in post-
natal/young neural stem cells produced an altered neu-
rogenesis characterized in a first step by an increased
proliferation and differentiation rate of these cells.31

However, an early loss of Neural Stem/progenitor Cells
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(NSCs) was observed in these animals after some
months. Interestingly, these mice displayed macroce-
phaly and, similarly to FXS mice, an impaired social
interaction and an activation of AKT, S6 and GSK3b in
hippocampal neurons.30 Also in this case, it is possible
to describe an altered kinetics of neurogenesis even if,
due to the severity of the cellular alterations, the mor-
phological brain abnormality appears more evident
than in FXS brains. These considerations underline the
importance to study embryonic neurogenesis in ID/
autism animal models to decipher the physiopathology
of these disorders and to identify helpful biomarkers
for translational studies.

As it has been carefully detailed,17 the genetic het-
erogeneity of human FXS iPS and FXS human embry-
onic stem cells17,32-35 complicates the use of these cell
lines to study FXS. For this reason, the shFmr1 cell
model can be considered as a very useful tool to study
neurogenesis in the absence of FMRP.17 In addition,
these cells can be very useful to search for novel thera-
pies for FXS. Indeed, they can be used for screening of
bioactive molecules, including libraries of small mole-
cules that are already approved for clinical use. This
screening can be feasible considering that, as shown
above, the phenotype of the FXS cell model can be
quantified and is reversible by pharmacological tools.
Thus, the molecules that will reveal to be able to
actively revert the phenotype of this model could be
useful during all developmental ages of patients, since,
as we have discussed, some FMRP-dependent path-
ways are conserved throughout life (Fig. 1).

Collectively, these findings will contribute to improve
the understanding of the molecular pathology of FXS
and to provide a better stratification of FXS patients,
which is as a weak aspect in the characterization of this
syndrome in view of personalized therapies. New drugs
identified by this approach will also highlight new
pathways involved in the physiopathology of FXS and
specific biomarkers for this syndrome.

Disclosure of potential conflicts of interest
No potential conflicts of interest were disclosed.

Acknowledgments
The authors are grateful to Franck Aguila for graphical work.

Funding
This study was supported by INSERM, CNRS, CNRS LIA
NEOGENEX, BB and EL are supported by Agence Nationale
de la Recherche: ANR-11-LABX-0028–01. BB is supported by
ANR-SVSE4–2012, FRM Team 2014, Monaco Against Autism
Foundation, Fondation J�erôme Lejeune.
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