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Simulation-Based P Values: Response to North et al.

To the Editor:

North et al. (2002) discussed the estimation of a P value
on the basis of computer (i.e., Monte Carlo) simulations.
They emphasized that such a P value is an estimate of
the true P value. This is essentially their only point with
which we agree. The letter from North et al. is more
likely to confuse than enlighten.

Consider an observed test statistic, x, that under the
null hypothesis follows some distribution, /. Let X be a
random variable following the distribution f. We seek
to estimate the P value, p = Pr(X = x). Lety,,...,y, be
independent draws from f, obtained by computer sim-
ulation. Let r = #{i:y, = x} (i.e., the number of simu-
lated statistics greater than or equal to the observed sta-
tistic). Let p = #/mand p = (r + 1)/(n + 1).

North et al. (2002) stated that p is “not strictly cor-
rect” and that p is “the most accurate estimate of the P
value.” They further called p “the true P value.”

We strongly disagree with this characterization. First,
minor differences in P-value estimates on the order of
Monte Carlo error should not be treated differently in
practice, and so it is immaterial whether one uses p or
p. Second, p is a perfectly reasonable estimate of p. In-
deed, in many ways p is superior to p. Given the observed
test statistic, x, 7 follows a binomial (7,p) distribution,
and so p is unbiased, whereas p is biased. (The bias of
pis (1 — p)/(n + 1).) Further, p has smaller mean square
error (MSE) than p, provided that p <n/(1+ 3n) =

1/3. (The MSE of p is p(1 — p)/n, whereas that of p is
(1= p)np + 1 p)l(n + 1)%)

These results are contrary to those of North et al.
(2002) because they evaluate the performance of p under
the joint distribution of both the observed and Monte
Carlo data, whereas we prefer to condition on the ob-
served value of the test statistic. Evaluating P-value es-
timates conditionally on the observed data is widely ac-
cepted when the estimation is performed via analytic
approximations.

Regarding the question of how many simulation rep-
licates to perform, we recommend consideration of the
precision of the estimate, p, using the properties of the
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binomial distribution, rather than adherence to a rule
such as » = 10. Standard statistical packages, such as R
(Ihaka and Gentleman 1996), allow one to calculate a
CI for the true P value and to perform a statistical test,
such as whether the true P value is <.01.
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Jobns Hopkins University
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On Estimating P Values by Monte Carlo Methods

To the Editor:

North et al. (2002) propose a new formula for the em-
pirical estimation of P values by Monte Carlo methods
to replace a standard conventional estimator. They claim
that their new formula is “correct” and “most accurate”
and that the conventional formula is “not strictly cor-
rect,” repeating this claim many times in their letter. The
claim, however, is incorrect, and the conventional for-
mula is the correct one.

The North et al. claim arises when a test statistic
(called here “t”) takes a certain numerical value (called
here “¢*”) when calculated from data from some ex-
periment, and it is required to find an unbiased estimate
of the P value corresponding to #* by Monte Carlo sim-
ulation. This is done by performing # Monte Carlo sim-
ulations, all performed under the null hypothesis tested
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in the original experiment and with the same sample size
and other characteristics as for the original experiment.
Suppose, to be concrete, that sufficiently large positive
values of the test statistic ¢ are significant. Then, we
define “r” as the number of simulations in which the
simulation value of ¢ is greater than or equal to the
observed value ¢*. North et al. claim that an unbiased,
and thus preferred, estimate of the P value arising from
these simulations is (r + 1)/(n + 1) instead of the con-
ventional estimate 7/z#. This claim is incorrect.

Strangely, North et al. (2002) themselves show by al-
gebra that the mean value of their estimator (r +
1)/(n+ 1) is (nP + 1)/(n + 1), where “P” is the P value
to be estimated. Since this is not equal to P, their P value
estimator is biased. Further, their calculation also shows
that the mean value of the conventional estimator 7/#,
whose use they do not recommend, is the desired value
P. Thus, the conventional estimator is unbiased. Thus,
there is an internal inconsistency in their argument, and
their algebraic calculations contradict their claim and
the argument leading to it. The algebraic calculations
are correct. It is important to see why the argument given
in North et al. (2002) is incorrect, since the reasoning
involved relates to the theory and practice of Monte
Carlo simulation procedures that are performed increas-
ingly in genetics, in particular to questions surrounding
P values and type 1 errors.

The incorrect argument given by North et al. (2002)
is that if the original data were generated under the null
hypothesis tested, then, in all, 7 + 1 “experiments” were
conducted, of which one is real and # simulation. With
r as defined above, in r + 1 of these, the value of the
statistic ¢ is either equal to the observed value #* or is
greater than this value. It is then claimed that the esti-
mator (r + 1)/(n + 1) is an unbiased estimator of the null
hypothesis probability that the test statistic ¢ exceeds ¢*
when the null hypothesis is true.

The error in this argument is, perhaps, best demon-
strated by considering parallel reasoning used in the ge-
netic ascertainment sampling context, exemplified as fol-
lows. Suppose that we wish to estimate the proportion
of girls in a population, using a sample of families from
that population. However, the sampling procedure is
such that only families in which the oldest child is a girl
are included in the sample. Clearly, using all children in
the sample to estimate the proportion of girls in the
population is incorrect, and the sample proportion of
girls will overestimate the population proportion. The
oldest child in each family, automatically included in the
category of interest (girls), must be excluded in the es-
timation process. The analogy with the Monte Carlo
case is that the observed value of the test statistic found
from the actual data must be excluded in estimating a
P value, since it is similarly automatically included in
the category of interest (greater than or equal to itself).
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Any mathematical calculation concerning P values that
does take this into account will be incorrect.

It now appears that North et al. (2002) used mistaken
terminology, and that the claim that they wished to make
does not concern P value estimation, but that use of
(r + 1)/(n + 1) “provides the correct type 1 error rate.”
More precisely, if the type 1 error is chosen to be o, then
it is claimed that rejecting the null hypothesis when
(r + 1)/(n + 1) < a leads to the desired type 1 error of
5%.

To see this in formal statistical terms, the null hy-
pothesis is rejected, with the notation and assumptions
given above, if the value of r is “too low.” More spe-
cifically, with the chosen type 1 error of «, the null hy-
pothesis is rejected if » < K, where K is chosen so that
Prob(r < K, given null hypothesis is true) = a.

The one “experimental” and 7 simulation values of
t, leading to a total of n + 1 values, can be listed in
ascending order. The event that 7 < K is identical to the
event that the experimental value of # lies among the
highest K + 1 of these # + 1 values. The null hypothesis
probability of this is (K + 1)/(n + 1). Equating the
probability(K + 1)/(n + 1) with «, we get K = (n+
1) —1 K = (n + 1)ae — 1. The event r < K is, thus, the
same as the event (r + 1)/(n + 1) < «, and this is the cri-
terion that North et al. give.

This procedure does not, however, imply, as claimed
by North et al. (2002), that (» + 1)/(n + 1) is an unbiased
estimate of the P value. It is best to keep the questions
of unbiased estimation of the P value and the nature of
the testing procedure that leads to a desired type 1 error
separate. Pursuing this point, it is not clear in what sense
North et al. relate, as they do, a P value estimate to a
type 1 error. They claim, for example, that when » =
0, so that the standard procedure P value estimate 7/n
is also 0, it is implied, under the standard procedure,
that the type 1 error is also 0. This claim is incorrect.
A type 1 error in statistics is set in advance, typically
5% or 1%, and the value so chosen for it is not in any
way determined by or estimated from the observed value
of any statistic.

WARREN J. EWENS
Department of Biology
University of Pennsylvania

Philadelphia
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A Note on the Calculation of Empirical P Values from
Monte Carlo Procedures

To the Editor:
We welcome the opportunity to correct our mistaken
terminology in referring to (r + 1)/(n + 1) as an unbiased
estimate of P, where a Monte Carlo procedure has been
carried out with »# simulations, of which r exceed the
observed statistic obtained from the real data set. As we
ourselves pointed out (North et al. 2002), this estimate
is indeed slightly biased. What we intended to write was
that using this estimate is valid in the sense that it pro-
duces the correct type 1 error rate. According to Cox
and Hinkley (1974), the observed P value of a study,
denoted as P, is defined as Pr(T = ¢, ; H,), the prob-
ability that the test statistic T is greater than or equal
to its actual value ¢,,, from the observed data, if the null
hypothesis, H,, is true. Their interpretation of the P
value is that it is “the probability that we would mis-
takenly declare there to be evidence against H,, were we
to regard the data under analysis as just decisive against
H,.” Since P < P, if and only if T =z, it follows
that Pr (T = t,,; H,) = Pr(P < P,;H,) = P,,.. In other
words, we should obtain a P value of .05 (or lower) with
frequency 0.05, and a P value of .01 (or lower) with
frequency 0.01, and so on, if the null hypothesis is true.
If a test procedure produces P values of .05 (or lower)
with greater frequency than 0.05, when the null hy-
pothesis is true, then the procedure is anticonservative.
Our article (North et al. 2002) was motivated by the
recognition that the common practice of using 7/» as the
P value from a Monte Carlo procedure is, in fact, anti-
conservative, whereas the use of (r + 1)/(n + 1) provides
the correct type 1 error rate. There is nothing novel
about the use of (r + 1)/(n + 1)—it is published in a
standard textbook on Monte Carlo methods (Davison
and Hinkley 1997), and we merely sought to give it
greater prominence and to investigate its implications.
We accept that it is mildly counterintuitive, and so some
people may find the reasons for its usage difficult to
grasp. Nevertheless, we remain convinced that it is far
preferable to use an estimate that is slightly biased but
yields the correct type 1 error rate than one that is un-
biased but is demonstrably anticonservative.
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One way to understand the justification for using
(r + 1)/(n + 1) rather than r/n is as follows. When the
null hypothesis is true, the actual value of the test statistic
and the # replicate values based on simulations consti-
tute # + 1 independent realizations of the same random
variable. All possible ranks of the actual test statistic
among these 7 + 1 values, from rank 1 to rank # + 1
in descending order of magnitude, are, therefore, equally
probable. The probability of the actual test statistic being
exceeded in exactly 7 of # simulated replicates (i.e., of
being ranked r + 1) is, therefore, 1/(n + 1). Likewise, the
probability of the actual test statistic being exceeded in
r or fewer of n simulated replicates (i.e., of being ranked
7+ 1 or higher) is (r + 1)/(n + 1).

For those who are not convinced by the above argu-
ment, we present a more mathematical derivation. The
probability that the actual test statistic is exceeded in
exactly r simulations, conditional on any particular
value of P, is given by the binomial distribution with
parameters # and P. The unconditional probability that
the actual test statistic is exceeded in exactly r simula-
tions is obtained by integrating the product of this con-
ditional probability and the density function f(P) of P,
over the possible range of P. Therefore,

1

!
Pr(r;H,) = f (n_”Wp’(l —p)"f(p)dp
n! -,
= mfp (L —=p)~dp

a (=)t

= (e + 1)

1
n+1

for r = 0,1, ... ,n. The second step in the derivation de-
pends on the density function of P being uniform in [0,1]
under the null hypothesis, whereas the third step is due
to the recognition that the integral is a beta function
with parameters # — 7 + 1 and » +1. From the fact that
the probability of achieving any particular value of r is
1/(n + 1), it follows that the probability of the actual
test statistic being exceeded in r or fewer of # simulated
replicates (i.e., of being ranked » + 1 or higher) is (r +
1)/(n + 1).

For anyone who continues to remain skeptical in spite
of these theoretical arguments, it is trivial to carry out
simulation procedures that demonstrate that using #/n
is anticonservative, whereas using (r + 1)/(n + 1) does
indeed yield the correct type 1 error rate. Anybody who
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takes the trouble to do this cannot fail to discover this
for himself. For example, here is a simple C program
that demonstrates the phenomenon:

#include <stdio.h>

#include <stdlib.h>

float pl,p2,ml,m2,r,alpha=0.01;

int x,3,n=500;

long 1, nsim=1000000;

int main (int argc, char *argv([])

{

for (1i=0;i<nsim; ++1)

{

x=rand();

for (r=0,3=0;j<n;++73)

if (rand()>=x) ++r;

if (r/n<=alpha) ++ml;

if ((r+1l)/ (n+l)<=alpha) ++m2;

}

printf (“Using r/n, Type 1 error =

$f\n”,ml/nsim) ;

printf (“Using (r+1)/ (n+l), Type lerror =

$f\n”, m2/nsim) ;

}

As the theory predicts, when the number of simula-
tions is 500, using #/n and (r + 1)/(n + 1) provide an
empirical P value of .01 (or lower) with frequency 0.012
and 0.010, respectively. One can readily use a range of
different values to see that the argument holds in all
situations.

Although lack of bias is desirable, it is not so crucial
a property as that of providing the correct type 1 error
interpretation. The estimator 7/n is unbiased but anti-
conservative, and its usage can lead, for example, to the
absurd assertion that when » = 0, then the type 1 error
rate is 0, implying that the results are impossible under
the null hypothesis and, therefore, must be rejected. Be-
cause r/n and (r + 1)/(n + 1) are both linear functions
of r, they are perfectly correlated with each other. Using
(r + 1)/(n+ 1) introduces only a small bias, being
(1 — p)/(n + 1), which diminishes with increasing 7. Pro-
ponents of using 7/z might argue that it should be re-
garded merely as an estimate of the true P value, and
not as an empirical P value. In our view, this is unnec-
essarily cumbersome, since (r + 1)/(n + 1) can be inter-
preted directly as an empirical P value, which will have
the correct type 1 error rate.

B. V. NorTH,' D. CURTIS," AND P. C. SHAM?
'Academic Department of Psychiatry,
St. Bartholomew’s and Royal London School of
Medicine and Dentistry, and *Department of
Psychological Medicine, Institute of Psychiatry,
London
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Confirmatory Evidence for Linkage of Relative Hand
Skill to 2p12-q11

To the Editor:

We previously reported in the Journal the first genome-
wide linkage screen for a measure related to handedness
in humans (Francks et al. 2002), in which we found
evidence for a quantitative trait locus (QTL) influencing
relative hand skill on chromosome 2p12-q11 (P =
.00007). The screen was performed using 195 reading-
disabled (RD) sibling pairs (Fisher et al. 2002), although
reading ability was apparently unrelated to handedness
in this sample. The 2p12-q11 linkage was the most sig-
nificant in the screen by 1.5 orders of magnitude and
approached the threshold for genomewide significance
proposed by Lander and Kruglyak (1995) (threshold
P = .00002). However, we failed to replicate the QTL
in a second sample of a similar composition (143 sibling
pairs). Therefore, the possibility remained that this was
a false positive result, brought about by multiple testing
of markers across the entire genome.

Now, we have found further evidence for the 2p12-
q11 QTL in a new sample of 105 pairs of adult brothers
drawn from a sample of 168 unrelated male sibships (338
brothers) that was originally collected for investigating X-
linked effects on handedness (described by Laval et al.
[1998]). As before, we assessed relative hand skill using
the test of Annett (1985), which involves measuring the
time taken to move, with each hand, a row of pegs from
one set of slots on a board to another. A relative hand
skill quotient, PegQ, was derived for each subject as
(L — R)/[(L + R)/2]; that is, the difference between left
and right hand times, adjusted for overall hand skill (fig.
1a).

The recruitment criterion that all brothers in each sib-
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Figure 1

a, PegQ distribution in 222 siblings with RD who appeared normal for this measure and were previously analyzed genomewide

for linkage (black) and in 338 left-writing-handed brothers from whom the current study sample was drawn (gray). Positive scores indicate
superior relative right hand skill; the positive mean in the reading-disabled siblings is characteristic of unselected populations, whereas the
sample of left-handed writers had a negative mean. We selected as extreme left-handed “probands” those individuals whose PegQ scores were
>1.5 SD below the normal population mean. b, Comparison of linkage to PegQ across 2p16-q14 in RD siblings (Francks et al. 2002) and the
left-handed brothers of the present study. X-axis, genomic interval with markers shown; Y-axis, pointwise significance of linkage.

ship should write with their left hands constituted a form
of imperfect phenotypic selection for PegQ. This resulted
in curtailed PegQ variance in the 338 brothers (fig. 1a)
and suggested that quantitative linkage analysis of the
whole sample might be underpowered. We therefore se-
lected sibships on the basis of their suitability for linkage
analysis with basic DeFries-Fulker regression (Fulker et
al. 1991), which can derive power from extreme phe-
notypic selection. Extreme left handed “probands” were
designated as scoring below —1.5 SD (fig. 1a), relative
to the sample of reading-disabled siblings (who scored
as an unselected population for relative hand skill). This
yielded 101 probands in 88 independent sibships. The
threshold of —1.5 SD was chosen to balance increased
power from increasing severity of selection against di-
minishing power because of reduced sample size. No other
threshold scores for designating probands were used.
We genotyped the 88 sibships at seven microsatellite
markers spanning 2p16-q14 and obtained multipoint
identity-by-descent (IBD) sharing information across this
interval, using the software Genehunter 2.1 (Pratt et al.
2000). Allele frequencies were calculated using data
from all parents plus one random sibling in each family,

and the genetic marker map was the same as used by
Francks et al. (2002) (see fig. 1b). We then assessed the
regression of PegQ in brothers of extreme left-handers
toward the population mean, as a function of proband
scores and IBD sharing with probands, using basic
DeFries-Fulker regression as implemented in SAS macros
by Lessem and Cherny (2001). A double entry procedure
was used when a sibship contained more than one pro-
band, as recommended (Fulker et al. 1991). This yielded
a total of 91 independent proband-cosib pairs and 105
total proband-cosib pairs. Unbiased pointwise empirical
significance levels for multipoint linkage results were ob-
tained by performing 100,000 genotype simulations
while fixing the family structures and phenotypes of the
real sample (as described by Francks et al. [2002] and
Fisher et al. [2002]) and then analyzing these replicates
for linkage.

The peak linkage ¢ score was —3.51 (fig. 1b), asymp-
totic pointwise P = .00035, empirical pointwise P =
.00090, thus greatly exceeding significance guidelines for
confirmation of linkage (guideline P = .01; Lander and
Kruglyak [1995]). The new linkage curve was strikingly
similar to that found in the genomewide screen, and this
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concordance provides confirmatory evidence for the
QTL over and above the significance level of the linkage
(fig. 1b).

This linkage evidence confirms that, although hand-
edness variation may be etiologically complex, there is
at least one polymorphic genetic influence that is located
on 2p12-q11. Epidemiological studies of twins have pro-
vided ambiguous data that point either to weak or else
to nonsignificant genetic effects on handedness (Bishop
2001), but no large-scale twin studies have used the
greater potential power inherent in a continuous de-
scription of the trait, whereas PegQ has shown famili-
alities of up to 35% in our samples (Francks et al. 2002).
Linkage analysis of handedness as a dichotomous trait
is, therefore, likely to be underpowered, but only one
study has so far attempted this approach, and for only
six genomic regions (not including 2p12-q11), without
identifying suggestive or significant linkage (Van Agt-
mael et al. 2002). Sex-dependent effects on cerebral la-
teralization and on the inheritance of handedness have
pointed to the involvement of an X-linked genetic effect
on handedness (Corballis et al. 1996; McKeever 2000),
and suggestive or weak evidence for linkage of relative
hand skill to a locus on Xq21 has been identified in both
our RD siblings and the left-handed brothers (Laval et
al. 1998; Francks et al. 2002), although Crow (2002)
has suggested that any X-linked effect may be mediated
by an epigenetic mechanism.

Roughly 90% of individuals perform complex man-
ual tasks preferentially with their right hands, whereas
slightly <10% are left-handed, and a small proportion
are ambidextrous (McManus and Bryden 1992). No
other primates show a population-level bias in hand-
edness, and individual differences in human handedness
are correlated with cerebral hemispheric asymmetries
that underlie much complex human cognition, including
language (McGrew and Marchant 1997; Geschwind et
al. 2002), as well as with asymmetries of the motor cortex
(Amunts et al. 1996). We predict that genes containing
variants that influence handedness have an important
role in the development of cerebral lateralization and
may have been involved in the evolution of complex
human cognition.
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