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Synopsis
Glucocorticoids (GCs) are negative muscle protein regulators that contribute to the whole-body catabolic state during
stress. Mammalian target of rapamycin (mTOR)-signalling pathway, which acts as a central regulator of protein
metabolism, can be activated by branched-chain amino acids (BCAA). In the present study, the effect of leucine on
the suppression of protein synthesis induced by GCs and the pathway involved were investigated. In vitro experiments
were conducted using cultured C2C12 myoblasts to study the effect of GCs on protein synthesis, and the involvement
of mTOR pathway was investigated as well. After exposure to dexamethasone (DEX, 100 μmol/l) for 24 h, protein
synthesis in muscle cells was significantly suppressed (P < 0.05), the phosphorylations of mTOR, ribosomal protein S6
protein kinase 1 (p70s6k1) and eukaryotic initiation factor 4E binding protein 1 (4EBP1) were significantly reduced
(P < 0.05). Leucine supplementation (5 mmol/l, 10 mmol/l and 15 mmol/l) for 1 h alleviated the suppression of
protein synthesis induced by DEX (P < 0.05) and was accompanied with the increased phosphorylation of mTOR and
decreased phosphorylation of AMPK (P < 0.05). Branched-chain amino transferase 2 (BCAT2) mRNA level was not
influenced by DEX (P > 0.05) but was increased by leucine supplementation at a dose of 5 mmol/l (P < 0.05).
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INTRODUCTION

The maintenance of skeletal muscle mass is of paramount import-
ance for motility and systemic energy homoeostasis [1]. The con-
trol of muscle mass is determined by a dynamic balance between
the anabolic and catabolic processes involving proteins [2]. Ad-
renal glucocorticoids (GCs) are well known to regulate an array of
physiological processes, including protein metabolism, thus con-
tributing to whole-body homoeostasis. It has been demonstrated
that GCs are negative muscle protein regulators, and many patho-
logical conditions, including muscle atrophy, are associated with
an increase in circulating GCs levels [3]. In rat, muscle protein
synthesis is inhibited as early as 4 h after the administration of
GCs [4,5]. Shah et al. [6] showed that the injection of dexa-
methasone (DEX), a synthetic GC, acutely diminished protein
synthesis rates to 59 % of control values in skeletal muscle from
young rats. The inhibition of mRNA translation initiation appears
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to be a major mechanism by which GCs result in the inhibition
of protein synthesis [7].

Mammalian target of rapamycin (mTOR) is a crucial com-
ponent of the anabolic machinery for protein synthesis, which
senses and integrates signals from growth factors, environmental
stress factors, nutrient availability, and energy status. mTOR has
been shown to exist in two complexes (mTORC1 and mTORC2)
[8]. mTORC1 is essential for the maintenance of muscle mass
and function [9,10]. mTORC1 signals to ribosomal protein S6
protein kinase 1 (S6K1) and eukaryotic initiation factor 4E bind-
ing protein 1 (4EBP1), which are currently the two best-known
downstream effectors of mTOR signalling, and control the pro-
tein synthetic pathway [11]. Wang et al. [12] demonstrated that
the mTOR pathway is negatively regulated in the presence of
excessive GCs.

AMP-activated protein kinase (AMPK), a highly sensor of cel-
lular energy status, is activated under conditions of low intracel-
lular ATP. AMPK acts as a major catabolic regulator in response
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to energy stress, in part through its inhibition of the mTORC1
pathway. The activation of AMPK directly phosphorylates both
TSC2 and Raptor to inhibit mTORC1 activity by a dual-pronged
mechanism [13,14]. Kimura et al. [15] also revealed that AMPK
appears to provide an overriding switch linking p70s6k regula-
tion to cellular energy metabolism. It is generally known GCs
act as mediators in whole-body energy redistribution. However,
whether GCs-driven protein synthesis regulation requires the co-
operation of AMPK and mTOR is yet unknown.

Branched-chain amino acids (BCAA) are one of the major sig-
nals that activate mTORC1. Leucine can provide energy by con-
version to ketoisocaproate, which is oxidized via the TCA cycle;
leucine could decrease AMPKα phosphorylation and AMPK
activity in rats [16] and C2C12 cells [17]. We thus hypothes-
ized that BCAA supplementation could alleviate the negative
effect of GCs on protein synthesis by evoking mTOR pathway
with the synergy of AMPK pathway.

In the present study, we investigated whether GCs inhibit pro-
tein synthesis via the mTOR and AMPK signalling pathways,
and the involvement of BCAA was examined. Herein, cultured
C2C12 myoblasts were used as a model for muscle growth. DEX,
a synthetic GC that is specific for the GCs receptor and delayed
plasma clearance [18], was employed to induce a hyperglucocor-
ticoid milieu. Our results indicate that GCs repress protein syn-
thesis, likely through the involvement of both mTOR and AMPK
pathways. In addition, the effects of GCs on protein synthesis
and mTOR and AMPK pathways could be attenuated by leucine
supplementation. Our study originally demonstrates the synergy
involvement of mTOR and AMPK in the interaction between GCs
and BCAA on muscular protein synthesis. This finding provides
a novel insight into the metabolic perturbations associated with
long-term GCs use and dietetical therapy in clinical setting.

MATERIALS AND METHODS

Myoblasts culture and in vitro treatments
C2C12 myoblasts (CCTCC) were cultured in DMEM (HyClone)
supplemented with 10 % fetal bovine serum (HyClone), 100 U/ml
penicillin and 100 μg/ml streptomycin (Solarbio) at 37 ◦C in a hu-
midified atmosphere containing 5 % CO2. When cells were 70 %
confluent, the proliferation medium was replaced with a differen-
tiation medium, DMEM containing 2 % horse serum. After 84 h,
cells were incubated for 12 h with serum-free DMEM.

After a 12-h incubation in serum-free medium, the myoblasts
were exposed to DMEM-LM (Thermo) with or without DEX
(100 μmol/l) for 24 h. At 23 h of the DEX exposure, leucine
(Sigma) was added to DEX treated cells for the following 1 h,
with a concentration of 5, 10 or 15 mmol/l. After this, all cells
were immediately subjected to an additional 30-min puromycin
exposure (1 μmol/l, Sigma) and then the detection of protein
synthesis using an anti-puromycin antibody (Figure 1A), or were
directly collected for mRNA and protein analysis (Figure 1B).

Protein synthesis rate analysis
To measure the muscle protein synthesis rate, we used a technique
involving the labelling of newly synthesized polypeptides with
low concentrations of puromycin, then the detection of these pro-
teins using an anti-puromycin antibody [19]. After DEX and leu-
cine administration, 1 μmol/l puromycin was added to all wells,
and the cells were incubated for an additional 30 min. Cells were
then collected and subjected to Western blotting analysis using an
anti-puromycin antibody as described below. The accumulation
of puromycin-conjugated peptides into nascent peptide chains
reflects the rate of protein synthesis in many different in vitro and
in vivo conditions [19–21].

Protein preparation and western blot
Protein concentration was determined using the BCA assay kit
(Beyotime). The samples were boiled at 100 ◦C for 5 min in
5× sample buffer. The protein extracts were electrophoresed
in 7.5–10 % SDS polyacrylamide gels (Bio-Rad Laboratories)
according to the Laemmli method [22]. The separated pro-
teins were then transferred on to a nitrocellulose membrane in
Tris–glycine buffer containing 20 % methanol. The membranes
were blocked and immunoblotted with a 1:1000 dilution of a
primary antibody including anti-puromycin (keraFAST), anti-
P-mTOR (Ser2448), anti-mTOR, anti-P-p70S6K (Thr389), anti-
p70S6K, anti-P-4EBP1 (Thr37/46), anti-4EBP1, anti-P-AMPK
(Thr172) and anti-AMPK (Beverly, MA, USA).

The proteins were detected using either goat anti-rabbit IgG
(H + L)-HRP conjugated secondary antibody (1:2000, Bio-Rad
Laboratories) or HRP-labelled goat anti-mouse IgG (H + L) sec-
ondary antibody (1:1000, Beyotime) with enhanced chemilumin-
escence (ECL) plus western blot detection reagents (Beyotime).
β-Actin was used as an internal control (Beyotime). Western blots
were developed and quantified using BioSpectrum 810 with Vis-
ionWorksLS 7.1 software (UVP LLC). The protein level was
quantified by normalizing total proteins with β-actin, and by
normalizing phosphorylated proteins with their total pairs.

RNA preparation and analysis
Gene expression was measured using real-time RT-PCR. Briefly,
total RNA from cells was extracted using TRIzol (Invitrogen).
The quantity and quality of the isolated RNA were determined us-
ing a biophotometer (Eppendorf) and agarose gel electrophoresis.
Next, reverse transcription was performed using an RT reaction
(10 μl) that consisted of 500 ng total RNA, 5 mmol/l MgCl2,
1 μl RT buffer, 1 mmol/l dNTP, 2.5 U AMV, 0.7 nmol/l oligo
d(T) and 10 units ribonuclease inhibitor (TaKaRa). The cDNA
was amplified in a 20 μl PCR reaction containing 0.2 μmol/l
of each specific primer (Sangon) and SYBR green master mix
(TaKaRa). Real-time PCR was performed at 95 ◦C for 10 s of
predenaturation, followed by 40 cycles, and each cycle consisted
of denaturation at 95 ◦C for 5 s and annealing and extension at
60 ◦C for 40 s. Primers against β-actin was used as internal con-
trols to normalize the differences between individual samples.
The primer sequences for mouse are listed in Table 1. Standard



2 c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
Licence 4.0 (CC BY).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Leucine alleviates the effect of glucocorticoids on protein synthesis

Figure 1 The flowchart of study design
The myoblasts were incubated with or without DEX (100 μmol/l) for 24 h. At 23 h of the DEX exposure, leucine (5, 10
or 15 mmol/l) was added to DEX treated cells for the following 1 h. After this, all cells were immediately subjected to an
additional 30-min puromycin exposure (1 μmol/l) and then the detection of protein synthesis (A), or were directly collected
for mRNA and protein analysis (B).

curves were generated using pooled cDNA from the samples that
were assayed, and the comparative CT method (2− ��CT) was
used to quantify mRNA expression, as described by Livak and
Schmittgen [23]. All of the samples were run in duplicate, and the
primers were designed to span an intron to avoid genomic DNA
contamination. All samples were included in the same assay for
one gene to avoid inter-assay variability.

Statistical methods
All the data were subjected to one-way ANOVA analysis with the
Statistical Analysis Systems statistical software package (Version
8e, SAS Institute). The homogeneity of variances among groups
was confirmed using Bartlett’s test (SAS Institute). When the

primary effect of treatment was significant, differences between
means were assessed by Duncan’s multiple range analysis. Means
were considered significantly different at P < 0.05.

RESULTS

In cultured muscle cells, we demonstrated that the DEX treat-
ment significantly suppressed protein synthesis (P < 0.05, Fig-
ure 2A), as well as the phosphorylation of mTOR, p70s6k1
and 4EBP1 (P < 0.05, Figures 2B–2D), whereas the total protein
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Table 1 Gene-specific primers of related genes

Gene name GenBank number Primers position Primers sequences (5’→3’) Product length (bp)

β -Actin NM_007393 Forward ACCACACCTTCTACAATGAG 182

Reverse ACGACCAGAGGCATACAG

BCAT2 NM_001243052 Forward CCTGTTCCCTGGCTTCTATGT 100

Reverse GCTTCTTCTGTGGTTCTTTGGT

MAP4K3 NM_001290345 Forward ATTCTGTGGAGGTGGCTCTTTA 176

Reverse CGTGACCATTATCCGTTAGGAG

Rheb BC012273 Forward TCTGTGGGAAAGTCCTCATTG 115

Reverse ACTCTTGACCATTTACCGTGAT

GR X66367 Forward CCCATGGAGGTAGCGATTGT 100

Reverse TGTAAAGGCTGCCCAATGTGT

Figure 2 mTOR inhibition is involved in DEX-suppressed protein synthesis
The effect of DEX (100 μmol/l for 24 h) on protein synthesis (A), and the protein expression of mTOR, P-mTOR (B), p70s6k,
P-p70s6k (C), 4EBP1, P-4EBP1 (D) in C2C12 myoblasts. The protein level was quantified by normalizing total proteins with
β -actin, and by normalizing phosphorylated proteins with their total pairs. The values shown are the means +− S.E.M. (n =
6); a, b: means with different letters are significantly different (P < 0.05).
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Figure 3 Leucine ameliorated DEX-suppressed protein synthesis by stimulating mTOR and suppressing AMPK pathway
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Figure 3 Continued
The effect of DEX (100 μmol/l for 24 h) and leucine treatment (5 mmol/l or 10 mmol/l or 15 mmol/l for 1 h) on protein
synthesis (A), and the protein expression of mTOR (B), P-mTOR (C), p70s6k (D), P-p70s6k (E), 4EBP1 (F), P-4EBP1 (G),
AMPK (H) and P-AMPK (I) in C2C12 myoblasts. The protein level was quantified by normalizing total proteins with β -actin,
and by normalizing phosphorylated proteins with their total pairs. The values shown are the means +− S.E.M. (n = 6); a,
b: means with different letters are significantly different (P < 0.05).

expression of mTOR, p70s6k1 and 4EBP1 was not affected by
DEX (P > 0.05, Figures 2B–2D).

In the presence of DEX and leucine, DEX-suppressed my-
oblast protein synthesis was restored to normal (Figure 3A).
Leucine supplementation completely/partially alleviated the neg-
ative effect of DEX alone on both mTOR and 4EBP1 phos-
phorylation (Figures 3C and 3G). DEX and leucine had no ef-
fect on the protein expressions of mTOR, p70s6k1, phosphor-
p70s6k1 and 4EBP1 (P > 0.05, Figures 3B, 3D, 3E and 3F).
DEX alone showed no obvious effect on the total protein level
of AMPK (P > 0.05), but DEX + leucine (10 mmol/l) treatment
reduced AMPK protein expression compared with the control
(P < 0.05, Figure 3H). DEX exposure significantly enhanced
the phosphorylation of AMPK compared with the control group
(P < 0.05), and this impact exerted by DEX alone was restored to
the control level after supplementation with leucine (Figure 3I).
These results suggest that the inhibiting effect of leucine on
AMPK phosphorylation, at least partially, is due to the reduced
total AMPK protein.

Compared with the control, glucocorticoid receptor (GR)
mRNA level was increased by DEX alone (P < 0.05), as well
as DEX + leucine treatment (P < 0.05, Figure 4B). DEX treat-
ment had no significant influence on the mRNA expressions of
β-actin, branched-chain amino transferase 2 (BCAT2), mitogen-
activated protein kinase kinase kinase kinase 3 (MAP4K3) and
RAS homologue enriched in brain (Rheb) compared with the
control (P > 0.05, Figures 4A, 4C, 4D and 4E). Compared with
the DEX alone, BCAT2, MAP4K3 and Rheb mRNA levels were
increased in the DEX + leucine (5 mmol/l) group (P < 0.05) but
restored in the DEX + leucine (10 mmol/l) group (Figures 4C–
4E).

DISCUSSION

In the present study, we assessed the direct effect of leucine on
muscle protein synthesis in the presence of GCs. The results show
that the leucine supplementation could relieve the suppression
effect of GCs on protein synthesis by evoking mTOR/p70s6k
pathway. We firstly demonstrate that AMPK is also involved in
the regulation of GCs and leucine on muscle protein synthesis.
Proposed model of GCs and leucine action on protein synthesis
in C2C12 myoblasts is shown in Figure 5.

DEX retards myoblast protein synthesis
Muscle growth is largely due to the balance of muscle protein
synthesis and degradation. In the present study, we determined
the protein synthesis rate of cultured C2C12 myoblasts by us-
ing puromycin to label the newly-synthesized polypeptides [21].
We demonstrated that DEX-suppressed protein synthesis, in line
with previous findings in vivo [4–6]. This may explain the in-
volvement of GCs in catabolism/anabolism disorders, which are
associated with a number of pathological conditions, including
muscle atrophy [24–26].

mTOR inhibition is involved in DEX-suppressed
protein synthesis
mTOR acts as a critical mediator that controls protein synthesis
at the transcriptional and translational levels, by sensing and in-
tegrating signals from nutrients and energy. mTOR activation
up-regulates the translational machinery and promotes protein
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Figure 4 Expressions of regulators sensitive to GCs and leucine
The effect of DEX (100 μmol/l for 24 h) and leucine treatment (5 mmol/l or 10 mmol/l or 15 mmol/l for 1 h) on the mRNA
expression of β -actin (A), GR (B), BCAT2 (C), MAP4K3 (D) and Rheb (E) in C2C12 myoblasts. The values shown are the
means +− S.E.M. (n = 6); a, b, c, d: means with different letters are significantly different (P < 0.05).
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Figure 5 Proposed model of GCs and leucine action on protein synthesis in C2C12 myoblasts (→ stimulatory; ⊥ inhibit-
ory; . . . . . . findings reported previously [13, 14, 47–49, 55])
Activation of GCs suppresses myocellular protein synthesis via inhibiting mTOR and stimulating AMPK; leucine relieves
GCs-induced inhibition on protein synthesis by evoking mTOR and suppressing AMPK pathway.

translation [27]. Previous studies have demonstrated the role for
GCs in the modulation of mTOR signalling and in the regu-
lation of protein synthesis. Rannels et al. [7] revealed that the
inhibition of protein synthesis by GCs is most probably asso-
ciated with the inhibition of mRNA translation initiation. GCs
suppressed mTOR pathway by dephosphorylating p70s6k and
4EBP1 in skeletal muscle cells [6,28–30], which are currently
the two best-known downstream effectors of mTOR signalling,
and control the protein synthetic pathway [11]. In the present
study, the decreased phosphorylation of mTOR and p70s6k and
4EBP1 by DEX indicated that DEX-suppressed muscle protein
synthesis by inhibiting the mTOR signalling pathway. The ob-
servation is consistent with the results obtained by Long et al.
[31], who reported that DEX inhibits the stimulation of muscle
protein synthesis and the phosphorylation of p70s6k.

Leucine ameliorated DEX-suppressed protein
synthesis by stimulating mTOR pathway
mTOR regulates multiple cellular functions, including transla-
tion, in response to nutrients, especially BCAA. Bolster et al.
[32] and Deldicque et al. [33] reported that amino acids stimulate
muscle protein synthesis partially through the activation of the
mTOR pathways. Kimball and Jefferson [13] also revealed that
BCAA mediates translational control of protein synthesis. Leu-
cine and other members of the BCAA family are the dominant
players in the amino acids-induced regulation of p70s6k [34–36].
Although insulin alone can increase muscle protein synthesis in
animals, amino acids (particularly leucine) appear to have much
more potent anabolic effect [13,37–39]. The administration of
leucine after fasting or amino acids starvation stimulates protein
synthesis and promotes the phosphorylation and activation of

S6K1 via the rapamycin sensitive mTOR in skeletal muscle [37].
GCs could inhibit mTOR activity [40]. Therefore, we tested that
whether leucine supplementation could relieve the inhibition of
mTOR by GCs. The present result indicated that DEX-induced
myoblast protein synthesis was restored to 83–92 % of normal by
leucine supplementation. Meanwhile, leucine supplementation
completely/partially removed the inhibition of DEX on mTOR
and 4EBP1 phosphorylation. The result suggests that leucine re-
lieves the negative effect of DEX on protein synthesis by evoking
mTOR pathway.

The effect of GCs is mediated by the ligand-dependent activ-
ation of GR. Upon binding GCs, the activated GR acts as a tran-
scription factor, translocating into the nucleus and controlling the
level of target gene expression and modulating intracellular sig-
nalling pathways [41–43]. GR is mandatory for muscle atrophy
in response to GCs excess both in vitro [44] and in vivo [45].
On the contrary, muscle-specific GR-knockout mice are resistant
to the atrophy induced by GCs [46]. GCs inhibit mTOR activity
via GR [40]. Herein, we found that GR mRNA abundance was
elevated by DEX. Moreover, leucine supplementation further up-
regulated GR mRNA level, suggesting that increased abundant
mRNA level of GR is a feedback effect of GC and leucine.

BCAT2, a mitochondrial enzyme catalysing the first reaction in
the catabolism of BCAA [46], is a critical determinant of cellular
BCAA content in skeletal muscle. GCs inhibit mTOR activity by
evoking the activity of BCAT [40]. In the present study, BCAT2
mRNA level was not influenced by DEX but was increased by
leucine supplementation at a dose of 5 mmol/l. The result may
imply that BCAT2 is not the only way involved in the regulation
of GCs and leucine on mTOR. The increase in BCAT2 mRNA
level with 5 mmol/l leucine was lost with 10 mmol/l leucine,
suggesting a substrate inhibition characteristic of BCAT2.
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MAP4K3 is an upstream amino acids-sensitive regulator of
mTORC1 signalling [47]. In primary human fibroblasts, knock-
down of MAP4K3 resulted in a significant attenuation in leucine-
induced mTORC1 signalling [48]. Rheb is also known to be crit-
ical elements in the pathway that links amino acids availability
to mTORC1 activation [49]. In the present study, the mRNA ex-
pression of Rheb and MAP4K3 were enhanced when 5 mmol/l
leucine was supplemented, compared with DEX alone. How-
ever, this transcriptional stimulation of Rheb and MAP4K3 was
not observed after 10 mmol/l leucine supplementation. The ir-
regularity of leucine action on mRNA expression indirectly con-
firmed that leucine may exert it action on Rheb and MAP4K3 via
a post-transcriptional regulation. This speculation is consistent
with studies of Yan et al. [50] and Tee et al. [51] who reported
that Rheb farnesylation and MAP4K3 phosphorylation were re-
quired for mTORC1 activation. Further works on translational
and post-translational modification are required.

AMPK is involved in the activation of mTOR by
leucine
AMPK modulates metabolism for cellular energy demand by
responding to changes in the AMP/ATP ratio [52–54]. AMPK
suppresses protein synthesis in rat skeletal muscle through the
down-regulation of mTOR signalling [55]. AMPK activation can
phosphorylate both TSC2 and Raptor, resulting in the depres-
sion of mTORC1 signalling [13,14]. AMPK appears to provide
an overriding switch that links p70s6k regulation to cellular en-
ergy metabolism [15]. In the present study, the increased phos-
phorylation level of AMPK by DEX treatment indicated that the
stimulated AMPK pathway by DEX. Leucine supplementation,
however, down-regulated the phosphorylation of AMPK. The
result suggests that AMPK synergizes mTOR underlying in the
regulation of GCs and leucine on muscle protein synthesis. These
novel observations of the synergy effect of AMPK and mTOR
pathways are consistent with the results of Lang et al. [56] and
Du et al. [17], who reported that leucine stimulates mTOR, at
least partially, through the inactivation of AMPK.

In conclusion, both mTOR and AMPK pathways are involved
in the DEX-induced suppression of protein synthesis in muscle
cells. Leucine supplementation relieves DEX-induced inhibition
on protein synthesis by evoking mTOR and suppressing AMPK
pathway.
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factor 15. Cell Metab. 5, 305–312
CrossRef PubMed

47 Findlay, G., Yan, L., Procter, J., Mieulet, V. and Lamb, R.F. (2007) A
MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of
mTOR signalling. Biochem. J. 403, 13–20
CrossRef PubMed

48 Schriever, S.C., Deutsch, M.J., Adamski, J., Roscher, A.A. and
Ensenauer, R. (2013) Cellular signaling of amino acids
towards mTORC1 activation in impaired human leucine
catabolism. J. Nutr. Biochem. 24, 824–831
CrossRef PubMed

49 Long, X., Ortiz-Vega, S., Lin, Y. and Avruch, J. (2005) Rheb binding
to mammalian target of rapamycin (mTOR) is regulated by amino
acid sufficiency. J. Biol. Chem. 280, 23433–23436
CrossRef PubMed

50 Yan, Y., Flinn, R.J., Wu, H., Schnur, R.S. and Backer, J.M. (2009)
hVps15, but Not Ca2 + /CaM, is required for the activity and
regulation of hvps34 in mammalian cells. Biochem. J. 417,
747–755 CrossRef PubMed



10 c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
Licence 4.0 (CC BY).

http://dx.doi.org/10.1016/S0005-2760(97)00213-0
http://www.ncbi.nlm.nih.gov/pubmed/9555014
http://dx.doi.org/10.1038/nmeth.1314
http://www.ncbi.nlm.nih.gov/pubmed/19305406
http://dx.doi.org/10.1042/bj1840663
http://www.ncbi.nlm.nih.gov/pubmed/540056
http://dx.doi.org/10.1096/fj.10-168799
http://www.ncbi.nlm.nih.gov/pubmed/21148113
http://dx.doi.org/10.1038/227680a0
http://www.ncbi.nlm.nih.gov/pubmed/5432063
http://dx.doi.org/10.1006/meth.2001.1262
http://www.ncbi.nlm.nih.gov/pubmed/11846609
http://dx.doi.org/10.1677/JOE-07-0606
http://dx.doi.org/10.1210/en.2008-0439
http://dx.doi.org/10.1096/fj.09-151480
http://www.ncbi.nlm.nih.gov/pubmed/20371624
http://dx.doi.org/10.1016/S0092-8674(00)00117-3
http://www.ncbi.nlm.nih.gov/pubmed/11057898
http://dx.doi.org/10.1042/bj3470389
http://dx.doi.org/10.1079/PNS2004355
http://www.ncbi.nlm.nih.gov/pubmed/15294054
http://dx.doi.org/10.1007/s00421-004-1255-6
http://www.ncbi.nlm.nih.gov/pubmed/15702344
http://dx.doi.org/10.1172/JCI1326
http://www.ncbi.nlm.nih.gov/pubmed/9525995
http://dx.doi.org/10.1074/jbc.273.43.28178
http://www.ncbi.nlm.nih.gov/pubmed/9774438
http://dx.doi.org/10.1074/jbc.274.17.11647
http://www.ncbi.nlm.nih.gov/pubmed/10206976
http://www.ncbi.nlm.nih.gov/pubmed/11015466
http://www.ncbi.nlm.nih.gov/pubmed/15735066
http://dx.doi.org/10.1016/j.cmet.2011.01.001
http://www.ncbi.nlm.nih.gov/pubmed/21284984
http://dx.doi.org/10.1038/sj.onc.1204388
http://www.ncbi.nlm.nih.gov/pubmed/11402341
http://dx.doi.org/10.1677/joe.0.1690447
http://www.ncbi.nlm.nih.gov/pubmed/11375114
http://dx.doi.org/10.1038/nm0502-473
http://www.ncbi.nlm.nih.gov/pubmed/11984591
http://dx.doi.org/10.1016/j.bbrc.2008.11.123
http://www.ncbi.nlm.nih.gov/pubmed/19059383
http://dx.doi.org/10.1016/j.cmet.2007.03.002
http://www.ncbi.nlm.nih.gov/pubmed/17403374
http://dx.doi.org/10.1042/BJ20061881
http://www.ncbi.nlm.nih.gov/pubmed/17253963
http://dx.doi.org/10.1016/j.jnutbio.2012.04.018
http://www.ncbi.nlm.nih.gov/pubmed/22898570
http://dx.doi.org/10.1074/jbc.C500169200
http://www.ncbi.nlm.nih.gov/pubmed/15878852
http://dx.doi.org/10.1042/BJ20081865
http://www.ncbi.nlm.nih.gov/pubmed/18957027
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Leucine alleviates the effect of glucocorticoids on protein synthesis

51 Tee, A.R., Manning, B.D., Roux, P.P., Cantley, L.C. and Blenis, J.
(2003) Tuberous sclerosis complex gene products, tuberin and
hamartin, control mTOR signaling by acting as a GTPase-activating
protein complex toward Rheb. Curr. Biol. 13, 1259–1268
CrossRef PubMed

52 Kim, J., Solis, R.S., Arias, E.B. and Cartee, G.D. (2004)
Postcontraction insulin sensitivity: relationship with contraction
protocol, glycogen concentration, and 5’AMP-activated protein
kinase phosphorylation. J. Appl. Physiol. 96, 575–583
CrossRef PubMed

53 Hawley, S.A., Pan, D.A., Mustard, K.J., Ross, L., Bain, J., Edelman,
A.M., Frenguelli, B.G. and Hardie, D.G. (2005)
Calmodulin-dependent protein kinase kinase-beta is an alternative
upstream kinase for AMP-activated protein kinase. Cell Metab. 2,
9–19 CrossRef PubMed

54 Woods, A., Dickerson, K., Heath, R., Hong, S.P., Momcilovic, M.,
Johnstone, S.R., Carlson, M. and Carling, D. (2005)
Ca2 + /calmodulin-dependent protein kinase kinase-beta acts
upstream of AMP-activated protein kinase in mammalian cells. Cell
Metab. 2, 21–33 CrossRef PubMed

55 Bolster, D.R., Crozier, S.J., Kimball, S.R. and Jefferson, L.S. (2002)
AMP-activated protein kinase suppresses protein synthesis in rat
skeletal muscle through down-regulated mammalian target of
rapamycin (mTOR) signaling. J. Biol. Chem. 277, 23977–23980
CrossRef PubMed

56 Lang, C.H., Frost, R.A., Deshpande, N., Kumar, V., Vary, T.C.,
Jefferson, L.S. and Kimball, S.R. (2003) Alcohol impairs
leucine-mediated phosphorylation of 4E-BP1, S6K1, eIF4G, and
mTOR in skeletal muscle. Am. J. Physiol. 285, E1205–E1215
CrossRef

Received 2 April 2016/27 April 2016; accepted 28 April 2016

Version of Record published 28 April 2016, doi 10.1042/BSR20160096



c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
Licence 4.0 (CC BY).

11

http://dx.doi.org/10.1016/S0960-9822(03)00506-2
http://www.ncbi.nlm.nih.gov/pubmed/12906785
http://dx.doi.org/10.1152/japplphysiol.00909.2003
http://www.ncbi.nlm.nih.gov/pubmed/14555687
http://dx.doi.org/10.1016/j.cmet.2005.05.009
http://www.ncbi.nlm.nih.gov/pubmed/16054095
http://dx.doi.org/10.1016/j.cmet.2005.06.005
http://www.ncbi.nlm.nih.gov/pubmed/16054096
http://dx.doi.org/10.1074/jbc.C200171200
http://www.ncbi.nlm.nih.gov/pubmed/11997383
http://dx.doi.org/10.1152/ajpcell.00186.2003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

