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Abstract

Previous research has shown a connection between metabolic abnormalities in the methionine 

cycle and transsulfuration pathway and autism spectrum disorder. Using clinical data from a case-

control study investigating measurements of transmethylation and transsulfuration metabolites, a 

steady-state model of these metabolites in liver cells was developed and participant-specific 

parameters were identified. Comparison of mean parameter values and parameter distributions 

between neurotypical study participants and those on the autism spectrum revealed significant 

differences for four model parameters. Sensitivity analysis identified the parameter describing the 

rate of glutamylcysteine synthesis, the rate-limiting step in glutathione production, to be 

particularly important in determining steady-state metabolite concentrations. These results may 

provide insight into key reactions to target for potential intervention strategies relating to autism 

spectrum disorder.
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1. Introduction

Autism spectrum disorder (ASD) is a general diagnosis for a group of neurodevelopmental 

disabilities that appear in the early years of childhood, typically before the age of two 

(American Psychiatric Association, 2013). Although the disorder can be associated with a 

large array of symptoms, the two primary criteria for diagnosis of ASD are difficulties with 

social interaction and communication and the display of restricted, repetitive behaviors 

(American Psychiatric Association, 2013). The Center for Disease Control’s most recent 

estimate of ASD prevalence among children in the United States is 1 in 68 (Christensen et 

al., 2016). This is a substantial increase from its 1996 estimate of 1 in 294 (Yeargin-Allsopp 

et al., 2003), and even more so from international estimates in the early 1970s of 

approximately 1 in 2300 (Gillberg and Wing, 1999).

The significant rise in ASD prevalence has prompted research into certain risk factors for the 

disorder. While there is clearly a genetic component involved in the development of ASD 

(Abrahams and Geschwind, 2008; Bailey et al., 1995; Rai, 2016), recent twin studies 

indicate that heritability of the disorder is potentially lower than previously estimated 

(Gaugler et al., 2014; Hallmayer et al., 2011). Environmental factors are also suggested to 

contribute to increased ASD susceptibility through a variety of mechanisms (Rossignol et 

al., 2014). For example, a recent study found significant correlations between the 

concentrations of organic pollutants, such as pesticides, in the blood of children and the 

severity of ASD-associated behaviors in those children with the disorder potentially also 

affected by a child’s genetic susceptibilities (Boggess et al., 2016). The results of another 

study indicated a significant association between maternal antidepressant treatment before 

pregnancy and ASD risk in children (Castro et al., 2016). Correlations have also been found 

between concentrations of certain toxic metals in blood and urine and ASD severity (Adams 

et al., 2012; Adams et al., 2016). While there is an ongoing debate on what factors 

contribute to ASD (and in what capacity), these findings provide evidence that the factors 

involved in ASD risk are much more complex than just genetic predisposition alone.

Recent research has also pointed to a critical connection between incidence of ASD and 

irregularities in folate-dependent one-carbon metabolism and transsulfuration. Several 

studies have found evidence for reduced methylation capacity and increased oxidative stress 

in people with ASD compared to age-matched controls (Adams et al., 2011; James et al., 

2006; Melnyk et al., 2012). Since the metabolic pathways directly responsible for these 

abnormalities are the methionine cycle and transsulfuration pathway, these results suggest 

that some dysfunction in these pathways might be associated with ASD. While the 

methionine cycle is found in all cells in the body, transsulfuration is limited to the liver, 

pancreas, small intestine, kidney, and brain (Finkelstein and Martin, 2000; Vitvitsky et al., 

2006). Combined, these pathways have many diverse functions in the human body, including 

the regulation of gene expression through addition of methyl groups to DNA (Ulrey et al., 

2005), myelin protein stabilization in nerve cells (Miller, 2003), and synthesis of 

glutathione, one of the body’s major antioxidants (Wu et al., 2004). Glutathione plays an 

important role in detoxification and removal of reactive oxygen species in the body. In 

mammals, glutathione is found in all tissue types, with high concentrations found in the liver 

(Lu, 1999) where it is primarily synthesized. The main function of glutathione is antioxidant 
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defense against reactive oxygen species, including free radicals (Fang et al., 2002), and 

detoxification of environmental toxins, including heavy metals (Adams et al., 2011). 

Metabolic abnormalities and deficiency of glutathione can result in increased intracellular 

oxidative stress. Studies suggest that elevated levels of oxidative stress are associated with 

the pathophysiology of a number of diseases, including Alzheimer’s disease (Markesbery, 

1997), diabetes (Giugliano et al., 1996), and cystic fibrosis (Roum et al., 1993), as well as 

ASD (James et al., 2006). Although the link between glutathione, oxidative stress, and 

disease has been well-studied, exact explanations for why these relationships exist have yet 

to be found (Ballatori et al., 2009).

This paper seeks to contribute to our understanding of how metabolites of the methionine 

cycle and transsulfuration pathway interact by creating a mathematical model where the 

probability density functions (PDFs) of the parameter values are determined from clinical 

data. Detailed models of the methionine cycle and transsulfuration pathway exist (Duncan et 

al., 2013a, 2013b; Reed et al., 2008; Reed et al., 2004) that include complex nonlinear 

formulas for the rates of each of the reactions, as well as inhibitory and excitatory effects of 

metabolites on enzymes. These models have a large number of parameters which cannot all 

be estimated by measuring only a small number of metabolites in the blood. Instead, we 

chose to develop a smaller model of the pathways with unidirectional linear kinetics. This 

model does not have the biological detail of the larger models, but it has the advantage of 

having only 8 parameters (the kinetic rate constants), which can be determined from clinical 

data. Estimation of the PDFs of these parameters for both neurotypical study participants 

and participants with ASD, as well as performing sensitivity analysis on the model, allows 

for identification of important reactions that could potentially be manipulated for future 

intervention strategies for ASD.

2. Materials and Methods

2.1. Plasma metabolite data

The clinical data used in this model come from the Integrated Metabolic and Genomic 

Endeavor (IMAGE) study at Arkansas Children’s Hospital Research Institute (Melnyk et al., 

2012). The IMAGE study protocol was approved by the University of Arkansas for Medical 

Sciences’ Institutional Review Board, and parents provided written informed consent. Data 

for 82 neurotypical study participants (control) and 93 participants on the autism spectrum 

(case) were used for the model in this work. These data reflect plasma concentrations of 

transmethylation and transsulfuration metabolites, as well as those of tyrosine, nitrotyrosine, 

and chlorotyrosine, quantified with high performance liquid chromatography (HPLC) 

(Melnyk et al., 1999; Melnyk et al., 2000). Amounts of cytosine, 5-methylcytosine, and 8-

oxo-deoxyguanosine in DNA were also quantified using a HPLC-ultraviolet system and 

HPLC electrochemical detection (Helbock et al., 1998). The interested reader is referred to 

(Melnyk et al., 2012) for further information regarding data collection and experimental 

procedures.
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2.2. Model development

The components and structure of the methionine cycle and transsulfuration pathway can be 

found in the public literature (Reed et al., 2008). The mathematical model developed here is 

based upon the structure of these metabolic pathways in liver cells, where 8 metabolites 

measured in the clinical study are modeled. The model consists of the component balances 

of the individual metabolites at steady state, is based on mass action kinetics, and can be 

mathematically described as a set of linear algebraic equations. Molar concentrations of 

metabolites (c), participant-specific rate parameters (p), and efflux rate constants (f) 
represent the inputs to the system.

A compartmental model, where the concentrations of the metabolites within each 

compartment are considered to be well-mixed, is used. There are potentially fluxes of 

components into and out of each compartment, resulting in a net flux rate. Similarly, 

reactions within each compartment can result in the concentration of a metabolite being 

increased or decreased. This is represented by the general component balance:

(1)

The structure of the metabolic reactions described by the mathematical model is shown in 

Figure 1. Methionine, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), and 

homocysteine make up the methionine cycle. Cysteine, glutamylcysteine, glutathione 

(GSH), and glutathione disulfide (GSSG) are the modeled components of the 

transsulfuration pathway. Cystathionine, an intermediate in the reaction of homocysteine 

converting to cysteine, was omitted from the transsulfuration pathway due to lack of 

available measurements for it.

The model consists of 8 equations (Table 1) and contains 9 participant-specific parameters 

represented by variables p1 through p9, each having units of hr−1. Included are also 3 global 

efflux rate constants representing the removal rates of SAM, homocysteine, and GSH from 

the compartment. These flux rates are represented by variables f2 = 9 hr−1 (Duncan et al., 

2013a; Stabler and Allen, 2004), f4 = 0.001 hr−1 (Chwatko and Jakubowski, 2005; Duncan 

et al., 2013a; Refsum et al., 1985), and f7 = 3.8 hr−1 (Hong et al., 2005). To maintain the 

steady state properties of the model, a zero-order influx rate constant u is used to supply 

methionine to the system. This variable has units of μM/hr and is equal to the sum of a 

participant’s three efflux rates to achieve a steady state balance:

(2)

with f2, f4, and f7 being the removal rates (in hr−1) of SAM, homocysteine, and GSH, 

respectively, and c2, c4, and c7 being the concentrations (in μM) of SAM, homocysteine, and 

GSH, respectively.
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In this model, methionine enters the system at the rate defined in Equation 2, and is 

converted into SAM with rate constant p1. SAM is then converted to SAH in a DNA 

methylation reaction with rate constant p2, while some of it is also lost via breakdown or 

excretion (represented by efflux rate constant f2). SAH turns into homocysteine according to 

the rate constant p3. Homocysteine then follows several paths: it is re-methylated to form 

methionine with rate constant p4, contributes to the transsulfuration pathway by converting 

to cysteine with rate constant p5, and leaves the system with rate constant f4. Cysteine is 

converted to glutamylcysteine according to rate constant p6, with glutamylcysteine 

subsequently being depleted to form GSH with rate constant p7. GSH is transported out of 

liver cells or degraded (represented by flux rate constant f7) or is oxidized to GSSG at a rate 

defined by p8. GSSG is reduced back to GSH according to rate constant p9.

Each participant-specific rate parameter in the model represents the activity of an enzyme 

associated with the methionine cycle or transsulfuration pathway. For example, p1 

corresponds to the combined activities of methionine adenosyltransferase I (MAT-I) and 

methionine adenosyltransferase III (MAT-III), two enzymes responsible for the conversion 

of methionine to SAM. p2 describes the combined rate of the enzymes DNA 

methyltransferase (DNMT), glycine N-methyltransferase (GNMT), and other 

methyltransferases, while p3 characterizes the activity of S-adenosylhomocysteine hydrolase 

(SAHH) and p4 captures the combined effects of methionine synthase (MS) and betaine-

homocysteine methyltransferase (BHMT). p5 describes a lumped reaction of homocysteine 

being converted directly to cysteine with no cystathionine intermediate; this parameter is 

taken to represent solely the activity of cystathionine β-synthase (CBS), which is responsible 

for the conversion of homocysteine to cystathionine. Parameter p6 corresponds to glutamate-

cysteine ligase (GCL), while p7 describes the activity of glutathione synthetase (GS). p8 

captures the rate of glutathione peroxidase (GPX), and p9 describes the action of glutathione 

reductase (GR). These model enzymes are summarized in Table 2.

2.3. Parameter estimation

When estimating parameters for each study participant, the values of c and f as given in 

Table 1 are known; these are the measured metabolite concentrations and defined efflux 

rates, respectively. The values of p represent the unknown participant-specific rate 

parameters and need to be computed. Since the relationship between GSH and GSSG is 

underdetermined in this system, however, the individual values of p8 and p9 cannot be 

computed; instead, only the ratio of p8 to p9 (expressed p8:p9 or GPX:GR) can be calculated. 

This ratio was thus considered to be one combined term describing the relative values of p8 

and p9. To account for this, the component balance equation for GSSG (Table 1) was 

rewritten as:

(3)

This effectively reduces the model to 8 parameters. Given that the model is still linear, it can 

be written such that the c values are in an 8×8 coefficient matrix multiplied by an 8×1 vector 

of unknown p variables. This product is then summed with an 8×1 vector of the f·c efflux 
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terms, and this sum is set equal to the 8×1 zero vector. Formulating the model in this manner 

allows for estimation of the 8 unknown p values by solving a system of linear equations. 

Estimation of model parameters was performed for each study participant in the 

neurotypical and ASD groups using their individual measured values of c from the clinical 

data.

2.4. Model assumptions

Certain assumptions needed to be made for this work to develop the mathematical structure 

of the model and explain how it is affected by the availability of data:

1. The derived model has a linear structure and includes 8 parameters to allow for 

the distributions of the parameter values to be estimated from the clinical data. 

While a more detailed model of the pathway may allow for a more accurate 

description, it is assumed that a model of the chosen complexity can reflect the 

pathway behavior reasonably well.

2. The model system is at steady state, so the concentrations of metabolites are not 

changing over time. This has to be assumed because each study participant only 

had metabolite measurements taken at one point in time. Along with this, it is 

assumed that the combined contributions of an enzyme’s concentration and 

activity do not change over time.

3. Changes in concentrations of metabolites in plasma are reflected by proportional 

changes in concentrations of metabolites in liver cells, although this is not always 

true in some cases (Duncan et al., 2013a). However, this assumption must be 

made here because the clinical data consist of measurements taken in plasma 

while the model structure describes the metabolic pathways in liver cells.

Other assumptions were made to explain the biological implications of each reaction in the 

model and how these were also affected by the available data:

4 The conversion of methionine to SAM is due to the combined effects of MAT-I 

and MAT-III. Having only a single measurement in time for each metabolite 

does not allow for understanding the effects of individual enzymes acting in 

parallel, so only the combined effect is modeled.

5 The conversion of SAM to SAH is due to the combined contributions of DNMT 

enzymes, GNMT, and approximately 150 other methyltransferases. For reasons 

given in Assumption 4, only the combined effect of these enzymes is modeled. 

Additionally, GNMT uses glycine as a second substrate, but the associated 

reaction is treated as pseudo first order so only the effects of SAM concentration 

are considered.

6 While the reaction converting SAH to homocysteine by the enzyme SAHH is 

reversible, it is represented by one net forward rate constant in the model. At 

steady state, it is not possible to determine the individual rate constants of the 

forward and reverse reactions. However, the rate of the forward reaction must be 

greater than the rate of the reverse reaction for the system to remain at steady 

state.
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7 The conversion of homocysteine to methionine is due to the combined 

contributions of MS and BHMT. This assumption is made for reasons similar to 

Assumption 4, so again only the combined contribution of these enzymes is 

modeled. Additionally, BHMT uses betaine as a second substrate, but the 

associated reaction is treated as pseudo first order so only the effects of 

homocysteine concentration are considered.

8 The reactions involving the conversion of homocysteine to cystathionine and the 

conversion of cystathionine to cysteine are represented by a single lumped 

reaction where homocysteine is directly converted to cysteine. This is due to no 

measurements being taken for cystathionine.

Furthermore, an assumption was made to focus the analyses on just the model system of 

interest:

9 There are no indirect inhibitory or regulatory effects between metabolites in the 

described pathways. In addition, it is assumed that there are no interaction 

effects from other metabolic pathways. While it is known that other pathways 

and metabolites, such as folate, have long-range regulatory effects (Reed et al., 

2008), these mechanisms are ignored in this model so that parameters can be 

estimated as stated in Section 2.3.

The final assumption was needed to reflect that certain information is not readily available 

for subsets of participants:

10 The rates of SAM removal, homocysteine excretion, and GSH degradation are 

identical in neurotypical and ASD study participants. No reported numbers for 

the values of these rates are available for participants on the autism spectrum. 

Therefore, the reported values of these rates for neurotypical individuals were 

assumed to be identical to those for participants on the autism spectrum.

2.5. Sensitivity analysis

The sensitivity of a model to a specific parameter is commonly measured as the change in 

the model’s output due to a perturbation of that parameter (Frey and Patil, 2002). Local 

sensitivity analysis can be performed by individually perturbing each parameter from its 

baseline value while keeping the values of all other parameters constant. This is also referred 

to as a one-factor-at-a-time approach (Hamby, 1994; Saltelli and Annoni, 2010). A simple 

method for perturbing a chosen parameter is to add or subtract a percentage of its base value 

(Hamby, 1994).

The baseline value of each model parameter was taken to be the mean value of that 

parameter among all neurotypical participants. The resulting set of baseline parameters, 

which were then known, corresponded to a particular unknown set of metabolite 

concentrations, which were treated as the outputs of the system. However, calculating the 

output’s sensitivity to changes in parameters required knowledge of the baseline 

concentrations that would serve as a point of reference for the model output. This required 

calculating the metabolite concentrations that corresponded to the baseline parameter values.
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To solve for these unknown baseline concentrations, an approach similar to that described in 

Section 2.3 was taken. Using the model equations in Table 1, an 8×8 matrix of average p and 

f terms was constructed and multiplied by an 8×1 vector of unknown baseline c values. 

Their product was then set equal to an 8×1 zero vector to form a homogeneous system of 

linear equations. Given that any row of the matrix is equal to the negative sum of all other 

rows, all rows are not linearly independent; the calculated rank of the matrix was then found 

to be 7. Since the largest potential rank of this matrix is 8, the rank-nullity theorem states 

there exists one solution for the right null space of this matrix. The right null space was then 

solved for by using the null command in MATLAB. The absolute values of these vector 

elements were taken to be the baseline metabolite concentrations for the purposes of 

sensitivity analysis.

Each model parameter, as well as each efflux rate constant, was perturbed according to the 

one-factor-at-a-time approach. To observe the output’s response to small perturbations, 

parameters were increased and decreased by 1% of their baseline value. The metabolite 

concentrations corresponding to each new perturbation were then recalculated by finding the 

right null space of the parameter matrix as described above. Each new metabolite 

concentration resulting from a given perturbation was compared to its baseline value using 

the relative change, which was used to account for large differences in magnitude between 

metabolite concentrations. The sensitivity measure for a particular perturbation was taken to 

be the Euclidean norm of the vector containing these 8 relative changes (one for each 

metabolite). Total sensitivity of the output to changes in a certain parameter was calculated 

as the average of this sensitivity measure for the negative and positive perturbations of that 

parameter.

2.5.1 Sensitivity analysis and cross validation—The many model assumptions and 

the uncertainties in model parameter estimates may limit the confidence with which the 

results of sensitivity analysis can be interpreted. Thus, these results were validated using a 

leave-one-out cross validation approach (Kohavi, 1995). The cross-validation procedure was 

applied by removing the first neurotypical participant’s set of parameters from the data – this 

participant was treated as the test set, while the remaining 81 participants were treated as the 

training set. Sensitivity analysis was performed, as described above, independently for the 

training set and the test set. The obtained sensitivity measures were recorded, the first 

participant’s data were replaced, and the process was repeated one at a time for each of the 

other neurotypical participants. Thus, sensitivity analysis was performed for 82 training sets 

and 82 test sets. The averages of the sensitivity measures between the training sets and test 

sets were then compared. Performing the analysis in this manner helped to ensure that the 

sensitivity results were robust to changes in the available sample set. Efflux rates were also 

considered in this cross-validation.

3. Results

3.1. Parameter estimation

The 8 participant-specific parameters were estimated for the 82 neurotypical participants and 

93 participants with ASD for who concentrations of all 8 model metabolites were available 
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in the clinical data. Means and standard deviations for metabolite concentrations among the 

participants included in this study are provided in Table 3. Significant statistical differences 

were observed between the neurotypical and ASD groups for all metabolites except 

homocysteine (α = 0.01).

Following the methodology outlined in Section 2.3, a system of linear equations was 

constructed using a coefficient matrix of c values, a vector of unknown p values, and a 

vector of efflux terms f·c. However, the matrix of c values was found to be rank deficient 

(for reasons identical to those given in Section 2.5 for a matrix of p and f terms). The four 

components describing the methionine cycle were specifically responsible for this condition. 

Finding a unique solution for the associated parameters required that a constraint be placed 

on one of the four parameters in the methionine cycle. To determine the optimal parameter 

to constrain, an equality constraint was applied to one parameter in the cycle, and values of 

the remaining parameters were estimated. The constraint was then removed and placed on 

another parameter in the methionine cycle, and the new group of unconstrained parameters 

was estimated. This process was repeated for all four parameters in the methionine cycle. 

Estimates of all model parameters resulting from each of the constraints for neurotypical 

participants were compared with approximated biological values of these rate constants from 

the literature. The lsqlin routine in MATLAB was used to define each constraint and 

estimate the parameters such that the constraints were satisfied.

The equality constraint used to estimate parameters relates the rate of each reaction in the 

methionine cycle to a nominal rate, given in μM/hr. Each constraint has the form:

(4)

where pi is a participant’s estimated value of the i-th rate constant (to be solved), ci is that 

participant’s concentration of the i-th metabolite, pnom is a nominal value for the rate 

parameter being estimated (taken from the literature), and  is the average concentration of 

the i-th metabolite for the group that the participant belongs to (neurotypical or ASD). Each 

constraint is only applied to a reaction within the methionine cycle, i.e., i ranges from 1 to 4.

During the process of determining the optimal constraint, only data for neurotypical 

participants were considered. When the constraint described by Equation 4 was applied to 

each methionine cycle parameter in turn, the parameter estimates in Table 4 were obtained. 

Approximate nominal values from the literature are also provided. The linear structure of the 

transsulfuration pathway results in the estimates for parameters p5 through p8:p9 remaining 

unchanged across the different constraints. Placing a constraint on p1 produces very large 

values for the other methionine cycle parameters. Constraining p2 gives much smaller 

estimates of p1 and p3, with unacceptable negative values for p4. The constraint on p3, 

however, produces parameter estimates that are most similar to the values from the literature. 

Values for p2 and p3 resulting from the constraint on p4 are too large to consider acceptable. 

Thus, constraining p3 is the preferred approach to estimating parameters for the methionine 

cycle.
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Using the optimal constraint on p3, parameter values for ASD participants were then 

estimated. A comparison of the estimates for control and ASD participants is provided in 

Table 5. Significant statistical differences can be seen between the neurotypical and ASD 

groups for all parameters except p3 and p7 (α = 0.01). Additional insight into these 

differences can be gained from observing the respective PDFs of each parameter for the 

control and ASD groups. Using kernel density estimation with a normal kernel (using the 

ksdensity command in MATLAB), PDFs were constructed for each parameter (Figure 2). 

The most apparent differences between neurotypical and ASD distributions are seen for 

parameters p1 (Figure 2A), p2 (Figure 2B), p4 (Figure 2D), and p8:p9 (Figure 2H). Although 

p5 and p6 (Figure 2E and 2F, respectively) displayed significant statistical differences, there 

are not observable differences in the distributions for the two groups of participants. The two 

distributions for p3 (Figure 2C) are nearly identical, which is a consequence of the constraint 

placed upon the parameter.

3.3. Sensitivity analysis

Metabolite concentrations were considered to be the outputs of the system for local 

sensitivity analysis. Since the system is linear, local sensitivity analysis results for positive 

and negative 1% perturbations should be identical. However, both perturbations were 

performed for each parameter to ensure the results were not affected by numerical 

inaccuracies. The results of both perturbations were indeed found to be almost identical, and 

the average results are reported in Table 6.

The metabolite concentrations were found to be most sensitive to changes in parameter p6, 

which describes the rate at which cysteine is converted to glutamylcysteine. In other words, 

altering the value of p6 causes the largest cumulative relative change in the steady state 

metabolite concentrations. It is thus an important parameter and has the most influence on 

the model output. After p6, the output was most sensitive to changes in parameter p5, which 

defines the rate of production of cysteine from homocysteine, and to changes in efflux rate 

constant f7, which represents the removal rate of GSH from the system. The model output 

also showed relatively high sensitivity to changes in parameter p4, which describes the rate 

at which homocysteine is converted to methionine. These results indicate that these 

parameters also have a greater effect on the model concentrations. The remaining 

participant-specific parameters, having equally low measures of sensitivity, were indicated to 

have less effect on steady state metabolite concentrations. Efflux rate constants f2 and f4 

appeared to have minimal influence on the concentrations of metabolites. Additionally, the 

cross-validation results (Table 6) revealed no effective differences between the parameter 

sensitivity measures as calculated from all samples, from the averaged training results, and 

from the averaged test results.

4. Discussion

This work developed a model of the methionine cycle and transsulfuration pathway and this 

is the first effort which estimates parameters for such a model using clinical data from both 

neurotypical and ASD study participants. Furthermore, the distributions of the parameters 
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were estimated and compared between the groups of study participants, as each participant 

had different metabolite concentrations, resulting in different model parameters.

Development of the presented model was based on a number of assumptions. Some of these 

assumptions may limit the accuracy of the model, while others may have little or no bearing 

on the model’s ability to describe true metabolic behavior. The assumption of a steady state 

system can be particularly limiting since biological systems are rarely, if ever, in this state of 

equilibrium. That being said, few physiological measurements, especially if they involve 

metabolites in clinical studies, are taken over time and as such this is a reasonable 

assumption for this particular application. Additionally, assuming linear interactions 

between enzymes and substrates may neglect to capture the true behavior of these reactions. 

Michaelis-Menten equations are often used to describe the nonlinear kinetics of enzymes, 

but the kinetic parameters of these equations are difficult to estimate without available time-

series data. In general, the assumptions made are based upon the state-of-the-art of what can 

be done in a clinical research trial. Regardless of the implications of these assumptions, the 

overall purpose of this study was to characterize and model metabolic differences between 

neurotypical and ASD participants. The current model provides a starting point for 

describing the interactions of the studied metabolic pathways in ASD.

The most significant limitation of the model is that the efflux rate constants are not 

necessarily specific to each participant. Given the variability in metabolite concentrations 

between participants, it is unlikely that these efflux rates are identical for participants within 

the same group, let alone identical between the neurotypical and ASD participant groups. 

Differences in these efflux rates could explain the differences observed for certain 

participant-specific rate parameters; using a one-size-fits-all approach could result in forced 

parameter differences that would not be present if the efflux rates had been specific to each 

participant. However, the lack of data describing these individualized effluxes makes this 

problem difficult to address. There are also very limited studies investigating these processes 

in individuals with ASD, so it is challenging to characterize any flux differences for those 

participants compared to the neurotypical group. Thus, the efflux rate constants must be 

assumed to be the same for every participant until more data regarding the rates of these 

processes become available.

The mean values for many of the estimated parameters in the neurotypical group are close to 

the biological activity rates of their corresponding enzymes that are found in the literature. 

Referring to the literature values in Table 4, it can be seen that the approximate rate constant 

for MAT-I + MAT-III activity is fairly close to the mean estimated value for control 

participants. The estimates for the DNMT+GNMT and MS+BHMT rate constants are also 

within acceptable ranges of their literature values. Additionally, the mean estimate of the 

rate constant for SAHH is very close to the true rate constant, although this is expected due 

to the constraint applied during estimation. The estimated rate constants for GCL, GS, and 

the GPX:GR ratio are close to their approximate nominal values as well. However, the mean 

estimate for CBS is significantly different from its nominal value. It is unlikely that this 

discrepancy is a consequence of the lumped homocysteine-cystathionine-cysteine reaction 

used in the model. At steady state, the theoretical metabolic flux from homocysteine to 

cystathionine will be equivalent to the flux from cystathionine to cysteine; since the flux 
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throughout the transsulfuration pathway needs to be the same at every reaction step, the 

lumped reaction rate from homocysteine to cysteine will also be equal to either of these two 

individual reaction rates. Therefore, the product of the homocysteine concentration and rate 

constant p5 still reflects the actual conversion rate of homocysteine to cystathionine, and p5 

should be a valid approximation of CBS activity. A more likely reason for the discrepancy is 

the fact that cysteine is used in many other metabolic processes besides the transsulfuration 

pathway; it is also involved in the synthesis of taurine, pyruvates, sulfates, and sulfites, for 

example (Stipanuk et al., 2006). The model does not describe these alternative pathways, 

and thus does not account for the higher levels of cysteine that would be required to carry 

out all of these reactions. This may explain why the rate of cysteine synthesis is 

underestimated in the model.

Parameter estimation revealed observable differences in parameters p1, p2, p4, and p8:p9 

between neurotypical and ASD participants. This suggests some degree of difference in 

activity rate for MAT-I+MAT-III, DNMT+GNMT, MS+BHMT, and GPX:GR in participants 

with ASD as compared to neurotypical participants. The GPX:GR difference is expected; 

the ratio of reduced to oxidized glutathione as a marker of oxidative stress has been well-

documented (Asensi et al., 1999; James et al., 2006) and there is evidence to suggest that a 

decreased ratio is present in participants with ASD (Adams et al., 2011; James et al., 2006; 

Melnyk et al., 2012). The DNMT+GNMT parameter represents the rate at which SAM is 

converted into SAH, and reflects the SAM/SAH ratio, which is an indicator of DNA 

methylation capacity (Yi et al., 2000). In participants with ASD, the SAM/SAH ratio has 

been found to be significantly reduced (Adams et al., 2011; James et al., 2006; Melnyk et al., 

2012). With regards to the differences in MAT-I + MAT-III, oxidative stress has been linked 

to a down-regulation of the methionine adenosyltransferase enzymes (Avila et al., 1998). 

Given that increased oxidative stress is characteristic of ASD, it is possible that there could 

be altered MAT rates in participants on the spectrum. Finally, it has been found that 

increased oxidative stress can be responsible for reduced MS activity (Muratore et al., 2013). 

This mechanism leaves more homocysteine available to be eventually converted to 

glutathione, which can then be used to lower oxidative stress. These observations are in line 

with the finding that the participants with ASD had different values of the p4 parameter as 

compared to their neurotypical counterparts.

Model metabolite concentrations were found to be most sensitive to changes in parameter 

p6, followed by parameter p5, efflux rate constant f7, and parameter p4. These correspond to 

the first-order rate constants of the enzymes GCL and CBS, the removal of GSH, and the 

enzymes MS+BHMT, respectively. GCL is responsible for the conversion of cysteine to 

glutamylcysteine, so the sensitivity results suggest that the formation of glutamylcysteine 

has an important role in the model. This is somewhat surprising because the formation of 

GSH was expected to have a significant impact on the model predictions; instead the 

synthesis of its precursor was identified as more important. That being said, the synthesis of 

a GSH precursor will ultimately affect GSH formation, and formation of glutamylcysteine is 

considered to be the rate-limiting step of GSH synthesis (Hamilton et al., 2003; Lu, 2009; 

Shi et al., 1994). In addition, the relatively high sensitivity to the removal of GSH does 

suggest that levels of GSH have a significant effect on other metabolites in the methionine 

cycle and transsulfuration pathway; this could be supported by findings of redox levels 
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(which are influenced by GSH) affecting synthesis of certain metabolites in these pathways 

(Mosharov et al., 2000; Richman and Meister, 1975). The other important model enzymes, 

CBS and MS+BHMT, are involved in the synthesis of cysteine and methionine, respectively, 

both from homocysteine. Given that these enzymes form the juncture between the 

methionine cycle and transsulfuration pathway, and determine the fate of homocysteine, it is 

not as surprising that these are among the most important parameters in the model.

The robustness of the most important sensitivity analysis results to changes in the study 

participants was verified by leave-one-out cross validation, where no substantial differences 

in sensitivity measures were observed between the averaged training and test set results 

(Table 6). The sensitivity results were nearly identical across training sets since each training 

set’s baseline parameter values were averaged from the parameters of all neurotypical 

participants except one, and removing one different participant from the average of 81 

participants in each training set is unlikely to have a significant effect on the average 

parameter values. This explains why the variations in the sensitivity measures between 

training sets are below the used cutoff. Unlike the training set, however, the test sets did 

show some variation in their sensitivity measures for certain parameters. Despite this 

difference, the test sets’ averaged results were very close to those from the averaged training 

results, suggesting that the parameters’ sensitivity measures are much less dependent on 

individual parameter values than on the structure of the model itself.

Model robustness is further suggested by the small values of the sensitivity measures for 

each parameter. However, a potential drawback of these small sensitivities is poor 

observability of the parameters in the experimental data. One possible way to address this 

issue could be to implement a different measure of sensitivity, perhaps by considering a 

relationship among the metabolites’ relative changes other than the Euclidean norm, or by 

replacing the relative change of a metabolite with a different calculation of change 

altogether. Another solution is to employ regularization methods, such as Tikhonov 

regularization (Engl et al., 1996), that can deal with poor observability by providing more 

stable estimates of model parameters (Golub et al., 1999). Experimentation with Tikhonov 

regularization (using neurotypical participants and values of the regularization parameter up 

to 0.1) yielded parameter values that, on average, varied by less than 6% of their current 

solutions. This was the case for all parameters except p8:p9, which had an average percent 

change of 89.1%. These results indicate that the parameters are robust with respect to the 

parameter observability, with the exception of p8:p9. However, the p8:p9 ratio is not one of 

the key variables in the model as determined by sensitivity analysis, and thus the conclusions 

do not change as a result of this analysis.

Analysis of the raw plasma concentration data in (Melnyk et al., 2012) yielded many 

important observations of metabolic abnormalities in study participants with ASD. Among 

the primary outcomes of that study were significant measured differences for methionine, 

SAM, SAH, total cysteine, GSH, and GSSG concentrations in control and case participants. 

The study concluded that participants with ASD have genome-wide reduced DNA 

methylation, in addition to finding evidence for increased oxidative stress in participants 

with ASD. While the current model does not provide any insight into genome-wide trends, it 

does offer some results similar to those obtained by analysis of the raw data. Mainly, 
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observed differences in the p1, p2, p4, and p8:p9 rate parameters point to equivalent 

metabolic differences identified in (Melnyk et al., 2012). An important distinction to make, 

however, is that those analyses focused directly on the metabolite concentrations, while the 

model analyses here are aimed toward the rates at which the metabolic reactions take place. 

With this in mind, the model also produced some novel results that were not previously 

extracted from the data. Sensitivity analysis found two parameters relating to the fate of 

homocysteine to be very important, while no significant difference in homocysteine 

concentration was found in the raw data. While this could be an important finding, it could 

also be an artifact of the model; the idea of homocysteine metabolism being altered in 

response to oxidative stress (Muratore et al., 2013) suggests the former, however. The 

parameter pertaining to glutamylcysteine synthesis (by GCL) was indicated to be of even 

greater importance, but no analysis of glutamylcysteine concentrations in the raw data was 

performed. Future investigations should explore in more detail the importance of GCL, and 

its rate-limiting reaction, in GSH synthesis.

5. Conclusions

This study developed a model for two pathways of potential importance to ASD and 

identified model parameters, as well as their PDFs, from clinical data from neurotypical 

participants and those on the spectrum. Significant statistical differences can be seen in four 

of the parameters between the two groups through comparison of their mean parameter 

values and their parameter distributions. Almost all estimated rate parameters were found to 

match with corresponding experimental values from the literature, with the exception of the 

rate constant for cystathionine β-synthase. Sensitivity analysis revealed parameter p6, which 

reflects the activity of the enzyme glutamate-cysteine ligase, to be especially important to 

the model’s predictions. This finding aligns with the observation that the reaction the 

enzyme is responsible for, i.e., the formation of glutamylcysteine, is the rate-limiting step in 

glutathione synthesis. Development of this model serves as the first step for identifying 

targets for potential future intervention strategies. Reactions with significant differences 

among the two participant groups can serve as a potential starting point for future 

investigations.
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Highlights

• Previous studies linked autism spectrum disorder (ASD) to metabolic 

irregularities.

• A model describing transmethylation and transsulfuration pathways was 

developed.

• Case-control clinical data were used to estimate distribution of model 

parameters.

• Sensitivity analysis identified potential metabolic reactions of interest.

• Results of this study hint at potential intervention strategies for ASD.
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Figure 1. 
The structure of the methionine cycle and transsulfuration pathway as described by the 

mathematical model. Met: methionine, SAM: S-adenosylmethionine, SAH: S-

adenosylhomocysteine, H-Cys: homocysteine, Cys: cysteine, Glut-Cys: glutamylcysteine, 

GSH: glutathione, GSSG: glutathione disulfide. The p variables represent participant-

specific rate parameters, while the f variables correspond to flux rate constants. Variable u is 

a zero-order, participant-dependent methionine influx used to keep the system at steady 

state.
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Figure 2. 
PDFs of the eight participant-specific model parameters for the neurotypical and ASD 

participant groups. (A) Rate parameter p1 for MAT-I + MAT-III. (B) Rate parameter p2 for 

DNMT + GNMT. (C) Rate parameter p3 for SAHH. (D) Rate parameter p4 for MS + BHMT. 

(E) Rate parameter p5 for CBS. (F) Rate parameter p6 for GCL. (G) Rate parameter p7 for 

GS. (H) Ratio of rate parameters p8 and p9 for GPX:GR.
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Table 1

Metabolites included in and linear algebraic equations of the model.

Metabolite Concentration Variable Model Equation

Methionine c1 0 = p4c4 − p1c1 + f2c2 + f4c4 + f7c7

S-adenosylmethionine (SAM) c2 0 = p1c1 − p2c2 − f2c2

S-adenosylhomocysteine (SAH) c3 0 = p2c2 −p3c3

Homocysteine c4 0 = p3c3 − p4c4 − p5c4 − f4c4

Cysteine c5 0 = p5c4 −p6c5

Glutamylcysteine c6 0 = p6c5 − p7c6

Glutathione (GSH) c7 0 = p7c6 − p8c7 + p9c8 − f7c7

Glutathione disulfide (GSSG) c8 0 = P8c7 − p9c8
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Table 2

Enzymes and fluxes represented by parameters used in the mathematical model.

Parameter Representative Enzyme(s) or Flux Abbreviation

p1 methionine adenosyltransferase I MAT-I

methionine adenosyltransferase III MAT-III

p2 DNA methyltransferases DNMT

glycine N-methyltransferase GNMT

p3 S-adenosylhomocysteine hydrolase SAHH

p4 methionine synthase MS

betaine-homocysteine methyltransferase BHMT

p5 cystathionine β-synthase CBS

p6 glutamate-cysteine ligase GCL

p7 glutathione synthetase GS

p8 glutathione peroxidase GPX

p9 glutathione reductase GR

f2 SAM efflux –

f4 homocysteine efflux –

f7 GSH efflux –
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Table 3

Means and standard deviations of metabolite concentrations for the neurotypical and ASD groups.

Metabolite

Concentration Mean ± SD (μM)

p-valueNeurotypical (n = 82) ASD (n = 93)

Methionine 23.1 ± 3.6  19.0 ± 2.9  < 0.0001

SAM 0.0696 ± 0.0100 0.0600 ± 0.0104 < 0.0001

SAH 0.0152 ± 0.0036 0.0186 ± 0.0047 < 0.0001

Homocysteine 4.74 ± 1.01 5.10 ± 1.20 0.0323

Cysteine 209 ± 17  190. ± 18   < 0.0001

Glutamylcysteine 2.33 ± 0.59 1.85 ± 0.48 < 0.0001

GSH 2.31 ± 0.70 1.71 ± 0.36 < 0.0001

GSSG 0.147 ± 0.058 0.236 ± 0.100 < 0.0001
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Table 5

Comparison of model parameter estimates for control and ASD participants. All parameters have units of hr−1 

except for p8:p9, which is dimensionless.

Parameter

Parameter Mean ± SD

p-valueNeurotypical (n = 82) ASD (n = 93)

p1 1.90 ± 0.30 2.81 ± 0.42 < 0.0001

p2 620. ± 84 889 ± 154 < 0.0001

p3 2970 ± 852 3020 ± 1020 0.726

p4 7.38 ± 1.62 9.32 ± 2.00 < 0.0001

p5 1.93 ± 0.70 1.35 ± 0.47 < 0.0001

p6 0.0421 ± 0.0125 0.0346 ± 0.0088 < 0.0001

p7 3.82 ± 0.77 3.59 ± 0.63 0.031

p8:p9 0.0660 ± 0.0244 0.144 ± 0.065 < 0.0001
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Table 6

Results of sensitivity analysis from perturbing each parameter and efflux rate constant by 1%. Also shown are 

the results of leave-one-out cross validation for this analysis.

Parameter or Efflux Rate Constant Sensitivity (all samples) Mean Training Sensitivity ± SD Mean Test Sensitivity ± SD

p1 0.0099 0.0099 ± 0.0000 0.0099 ± 0.0000

p2 0.0100 0.0100 ± 0.0000 0.0100 ± 0.0000

p3 0.0100 0.0100 ± 0.0000 0.0100 ± 0.0000

p4 0.0136 0.0136 ± 0.0000 0.0136 ± 0.0011

p5 0.0168 0.0168 ± 0.0000 0.0168 ± 0.0008

p6 0.0261 0.0261 ± 0.0000 0.0261 ± 0.0001

p7 0.0100 0.0100 ± 0.0000 0.0100 ± 0.0000

p8: p9 0.0100 0.0100 ± 0.0000 0.0100 ± 0.0000

f2 0.0001 0.0001 ± 0.0000 0.0001 ± 0.0000

f4 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

f7 0.0141 0.0141 ± 0.0000 0.0141 ± 0.0000
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