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Practical Approaches for Whole-Genome Sequence
Analysis of Heart- and Blood-Related Traits

Alanna C. Morrison,* Zhuoyi Huang,? Bing Yu,! Ginger Metcalf,2 Xiaoming Liu,!
Christie Ballantyne,3# Josef Coresh,> Fuli Yu,2 Donna Muzny,? Elena Feofanova,! Navin Rustagi,?
Richard Gibbs,?2 and Eric Boerwinkle!.2,*

Whole-genome sequencing (WGS) allows for a comprehensive view of the sequence of the human genome. We present and apply
integrated methodologic steps for interrogating WGS data to characterize the genetic architecture of 10 heart- and blood-related
traits in a sample of 1,860 African Americans. In order to evaluate the contribution of regulatory and non-protein coding regions
of the genome, we conducted aggregate tests of rare variation across the entire genomic landscape using a sliding window, comple-
mented by an annotation-based assessment of the genome using predefined regulatory elements and within the first intron of all
genes. These tests were performed treating all variants equally as well as with individual variants weighted by a measure of predicted
functional consequence. Significant findings were assessed in 1,705 individuals of European ancestry. After these steps, we identified
and replicated components of the genomic landscape significantly associated with heart- and blood-related traits. For two traits,
lipoprotein(a) levels and neutrophil count, aggregate tests of low-frequency and rare variation were significantly associated across
multiple motifs. For a third trait, cardiac troponin T, investigation of regulatory domains identified a locus on chromosome 9. These
practical approaches for WGS analysis led to the identification of informative genomic regions and also showed that defined non-
coding regions, such as first introns of genes and regulatory domains, are associated with important risk factor phenotypes. This
study illustrates the tractable nature of WGS data and outlines an approach for characterizing the genetic architecture of complex

traits.
Introduction

Common complex traits, such as blood glucose and
cholesterol levels, underlie some of the most common dis-
eases burdening human health. Genetic analysis of these
complex traits has followed the development of the fields
of genetics and genomics, beginning with familial ag-
gregation and linkage, transitioning through candidate
genes and genome-wide association studies (GWASs),
and arriving at the emerging promise of whole-genome
sequencing (WGS). Declining costs have catalyzed acceler-
ated adoption of WGS in large-scale genetics studies.
However, few studies have utilized WGS to assess the
contribution of low-frequency and rare genetic variation
to complex traits.

Morrison et al.' conducted WGS analysis of high-density
lipoprotein cholesterol and described initial steps for an
unbiased and coordinated approach to evaluating WGS
data in a population-based sample of European Americans
(EA). The UK10K Consortium explored association testing
of common, low-frequency, and rare variants for quantita-
tive traits using WGS data among European individuals.”
These initial studies, along with the results of numerous
GWASs, support more comprehensive evaluation of non-
coding regions in relation to complex quantitative traits,
and also suggest that tests of association involving WGS
would benefit from variant selection strategies that incor-

porate annotation of functional genomic elements. In
fact, WGS analyses conducted in deeply phenotyped
sample sets may be an efficient strategy for fine-mapping
established GWAS signals. However, association studies
involving WGS are challenged by the large number of
very rare variants, especially singletons,” and tests that
aggregate the cumulative effects of rare variants have been
proposed and implemented.* These aggregate tests require
an a priori defined region of the genome within which the
combined effect of rare variants are assessed, and by far
the most common units are the protein-encoding genes.
WGS data offer the opportunity to aggregate variants over
the full spectrum of annotated motifs, from specifically
defined regulatory domains to an agnostic sliding window.
In this study, we offer practical approaches to WGS analysis
of complex traits using aggregate tests across a variety of an-
notated functional motifs. We also show how WGS may be
informative for fine-mapping loci associated with traits of
interest and identification of presumed single-nucleotide
variants (SNVs) responsible for the observed associations.
In addition, we consider weighted analyses using nucleo-
tide-specific information and provide guidance on p values
for defining thresholds of statistical significance. Because
previous applications have focused on samples from popu-
lations of European descent, we provide an example appli-
cation in a sample of African Americans (AA) measured for
multiple cardiovascular risk factors.

'Human Genetics Center, University of Texas School of Public Health, Houston, TX 77030, USA; 2Human Genome Sequencing Center, Baylor College of
Medicine, Houston, TX 77030, USA; 3Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX 77030, USA; “Houston Methodist De-
bakey Heart and Vascular Center, Houston, TX 77030, USA; SDepartment of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore,
MD 21287, USA

*Correspondence: alanna.c.morrison@uth.tmc.edu (A.C.M.), eric.boerwinkle@uth.tmc.edu (E.B.)

http://dx.doi.org/10.1016/j.ajhg.2016.12.009.

© 2016 American Society of Human Genetics.

P

\!} CrossMark

The American Journal of Human Genetics 100, 205-215, February 2, 2017 205


mailto:alanna.c.morrison@uth.tmc.edu
mailto:eric.boerwinkle@uth.tmc.edu
http://dx.doi.org/10.1016/j.ajhg.2016.12.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2016.12.009&domain=pdf

Aggregate by annotated functional motif for
low frequency and rare SNVs (MAF < 5%):
1. Sliding window
2. Regulatory domain
3. Firstintron

Apply T5 and SKAT

4

Apply significance thresholds:
Visualize significant regions using Lachesis plots

Y

Utilize single SNV linear regression results:
1. To conduct fine-mapping of significant loci
- by performing conditional analyses
- by dissecting individual SNVs
underlying the signal from the
aggregate tests
2. To conduct common SNV GWAS (MAF >
5%)

Figure 1. Overall Analytic Approach

Subjects and Methods

Study Population and Phenotype Measurements

The Atherosclerosis Risk in Communities (ARIC) study has been
described in detail previously.’ In brief, participants aged 45 to
64 years at baseline were recruited from four communities: Forsyth
County, North Carolina; Jackson, Mississippi; Minneapolis, Min-
nesota; and Washington County, Maryland. A total of 15,792
individuals, predominantly of European and African ancestry,
participated in the baseline examination in 1987-1989, with
four follow-up examinations. The example application presented
here focuses on 1,860 AA study participants with WGS data and
measurements for 10 heart- and blood-related factors, including
circulating neutrophil count, platelet count, and levels of hemo-
globin, lipoprotein(a) (Lp(a)), magnesium (Mg), and phosphorus
(P) that were measured at the baseline exam. Small dense low-den-
sity lipoprotein cholesterol (sdLDL-C), C-reactive protein (CRP),
cardiac troponin T (cTnT), and N-terminal pro-B-type natriuretic
peptide (NT-proBNP) were measured at the fourth examination
between 1996 and 1998. Detailed descriptions of the methods
for each phenotype measurement are summarized in the Supple-
mental Note. A sample of 1,705 EA individuals with WGS and
measures for the 10 heart- and blood-related factors were available
for replication analyses. The ARIC study has been approved by
Institutional Review Boards (IRBs) at all participating institutions:
University of North Carolina at Chapel Hill IRB, Johns Hopkins
University IRB, University of Minnesota IRB, and the University
of Mississippi Medical Center IRB. Study participants provided
written informed consent at all study visits.

Whole-Genome Sequencing, Variant Calling, and
Quality Control

WGS data were generated by the Baylor College of Medicine Hu-
man Genome Sequencing Center. DNA samples were constructed
into Illumina paired-end libraries according to the manufacturer’s
protocol (Illumina Multiplexing_SamplePrep_Guide_1005361_D)
and sequenced on the Hiseq 2000 (Illumina) in a pooled format
to generate a minimum of 18 unique aligned Gbp per sample.

Methods for WGS of ARIC study participants have been described
in detail in Morrison et al.' Individuals of African and European
ancestry were sequenced at 7.4-fold average depth on Illumina
HiSeq instruments and variant calling was completed using
goSNAP, which employed GATK, SNPTools, and GotCloud as cal-
lers, each in joint calling mode, and took an ensemble consensus
approach to generate a high-quality variant call set. Per-sample
genotyping and reference-panel-independent imputation and
phasing were done using SNPTools. The majority (59.7%) of the
SNVs were novel compared to dbSNP v142. Compared to a subset
of the samples with whole-exome sequencing, the sensitivity and
specificity of the WGS call set is 63.6% and 99.9%, respectively,
and compared to an overlapping set of single-nucleotide poly-
morphism (SNP) array data, the false discovery rate (FDR) is
1.6%. Variant-level quality assurance was achieved by excluding
variants with a site level inbreeding coefficient < —0.9. Variants
not meeting Hardy-Weinberg equilibrium exact test expecta-
tions in ancestry-specific groups (p value < 1 x 10~'%) were also
excluded. Sample-level quality control and quality assurance
checks included principal-component analysis (PCA) to identify
possible population substructure and sample abnormalities. The
set of variants for PCA was restricted to variants with minor allele
frequency (MAF) >5% and linkage disequilibrium between vari-
ants of 7* < 0.30. A total of 40 ARIC AA individuals identified as
outliers by PCA were removed from further analyses. Higher-order
principal components showed minor levels of population struc-
ture. After sample-level quality control, a total of 1,860 AA and
1,705 EA from the ARIC study were available for the genotype-
phenotype analyses reported here.

Statistical Analyses

Each of the ten cardiovascular risk factors were analyzed sepa-
rately. Figure 1 shows each step for the overall analytic approach.
Because our primary focus was on rare variant sequence analysis,
analyses within annotated functional motifs considered only
low-frequency and rare variants (MAF < 5%), and we required
that the aggregate set of SNVs had an overall minor allele count
(MAC) of >3. Within each annotated functional motif, a burden
test (T5°) and the Sequence Kernel Association Test (SKAT’) were
used adjusting for age, sex, and the first three principal compo-
nents (PCs), with additional adjustment of body mass index
(BMI) for CRP and current smoking status (yes or no) for neutro-
phil counts. The T5 test collapses variants with MAF < 5% into
a single genetic score, while SKAT takes into account the possibil-
ity that the effects of the SNVs are in both directions. As a default,
SKAT weights the variants according to their MAF using beta
density weights with parameters 1 and 25. For completeness, we
also conducted an additional survey of the genome investigating
all individual variants using an additive genetic model with the
same adjustments, and provide a focused look specifically at those
with MAF > 5%. All analyses were carried out using the R seqMeta
package. The results from the single SNV analyses were used to
conduct focused fine-mapping at significant loci, including condi-
tional analyses as well as to aid in the dissection of the SNVs
underlying the signal from the aggregate tests.

We evaluated the WGS data using the Combined Annotation
Dependent Depletion (CADD) scores® as variant weights. The
CADD algorithm integrates multiple functional annotations
including conservation scores, functional prediction scores for
missense SNVs, epigenomic markers, and others. CADD scores
are available for both coding and non-coding variants. The
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Figure 2. Annotated Functional Motifs

weights were defined as the difference between raw CADD scores
and the minimum CADD score scaled by the range of the raw
CADD scores and were introduced into both the TS5 test and
SKAT. Previous studies show that using the quartic form of predic-
tion scores as a variant weight can improve the discriminative
power,’ so the quartic form of the CADD score was also used in
the aggregate tests. The analytical models were the same as
described above.

We also evaluated the WGS data using Eigen scores'® as variant
weights. Only Eigen scores in non-coding regions were used for
analysis. The weights were defined as the difference between raw
Eigen scores and the minimum Eigen score scaled by the range
of the raw Eigen scores and were introduced into both the TS5
and SKAT. The analytical models were the same as described
above.

An initial step for analyzing the association between WGS
data and phenotypes involves defining tractable analytical units
for the proposed aggregate tests. On the one extreme, these units
could simply be annotated protein-encoding genes, which
would approximately recapitulate whole-exome sequence data
without the vagaries of exon capture. On the other extreme, an
agnostic sliding window would consider the whole genome,
regardless of annotation or presumed functionality. Studies
such as ENCODE'' are defining candidate regulatory elements
and helping formulate a better understanding of non-translated
RNA-encoding genes. There is ample and still emerging evidence
of the critical role of the first intron in regulating gene expres-
sion.'?'? Taken together, Figure 2 shows a schematic diagram of
the annotated functional motifs used in the analyses presented
here. We did not conduct analyses focusing only on exons because
they are well known in the literature and have been demonstrated
with much larger sample sizes. Based on our previous experience,’
physical windows were defined as 4 kb in length and begin at
position O bp for each chromosome, with a skip length of 2 kb.
WGS variation was annotated across the genome and functional
domains using the Whole Genome Sequencing Annotation
(WGSA) pipeline.'* The first intron of a gene was determined
using SnpEff'® annotation based on the RefSeq'® gene model.
The 3’ and 5’ untranslated region (UTR) of a gene was determined
using ANNOVAR'” annotations based on the RefSeq gene model.
The promoter of a gene was defined based on the overlap between
the permissive set of CAGE peaks reported by the FANTOMS proj-
ect'® and the 5 kb upstream region determined by the ANNOVAR
annotation based on the RefSeq gene model. The enhancers and
the target genes of the enhancers were defined based on the
permissive set of enhancers and enhancer-promoter pairs re-
ported by the FANTOMS project. In the case of an undesignated
enhancer-gene pair, we assigned an enhancer to the nearest
gene. Therefore, the regulatory domain motif utilized for aggregate
variant tests includes enhancers, the 3’ and 5’ UTRs, and promoter
of a gene. Variants could be included in multiple groupings in
the case of overlapping genes. For example, we determined that

770,137 SNVs (MAF < 5% and with MAC > 3) are annotated as
belonging to the annotated regulatory domains (i.e.,, in an
enhancer, promoter, 3’ or 5’ UTR), and 11.4% (n = 87,718 SNVs)
of the time they also belong to a regulatory domain for a neigh-
boring gene. In order to visualize the contribution from each of
these annotated functional motifs, we utilized the online tool
Lachesis to view any region of interest.

We defined a priori thresholds of statistical significance for each
annotated motif. For the sliding window approach, we considered
668,836 contiguous and non-overlapping windows and 10 traits
and therefore set a significance threshold at p < 7.5 x 10~° (equal
to 0.05 / 668,836 / 10). We next applied the TS test and SKAT to
the set of low-frequency and rare variants (MAF < 5%) among
the annotated regulatory domains and also for the first intron of
each gene. Associations were considered significant with p <
2.3 x 1077 accounting for 21,414 regulatory domains and 10 traits
for regulatory domain analyses, and p < 3.5 x 10”7 accounting for
14,202 first introns and 10 traits for first intron analyses. We
restricted our analyses in sliding windows, regulatory domains,
and first introns to MAC > 3 within a motif based on our prior
work.'? Finally, for the common variants with MAF > 5% evalu-
ated individually, a threshold of p < 5 x 10~® was used for
genome-wide significance accounting for ~1 million independent
common variants.”’

Results

WGS was completed for 1,860 AA and 1,705 EA individuals
from the ARIC study. For these analyses, we selected heart
and blood traits related to cardiovascular outcomes that
were measured across the entire cohort to maximize sam-
ple size. Descriptive characteristics for these ten traits are
provided in Table S1.

Among the AA individuals sequenced at 7.8-fold
depth of coverage, there were 51,350,433 total SNVs.
Figure S1 shows the proportion of variants within fre-
quency bins characterized as very rare (43.6%, MAF <
0.1%), rare (25.7%, 0.1% < MAF < 1%), low-frequency
(13.4%, 1% < MAF < 5%), and common (17.3%, MAF >
5%). This study primarily focuses on low-frequency, rare,
and very rare variants aggregated by various motifs such as
asliding window across the genome, in annotated regulatory
domains, or residing in the first intron of coding genes. A
total of 1,337,673 4-kb overlapping windows in AA have a
distribution of 1 to 694 SNVs per window (Figure S2) with
median MAC of 1,131. Among the 21,414 annotated regula-
tory domains in AA, we observed a distribution of 1 to 750
SNVs per domain (Figure S2) and a median MAC of 500. In
comparison, an assessment of the first intron of all 14,202
coding genes in AA showed a range of 1 to 15,552 SNVs
(Figure S2) with a median MAC of 956.

Test Results for Low-Frequency and Rare Variation in
Annotated Functional Motifs

We applied tests aggregating low-frequency and rare varia-
tion within annotated functional motifs: sliding windows,
regulatory domains, and first introns. Index windows are
shown representing the most significant window from
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Table 1.

Index Sliding Windows Demonstrating a Significant Association for the T5 Test in African Americans

Trait Chr. Start Position (bp) Stop Position (bp) cMAF # SNVs p Value

Lp(a) 6 160,928,009 160,932,008 0.2353 40 7.73 x 1071
Lp(a) 6 160,990,009 160,994,008 0.4608 84 5.01 x 107!
Lp(a) 6 161,006,009 161,010,008 0.5767 79 2.17 x 107°
Lp(a) 6 161,068,009 161,072,008 0.4991 92 3.00 x 101!
Neutrophil count 1 159,174,150 159,178,149 0.2706 56 8.39 x 107
Neutrophil count 1 159,290,150 159,294,149 0.1818 38 2.49 x 10711
Neutrophil count 1 159,316,150 159,320,149 0.2667 74 1.80 x 1071°
Neutrophil count 1 159,410,150 159,414,149 0.4092 54 1.50 x 1071°
Neutrophil count 1 159,446,150 159,450,149 0.2261 62 414 x 10713
Neutrophil count 1 159,478,150 159,482,149 0.1459 26 2.61 x 1071°
Neutrophil count 1 159,514,150 159,518,149 0.2364 44 1.26 x 10712
Neutrophil count 1 159,540,150 159,544,149 0.4025 82 4.99 x 107°
Neutrophil count 1 159,546,150 159,550,149 0.1751 45 3.00 x 10°'*
Neutrophil count 1 161,664,150 161,668,149 0.2557 48 2.69 x 10~1°

Base pair (bp) position based on hg19. Significant: p < 7.5 x 1077, Abbreviations are as follows: Chr , chromosome; cMAF, cumulative minor allele frequency.

the TS5 test (Table 1) or SKAT (Table 2) within a set of contig-
uous sliding windows. We report results for all underlying
significant overlapping windows for the TS5 test (Table S2)
and SKAT (Table S3). Significant T5 and SKAT results are
shown for the regulatory domains in Tables 3 and 4,
respectively. Significant SKAT results are detailed for the
first intron in Table 5. There were no significant TS test
results for the first intron motif. Figure S12 shows the
quantile-quantile (QQ) plots related to the results in Tables
1,2, 3, 4, and 5.

Significant findings in AAs are investigated by the TS5 test
and SKAT in EAs for the sliding window (Tables S2 and S3),
regulatory domains (Tables S4 and S5), and first intron
(Table S6). The key to understanding the genome-pheno-
type relationship for complex traits is to assess the joint
contribution from each annotated functional motif for
each trait. Lachesis plots aid in this visualization and we
review the results in AAs in the following vignettes for
the three heart- and blood-related traits (Lp(a), neutrophil
count, and cTnT) that demonstrated significant findings
across various motifs in AAs.

Test Results for Common Variants

For completeness, we conducted a survey of the genome
investigating all common variants with MAF > 5%. Com-
mon variants in five genomic regions reached our pre-
defined significance threshold for five traits, including
neutrophil count, CRP, Lp(a), P, and sdLDL-c (Figure S3).
The sentinel SNV with the lowest p value for each trait is
shown in Table S7 and results for all significant associa-
tions (p < S5 X 1078) are shown in Table S8. Four loci—
DARC, CRP, LPA, and APOE—with their corresponding
traits have been reported by previous GWASs.”'>" We

identified a signal at 9p21, a well-known cardiovascular
disease locus, associated with serum phosphorus levels.
However, the index SNV, rs60456827 (MAF = 15% in
AA), was not significantly associated with P levels in
ARIC EAs (MAF = 2%, beta = 0.02, p = 0.77).

Lp(a)

A 646-kb region (from 160,660,009 to 161,306,008 bp on
chromosome 6) consisting of 107 windows showed a signif-
icant association with Lp(a) (lowest p = 3.0 X 10~ for the
TS5 test and lowest p = 6.18 x 10~3* for SKAT; Tables S2 and
S3) among AAs. The windows reside in 6q25.3-6926,
covering 218 kb upstream and 292 kb downstream of LPA,
and include four other genes (PLG, SLC22A2, SLC22A3,
and LPAL2). Investigation of annotated regulatory domain
motifs showed that there are two regulatory domains signif-
icantly associated with Lp(a) levels in this region. The first
regulatory domain involves SLC22A3 (2.29 x 1077, SKAT;
Table 4) and the signal is driven by three SNVs in the 3’
UTR and one intronic SNV that resides in a defined
enhancer, all with p < 0.01 (Table S9). The target for the
FANTOMS enhancer involving the intronic SNV is un-
known and therefore was assigned to SLC22A3. The first
intron of SLC22A3 (p = 3.24 x 10~ '!, SKAT; Table 5) was
also significantly associated with Lp(a) levels. The second
regulatory domain involves PLG (p = 5.55 x 108, TS5 test;
Table 3) and the aggregate test result is largely due to four
SNVsin the 3’ UTR with p < 0.01 (Table $10). Figure 3 shows
the entire genomic landscape of this region, incorporating
all of these test results. An additional regulatory domain
on chromosome 12 was identified near MFAPS5 (5.09 x
1078, SKAT; Table 4) and all four intergenic SNVs included
in the aggregate test reside in an enhancer (Table S11).
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Table 2. Index Sliding Windows Demonstrating a Significant Association for the SKAT Test in African Americans

Trait Chr. Start Position (bp) Stop Position (bp) cMAF # SNVs p Value

Lp(a) 6 160,660,009 160,664,008 0.396 74 4.26 x 107°
Lp(a) 6 160,710,009 160,714,008 0.740 87 1.58 x 10710
Lp(a) 6 160,750,009 160,754,008 0.415 62 4,03 x 10714
Lp(a) 6 160,772,009 160,776,008 0.358 63 3.45 x 10711
Lp(a) 6 160,794,009 160,798,008 0.323 49 5.08 x 107°
Lp(a) 6 160,800,009 160,804,008 0.365 58 5.62 x 107°
Lp(a) 6 160,810,009 160,814,008 0.322 56 417 x 10712
Lp(a) 6 160,824,009 160,828,008 0.392 48 2.38 x 10710
Lp(a) 6 160,832,009 160,836,008 0.191 49 3.08 x 10°1¢
Lp(a) 6 160,842,009 160,846,008 0.348 57 9.56 x 10712
Lp(a) 6 160,852,009 160,856,008 0.349 60 1.55 x 107 #
Lp(a) 6 160,880,009 160,884,008 0.139 40 3.92 x 10712
Lp(a) 6 160,888,009 160,892,008 0.530 69 8.18 x 10712
Lp(a) 6 160,900,009 160,904,008 0.416 75 6.23 x 10715
Lp(a) 6 160,928,009 160,932,008 0.235 40 1.70 x 10713
Lp(a) 6 160,944,009 160,948,008 0.214 42 411 x 1028
Lp(a) 6 161,008,009 161,012,008 0.457 77 6.18 x 10734
Lp(a) 6 161,052,009 161,056,008 0.352 49 2.57 x 10714
Lp(a) 6 161,090,009 161,094,008 0.300 61 4,67 x 1073
Lp(a) 6 161,100,009 161,104,008 0.338 56 5.25 x 10711
Lp(a) 6 161,120,009 161,124,008 0.504 71 2.94 x 10711
Lp(a) 6 161,134,009 161,138,008 0.256 61 2.66 x 10712
Lp(a) 6 161,178,009 161,182,008 0.417 64 1.43 x 10714
Lp(a) 6 161,290,009 161,294,008 0.364 65 2.94 x 107
Lp(a) 6 161,302,009 161,306,008 0.352 53 2.32 % 107°
Neutrophil count 1 156,746,150 156,750,149 0.308 60 4.79 x 10~°
Neutrophil count 1 158,764,150 158,768,149 0.234 39 7.64 x 1012
Neutrophil count 1 159,168,150 159,172,149 0.411 62 3.68 x 107!
Neutrophil count 1 159,290,150 159,294,149 0.182 38 6.75 x 10714
Neutrophil count 1 159,370,150 159,374,149 0.424 60 3.77 x 10711
Neutrophil count 1 159,402,150 159,406,149 0.259 58 1.11 x 1071°
Neutrophil count 1 159,408,150 159,412,149 0.455 59 2.20 x 10710
Neutrophil count 1 159,416,150 159,420,149 0.731 102 1.48 x 1077
Neutrophil count 1 159,446,150 159,450,149 0.226 62 3.91 x 1071¢
Neutrophil count 1 159,470,150 159,474,149 0.290 46 1.12 x 1071°
Neutrophil count 1 159,488,150 159,492,149 0.164 54 1.82 x 10713
Neutrophil count 1 159,502,150 159,506,149 0.240 54 2.06 x 1071°
Neutrophil count 1 159,514,150 159,518,149 0.236 44 2.08 x 10712
Neutrophil count 1 159,520,150 159,524,149 0.289 39 3.76 x 1071}
Neutrophil count 1 159,536,150 159,540,149 0.459 65 5.97 x 1071
Neutrophil count 1 159,548,150 159,552,149 0.195 45 1.42 x 1071

(Continued on next page)
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Table 2. Continued

Trait Chr. Start Position (bp) Stop Position (bp) cMAF # SNVs p Value
Neutrophil count 1 159,556,150 159,560,149 0.221 57 3.27 x 10713
Neutrophil count 1 159,580,150 159,584,149 0.299 73 4.95 x 10°1°
Neutrophil count 1 159,798,150 159,802,149 0.350 83 1.23 x 10712
Neutrophil count 1 161,508,150 161,512,149 0.455 92 1.88 x 1077

Significant: p < 7.5 x 107°.

Lp(a) is encoded by LPA, and an intronic SNV of LPA,
15115848955 (MAF = 5%), showed the strongest signal
with Lp(a) in a recent AA study.”' The Lp(a) sentinel com-
mon SNV, 1541271018 (MAF = 5%), identified in our study
of AA is in linkage disequilibrium with rs115848955 (r* =
0.93). We re-examined our region of interest located
6q25.3-6q26 after adjusting for rs115848955, and several
windows in the region remained significant (lowest p =
2.72 x 1072 for T5 test and lowest p = 7.70 x 10~2° for
SKAT; Table S12). Interestingly, the identified regulatory
domain at PLG increased in significance after conditioning
on 15115848955 and the SLC22A3 regulatory domain and
first intron decreased in significance. Figure 3 depicts these
conditional results in the context of the unconditional re-
sults. We further investigated replication in EA individuals
for each significant motif and showed that many of the
sliding windows were also strongly associated with Lp(a)
levels (Tables S2 and S3). No association was seen in EAs
for the regulatory domains of PLG (p = 0.11, Table S4) or
MFAPS (p = 0.40, Table S5). Replication in EA was observed
for the regulatory domain of SLC22A3 (p = 0.004, Table S5)
and the first intron of SLC22A3 (p = 0.0002, Table S6).

We characterized the overall range of risk across this lo-
cus around LPA by utilizing the most significant driving
SNV from each identified motif, resulting in a total of
seven SNVs: one from each of the four sliding windows (Ta-
ble 2), one from the first intron of SLC22A3 (Table 5), one
from the regulatory domain of SLC22A3 (Table 4), and one
from the regulatory domain of PLG (Table 3). Of the seven
SNVs, three variants had an effect of increasing Lp(a) levels
and they were from the regulatory domain of SLC22A3, the
first intron of SLC22A3, and one of the sliding windows.
These three SNVs constituted a risk score and individuals
with two or more risk alleles were contrasted with the indi-
viduals with no risk alleles (Figure S4). Overall, the magni-
tude of effects considered together shows that individuals
with risk variants related to increased Lp(a) levels across
this region on chromosome 6 have higher Lp(a) levels.
Of the seven SNVs across this region, the other four vari-
ants had an effect of decreasing Lp(a) levels and they
were from the regulatory domain of PLG and the remain-
ing three sliding windows. These four SNVs constituted a
risk score and individuals with two or more risk alleles
were contrasted with the individuals with no risk alleles
(Figure S5). Overall, the magnitude of effects considered
together shows that individuals with risk variants related

to decreased Lp(a) levels across this region on chromosome
6 generally have lower Lp(a) levels.

Neutrophil Count

For neutrophil count, we observed a 4.92-Mb region span-
ning 1923 that showed significant association for the
sliding windows (lowest p = 8.39 x 10~ for the T5 test
and lowest p = 3.91 x 10~ ' for SKAT) among AA individ-
uals. Within this region, as shown in Tables 3 and 4, the reg-
ulatory domain motif for DARC was significantly associated
with neutrophil count in both the TS5 test and SKAT and is
driven by three SNVs (p < 0.01) in the 5" UTR of the gene
(Table S13). The regulatory domain of a neighboring gene,
CADMS3, also was significantly associated with neutrophil
count and can be explained by four SNVs in the 3’ UTR
(Table S14). It is notable that these CADM3 3’ UTR SNVs
are also upstream of DARC, and two are suggested to be in
promoter of DARC by funseq.?® Figure 4 shows the genomic
landscape encompassing DARC and CADM3. DARC is a
well-studied locus for neutrophil count”*?” and a common
SNV (rs2814778, MAF = 0.17, Table S7) was the sentinel
SNV identified in AA from this study. After accounting for
152814778, we observed decreased significance for the
nearby windows, regulatory domains, and first introns
(lowest p = 0.02; Tables S4-S6). None of the sliding win-
dows on 1q23 that were significantly associated with
neutrophil count in AA demonstrated a significant associa-
tion in EAs (lowest p = 0.007; Tables S2 and S3). The find-
ings for DARC and CADMS3 regulatory domains did not
replicate in EAs (Tables S4 and S5).

Additional significant signal in the 1923 region comes
from regulatory domains for three overlapping genes
(MNDA, PYHINI1, and IFI16) and is driven by three
SNVs residing in an enhancer for all three genes (Tables
S15-17). Similarly, the significant regulatory domain for
HSPA6 contains two SNVs (p < 0.01) in the 5’ UTR and
two in an enhancer targeting HSPA6 and other genes (Table
S18). The first intron of EFNA3 (p = 2.59 x 1077, SKAT;
Table 5) was also significantly associated with neutrophil
count. None of these additional motifs identified on
1923 replicated in EAs (Tables S4-56).

cTnT

A single regulatory motif on chromosome 9 involving the
gene carbonic anhydrase IX (CA9) was significantly associ-
ated with ¢TnT in AA (p = 9.16 x 10~%; Table 4) and

210 The American Journal of Human Genetics 7100, 205-215, February 2, 2017



Table 3.

Regulatory Domains Demonstrating a Significant Association for the T5 Test in African Americans

Trait Gene cMAF # SNVs p Value Beta SE
Lp(a) PLG 0.179 33 5.55 x 1078 -0.17 0.03
Neutrophil count DARC 0.121 21 3.91 x 1078 2.71 0.49

Significant: p < 2.3 x 1077. Abbreviation is as follows: cMAF, cumulative minor allele frequency.

showed modest association in EA (p = 0.03; Table S5). This
motif contained only two SNVs in the 5’ UTR of CA9 with a
total MAC = 3 in AA, and only one of the SNV in the 5’
UTR with a total MAC = 6 was observed in EA. Based on
single SNV results, the primary signal is driven by the
SNV located at 35,673,953 bp (Table S19).

Sliding Window Approach Incorporating CADD or Eigen
Score as a Variant Weight

Tests aggregate low-frequency and rare SNVs within a
motif to increase statistical power, but noise also increases
given the equal consideration for functional and non-
functional SNVs, in particular for non-coding regions.
We evaluated the impact of signal to noise on aggregate
tests of association by introducing CADD score or Eigen
score predictions of nucleotide function as weights. Over-
all, we do not observe a clear enhancement for weighted
tests versus tests that do not use functional predictions as
a weight. As an example, Figure S6 shows the quantile-
quantile (QQ) plots for incorporating CADD score in the
sliding window motif analyses for Lp(a) levels and neutro-
phil counts, the two traits for which we saw genome-wide
significant windows. Figure S7 shows similar plots for
Eigen scores. The TS test does not show appreciable differ-
ence between tests that do not use functional predictions
as a weight and those weighted by CADD or Eigen score.
The SKAT analysis shows some differences between
CADD or Eigen weighted tests and tests that do not use
functional predictions as a weight. These observations
hold true for analyses including the quartic form of the
CADD score (Figure S8).

We next investigated the average CADD score for all
significant windows for these two traits (from Tables S2
and S3). The average CADD score for each significant win-
dow is shown as a vertical red line in Figures S9A and S9B
for the TS test and SKAT, respectively, compared to the
distribution of average CADD for all windows. The average
CADD score for these significant windows is signifi-
cantly larger than those of a random sample of windows
(p value = 0.03 for windows in Figure S9A, Kolmo-
gorov-Smirnov test, one-tail; p value = 0.02 for windows
in Figure S9B, Kolmogorov-Smirnov test, one-tail). The
average quartic CADD scores for the sliding windows are
plotted in Figure S10. Similarly, we investigated the average
Eigen score for all significant windows covering non-
coding regions for Lp(a) levels and neutrophil count
from Tables S2 and S3. The average Eigen score for each
significant non-coding window is shown as a vertical red

line in Figures S11A and S11B for the T5 test and SKAT,
respectively, compared to the distribution of average Eigen
scores in non-coding windows. In Figure S11A, the average
non-coding Eigen scores for those significant non-coding
windows in Table S2 is larger than those of a random sam-
ple of non-coding windows, but not significantly different
(p value = 0.067, Kolmogorov-Smirnov test, one-tail). In
Figure S11B, we observe that the average non-coding Eigen
scores for those significant non-coding windows in Table
S3 are significantly larger than those of a random sample
of windows (p value = 1.41 x 10~°, Kolmogorov-Smirnov
test, one-tail).

Discussion

This study provides a practical approach to WGS analysis
of complex traits using aggregate tests across a variety of
annotated functional motifs: sliding window, regulatory
domains, and first introns. Inclusion of annotated regula-
tory domains, such as those from FANTOMS, as a focus
of aggregate tests and use of predicted functional scores
(e.g., CADD and EIGEN) as variant weights in the tests
represent important additions to the series of analysis steps
outlined in this practical approach to WGS analysis.
Considering the current results, the relationship between
regulatory domains neighboring LPA and Lp(a) level, the
regulatory domains near DARC and neutrophil count, or
the regulatory domain of CA9 and cTnT level would not
have been discovered without conducting motif-based as-
sociation tests of rare variants. Our investigation revealed
that components of the genomic landscape were signifi-
cantly associated with six out of the ten heart and blood
traits related to cardiovascular outcomes. For two traits,
Lp(a) and neutrophil count, aggregate tests of low-fre-
quency and rare variation were significantly associated
across multiple motifs. For a third trait, cTnT, investigation
of regulatory domains may have identified a locus on chro-
mosome 9.

The results presented here outline a series of practical
steps for both analyzing WGS data and synthesizing the
results (Figure 1) with the goal of utilizing as much infor-
mation as possible to identify loci contributing to a com-
plex trait. The results also demonstrate how WGS analyses
can be used to fine-map significantly associated loci and to
identify driver SNVs that may be responsible for the under-
lying observed associations. One key component to this
approach is the ability to visualize the contribution from
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Table 4. Regulatory Domains Demonstrating a Significant
Association for SKAT in African Americans

Table 5. First Introns Demonstrating a Significant Association for
SKAT in African Americans

Trait Gene c<MAF # SNVs p Value Trait Gene c<MAF # SNVs p Value

¢TnT CA9 0.001 2 9.16 x 10~° Lp(a) SLC22A3  4.194 757 3.24 x 1071

Lp(a) MFAPS 0.001 4 5.09 x 1078 Neutrophil count ~ EFNA3 0.250 64 2.59 x 1077

Lp(a) SLC22A3 0.231 35 2.29 x 1077 Significant: p < 3.5 x 10~7. Abbreviation is as follows: cMAF, cumulative minor
allele frequency.

Neutrophil count MNDA 0.324 38 1.10 x 107

Neutrophil count IFI16 0.412 54 1.85 x 107° .. L. . . .

P is induced by hypoxia in humans and is a significant sero-
i 8 . . . . . . .

Neutrophil count  HSPA6 0.460 65 1.69 x 10 logic predictor of right ventricular dysfunction in patients

Neutrophil count ~ DARC 0121 21 1.89 x 1078 with pulmonary embolism along with ¢TnT.*° This is a

Neutrophil count  CADM3 0204 54 2.08 X 10-8 promising finding, but also an examp}e of how results
from WGS must be interpreted with caution as the primary

Neutrophil count  PYHINI 0.300 34 534 x 1078

Significant: p < 2.3 x 1077, Abbreviation is as follows: cMAF, cumulative minor
allele frequency.

multiple sources of information. As shown in the Lachesis
plot for Lp(a), the sliding window trace provides a back-
ground context for interpreting the signals observed
from annotated regulatory domains. For Lp(a) levels, the
dominant signal is upstream of LPA, the coding gene for
Lp(a). In the region of interest at 6q25.3-6q26 encompass-
ing LPA, there were distinct signals coming from three
distinct regulatory elements. Our analytic strategy allowed
for inspection of SNVs included in the aggregate tests that
appear to be driving the regulatory domain signals. In this
way, we could determine that the four most significant
SNVs (p < 0.01) contributing to the significant TS5 test
results for Lp(a) are located in the 3’ UTR of PLG (upstream
of LPA) and range in MAF from 0.05% to 4%. This defined
regulatory domain increased in significance after condi-
tioning on the most significant common variant, unlike
the other two regulatory domain signals in the region
near SLC22A3 that decreased in significance. These asso-
ciation results for Lp(a) also highlight that an existing
knowledge gap in the field is the need for additional refine-
ment of enhancer-gene target pairing. We identified that
the regulatory domain motif for SLC22A3 is in part signif-
icantly driven by an intronic SNV residing in an enhancer
with unknown target, and therefore was assigned as an
enhancer of SLC22A3. It is plausible that the reason this
regulatory element is identified in our analysis of Lp(a) is
because it may indeed be an enhancer for LPA.

Using the outlined analytic strategy, we were also able to
identify and interpret genomic regions contributing to
neutrophil count in AA. For neutrophil count, the Lachesis
plot clearly shows how the regulatory motif signal is also
picked up by the sliding window and involves the known
gene DARC, emphasizing again that the sliding window
approach provides an informative background context
for overall elucidation of the genomic contribution to
complex traits.

The results for cTnT identified a locus downstream of the
9p21 region associated with cardiovascular disease.”” CA9

signal comes from a single SNV (at 35,673,953 bp) with a
total MAC of 2 (Table $19). This SNV was monomorphic
in EA. To further evaluate the validity of these findings
for CA9, we conducted a permutation test whereby cTnT
levels were permutated 1 million times and the SKAT test
was repeated, resulting in the ranking of the original
p value 165" out of the million tests for a permutation
test p value 165 / 1,000,001 = 1.65 x 10~*. For WGS ana-
lyses employing aggregate tests of association involving
rare variants, we recommend that investigators set a lower
bound on the MAC that takes into account sample size for
their study.

More than GWASs or exome sequencing, careful anno-
tation is a key feature of WGS analysis. In the analyses
presented here, annotation provided different sources of
information. First, annotation provided the boundaries
of units for aggregate testing, such as the regulatory
domain motif. In this context, linked databases (e.g.,
RefSeq) and national efforts to define functional genome
elements (e.g., ENCODE) are invaluable. In this analysis,
aggregate tests of annotated regulatory elements yielded
few novel significant results. This result may be specific
to the traits analyzed in this study. The full value of aggre-
gate tests of annotated functional motifs remains to be
seen and may rely on improved annotation and statistical
methods or increased sample sizes. The second type of
information gained from annotation was whether or not
a variant was predicted to have a functional impact on
protein or genome function. The most obvious examples
include nonsynonymous substitutions and nonsense
mutations, although more subtle examples exist, such as
splice variants. Related to predicted function, but more
nuanced, was our use of predicted deleteriousness (i.e.,
CADD score) as weights for the genotype-phenotype ana-
lyses. Such weights take into account the fact that all
amino acid substitutions or all promotor variants are not
equal, and one can predict the impact based on knowledge
of the location and type of substitution. Studies validating
these predictions for protein-encoding genes have been
carried out with mixed success,'”*"*? and studies vali-
dating such predictions for regulatory elements are almost
nonexistent. Databases of weights such as MetaLR** and
CADD score® have been linked to popular annotation
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Figure 3. Survey of the Genomic Landscape on Chromosome 6q25.3-6¢26 for Lp(a) Levels via Lachesis

The sliding window trace shows the results from tests (SKAT and T5) aggregating low-frequency and rare variation within overlapping
physical windows of 4 kb. Significant results are shown for regulatory domains in SLC22A3 (SKAT) and PLG (T5) and the first intron of
SLC22A3 (SKAT). Results after conditioning on rs115848955 in LPA are also shown.

tools. In the analyses presented here, we did not see
marked benefit of weighted analyses across the full range
of weights, nor did we observe improved benefit of weights
scaled to accentuate predicted highly impactful delete-
rious variants. Others have enthusiastically argued that
predicted functional annotation must take into account
population genetic principles and the effects of natural

selection® and some progress has been made in this
area.>>*° Clearly, more work is necessary in the area of
whole-genome annotation and the success of whole-
genome sequencing for understanding the genetic archi-
tecture of complex disease may indeed depend on it. In
converse, the results of whole-genome sequence analysis
may become the fodder of future annotation tools.
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Figure 4. Survey of the Genomic Landscape on Chromosome 1g23 for Neutrophil Count via Lachesis
The sliding window trace shows the results from tests (SKAT and T5) aggregating low-frequency and rare variation within overlapping
physical windows of 4 kb. Significant results are shown for regulatory domains in DARC (T5 and SKAT) and CADM3 (SKAT). Results after

conditioning on 152814778 in DARC are also shown.
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This study provides an example application of WGS
analysis in a sample of AA measured for multiple cardiovas-
cular-related traits. As such, we included EA individuals
with WGS only as a source of replication for the top signals
from AA. Future studies may wish to consider WGS ana-
lyses that pool data from multiple ethnicities under the
assumption of similar effect sizes on the traits of interest
for causal rare variants in each ethnicity. This is in contrast
with common-variant GWASs, where variants were not
expected to be causal but rather in linkage disequilibrium
with causal variants, and therefore the effects in each
ethnic group were expected to be different because of
differences underlying linkage disequilibrium across
populations. For many traits, the majority of GWASs
have detected significant loci located in non-coding re-
gions, with a much smaller percentage of significant loci
lying in coding sequences. Therefore, the practical
approach for evaluating WGS outlined here focuses on
motifs involving primarily non-coding functional do-
mains. However, our strategy can easily extend to analysis
of only exonic regions, thereby recapitulating previous
exome studies, or incorporate exonic information into
regulatory domain motifs. Where large effect sizes are
present for coding elements, the sliding window is likely
to capture this signal as well. Additionally, as studies
continue to accrue WGS, sample sizes will increase such
that the sliding window motif will begin to characterize
novel loci.

In conclusion, we demonstrate a guideline for analyzing
and interpreting WGS for complex traits and demonstrate
the tractable nature of WGS for characterizing the architec-
ture of complex traits.

Supplemental Data

Supplemental Data include Supplemental Methods, 12 figures,
and 19 tables and can be found with this article online at http://
dx.doi.org/10.1016/j.ajhg.2016.12.009.
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