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InterVar: Clinical Interpretation of Genetic Variants
by the 2015 ACMG-AMP Guidelines

Quan Li1,4 and Kai Wang1,2,3,*

In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) pub-

lished updated standards and guidelines for the clinical interpretation of sequence variants with respect to human diseases on the basis

of 28 criteria. However, variability between individual interpreters can be extensive because of reasons such as the different understand-

ings of these guidelines and the lack of standard algorithms for implementing them, yet computational tools for semi-automated variant

interpretation are not available. To address these problems, we propose a suite of methods for implementing these criteria and have

developed a tool called InterVar to help human reviewers interpret the clinical significance of variants. InterVar can take a pre-annotated

or VCF file as input and generate automated interpretation on 18 criteria. Furthermore, we have developed a companion web server,

wInterVar, to enable user-friendly variant interpretation with an automated interpretation step and a manual adjustment step. These

tools are especially useful for addressing severe congenital or very early-onset developmental disorders with high penetrance. Using re-

sults from a few published sequencing studies, we demonstrate the utility of InterVar in significantly reducing the time to interpret the

clinical significance of sequence variants.
Introduction

With the continued development and deployment of

massively parallel next-generation sequencing (NGS) tech-

nologies, clinical and molecular laboratories are now

rapidly adopting NGS in genetic testing and human ge-

netics research. Although it is becoming easier and more

affordable for individual laboratories to generate NGS

data, the major hurdle in utilizing these data lies in how

to interpret the genotype-phenotype relationships, espe-

cially in genomic medicine settings.1,2 The process of iden-

tifying disease-causing or disease-contributing variants

among the thousands of genetic variants within an indi-

vidual’s genome generally involves a number of steps,

such as variant annotation, variant filtering, in silico pre-

diction, and clinical interpretation by human experts.3

Each of these steps can involve the use of specific compu-

tational and bioinformatics tools.

Several tools and databases have been developed to assist

laboratories and clinicians with understanding the func-

tional significance of genetic variants with respect to their

potential effects on genes and diseases. They generally fall

into several categories. First, a number of annotation tools,

such as ANNOVAR,4,5 VAAST,6 SeattleSeq,7 SNPeff,8 and

VEP,9 can predict how genetic variants affect transcript

structure or coding sequences. They can classify variants

into intronic, intergenic, splice, and exonic variants, and

for exonic variants, they can compute how amino acid se-

quences are affected. Second, for coding variants, a variety

of tools can predict whether the variant is deleterious to

protein function or structure by using evolutionary infor-

mation, context within the protein sequence, and

biochemical properties. These in silicomethods include in-
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dividual scoring systems, such as SIFT,10 PolyPhen-2,11

CADD,12 FATHMM,13 and MutationTaster,14 as well as

meta-predictors, such as Condel15 and MetaSVM.16 Many

have a similar theoretical basis, but they also have known

limitations, such as moderate accuracy, low specificity, and

over-prediction.17,18 Third and finally, public disease-spe-

cific and gene-specific databases, such as the Human

Gene Mutation Database (HGMD),19 ClinVar,20 and

various locus-specific databases,21 can document function-

ally or clinically validated genetic variants that are

pathogenic for particular diseases. The HGMD is a compre-

hensive collection of germline mutations in nuclear genes

that underlie, or are associated with, human inherited

disease and is compiled primarily from the published liter-

ature.19 ClinVar20 archives the clinical significance of

variants reported directly from submitters. However, these

databases often contain variants that are incorrectly classi-

fied without a primary review of evidence, and they some-

times have contradictory records on the assessment of

pathogenicity. The NIH began the ClinGen initiative22 to

build an authoritative central resource that defines the

clinical relevance of genes and variants for use in precision

medicine and research. To improve the accuracy of variant

interpretations, ClinGen uses a ranking system to denote

the quality associated with each submission to ClinVar.

Despite the existence of a variety of resources, a more sys-

tematic way to evaluate the pathogenicity of genetic vari-

ants observed in sequencing studies is needed to facilitate

clinical evaluation of variants and to enable the precise im-

plementation of genomic medicine.

To standardize the clinical interpretation of genetic

variants, the American College of Medical Genetics and

Genomics (ACMG) recommended standards for the
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interpretation of sequence variations and offered a deci-

sion-tree algorithm for variant interpretation in 2000 and

2007.23,24 With the rapid development and adoption of

NGS, variant interpretation has become more complex,

and new challenges in the clinical interpretation of Men-

delian and complex diseases have emerged. To address

these challenges and to provide more concrete guidelines,

the ACMG and the Association for Molecular Pathology

(AMP) published updated guidelines for the interpretation

of sequence variants in May of 2015.25 This new report de-

scribes updated standards and guidelines for classifying

sequence variants by using criteria informed by expert

opinion and experience. To better describe the causality

of variants identified in genes associated with Mendelian

diseases, the ACMG and AMP recommend a widely used

five-tiered categorization system—pathogenic, likely path-

ogenic, uncertain significance, likely benign, and benign—

for classifying variants. The system uses a total of 28

criteria based on different sources of data, such as popula-

tion data, in silico data, functional data, and segregation

data. The ACMG and AMP also propose a set of scoring

rules, which combine criteria to give the five-tier classifica-

tion system for genetic variants.

Although the ACMG-AMP guidelines were developed to

enable consistent and reliable interpretation of genetic

variants, application of the ACMG-AMP criteria still in-

volves some discrepancies between intra- and inter-labora-

tory settings. Some efforts have been taken to reduce

inter-laboratory inconsistencies,26 but >66% of variant

classifications are still discordant in inter-laboratory classi-

fications. There could be several reasons for the discor-

dances. For many clinical labs, implementing the variant

scoring rules into a standardized workflow is difficult

with available informatics tools. For example, the ACMG

and AMP recommend using 28 criteria during the inter-

pretation process; however, gathering information on

each of the criteria is quite complicated and might not

be easily accomplished by individual interpreters or might

not be reproducible by the same interpreter at different

times. Furthermore, the ACMG and AMP provide only

general guidelines on how to assess each criterion but

do not offer specific algorithms for implementing these

guidelines (for example, which databases to use); different

researchers might prefer to use different algorithms, mak-

ing the results less reproducible between different human

interpreters. Finally, although a variety of databases (such

as ClinVar and the 1000 Genomes Project) or in silico

tools (such as SIFT and PolyPhen-2) are available online

and easily accessible to the average user, there is a lack

of tools that combine all of these databases together to

offer a one-stop shop for human interpreters to derive a

final score for genetic variants. Addressing these chal-

lenges will require easy-to-use yet automated computa-

tional tools and web services that can generate versioned

and reproducible criteria for every variant and help hu-

man interpreters quickly understand the clinical signifi-

cance of genetic variants. In this study, we present such
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a tool, InterVar (Clinical Interpretation of Genetic Vari-

ants), to fill these unmet needs on the basis of the

2015 ACMG-AMP guidelines and user-supplied domain

knowledge.
Material and Methods

Generation of Variant Annotation
The required input for InterVar is a simple tab-delimited file

including a list of variants that are already annotated with a set

of required information, such as amino acid changes and allele fre-

quency. Users can generate this input file themselves by using an

in-house variant analysis workflow; alternatively, InterVar can

take a VCF file, call the ANNOVAR software (a powerful and

widely used annotation tool), and generate the required input

data. The following is an example command line for running

ANNOVAR: ‘‘perl table_annovar.pl input.vcf humandb/ -buildver

hg19 -remove -out output -protocol refGene,esp6500siv2_all,

1000g2015aug_all,avsnp144,dbnsfp30a,clinvar_20160302,exac03,

dbscsnv11,dbnsfp31a_interpro,rmsk,ensGene,knownGene -oper-

ation g,f,f,f,f,f,f,f,f,r,g,g -nastring. -vcfinput.’’ The description for

these databases is given below: ‘‘esp6500siv2_all’’ is a database

for allele frequency in the NHLBI Exome Sequencing Project

(ESP6500), ‘‘refGene’’ is a database for gene annotation from

RefSeq, ‘‘1000 g2015aug_all’’ is a database for alternative allele fre-

quency (AAF) in the 1000 Genomes Project27 (version August

2015), ‘‘exac03’’ is a database for AAF in the Exome Aggregation

Consortium (ExAC) Browser28 (version 0.3), ‘‘dbnsfp30a’’ is a data-

base for various functional deleteriousness prediction scores from

dbNSFP29,30 (version 3.0a), ‘‘clinvar_20160302’’ is for the variants

reported in ClinVar20 (version 20160302), ‘‘avsnp144’’ is for the

ANNOVAR-compiled dbSNP (version 144), ‘‘ensGene’’ is for gene

annotation from Ensembl, ‘‘knownGene’’ is for gene annotation

from UCSC Known Genes, ‘‘dbnsfp31a_interpro’’ is a database of

the domain information from dbNSFP29,30 and InterPro31 (which

integrates information about protein families, domains, and func-

tional sites), ‘‘dbscsnv11’’ is a database for predicting the splicing

impact by Ada Boost and Random Forest,32 and ‘‘rmsk’’ is a data-

base on the repeatmasking track from the UCSCGenome Browser.

These databases might be updated to new versions when they

become available.
Criteria and Scoring System
Based on the 2015 ACMG-AMP guidelines, the criteria fall into

two sets: pathogenic or likely pathogenic (P/LP) and benign or

likely benign (B/LB), whereas ‘‘uncertain significance’’ is assigned

to variants for which the criteria for P/LP and B/LB are contradic-

tory or not met. There are a total of 28 criteria: the 16 criteria for

the P/LP criterion are very strong (PVS1), strong (PS1–PS4), moder-

ate (PM1–PM6), or supporting (PP1–PP5); whereas the 12 criteria

for the B/LB criterion are stand-alone (BA1), strong (BS1–BS4), or

supporting (BP1–BP7). If a criterion is positive, InterVar will assign

1; otherwise, InterVar will assign 0. For these 28 criteria, InterVar

can automatically generate predictions on 18 (PVS1, PS1, PS4,

PM1, PM2, PM4, PM5, PP2, PP3, PP5, BA1, BS1, BS2, BP1, BP3,

BP4, BP6, and BP7) according to the current annotation datasets,

yet the rest (PS2, PS3, PM3, PM6, PP1, PP4, BS3, BS4, BP2, and

BP5) require user input in the manual adjustment step. Below,

we describe the details on how to assign these criteria from various

sources of annotation information.
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PVS1 by Automated Scoring

The null variants include nonsense variants, frameshift indels, and

canonical splice variants, which often lead to loss of function

(LOF). From ANNOVAR annotations, these LOF variants are repre-

sented as frameshift indel, stop-gain, stop-loss, and splicing vari-

ants in canonical transcripts. We first filtered ClinVar (version

20160302) by taking those variants shown in MedGen and then

removing common variants (allele frequencies > 5%) and variants

with conflicting annotations. The variants in ClinVar were anno-

tated by ANNOVAR with RefGene definitions, and we identified

1,988 genes harboring at least one LOF variant that is ‘‘patho-

genic’’ in ClinVar. Recently, the ExAC analyzed high-quality

exome (protein-coding region) DNA sequence data for 60,706 in-

dividuals and identified 3,230 genes as LOF intolerant.28 We com-

bined these two gene sets fromClinVar and the ExAC Browser and

generated 4,807 genes as our final LOF-intolerant gene list. Null

variants in the canonical transcripts for these 4,807 genes were

assigned a PVS1 of 1. However, on the basis of the canonical rules

for nonsense-mediated mRNA decay,33 we did not consider

nonsense variants that are downstream of or within 50 nucleo-

tides of the final exon-junction complex.

PS1 and PM5 by Automated Scoring

Generally speaking, if one missense variant is pathogenic, then a

different nucleotide change that results in the same amino acid

alteration should also be pathogenic for PS1. However, if a

different nucleotide change results in a different amino acid

change, then it suggests moderate evidence of pathogenicity by

PM5. We first filtered ClinVar (subject to the same data-cleaning

procedure described above), picked out all missense variants anno-

tated as pathogenic, and stored the amino acid changes in an

InterVar-specific database. We also inferred the splicing impact

of these exonic missense variants by ANNOVAR from the

‘‘dbscsnv11’’ database to assess the possibility that they act

through splicing disruption rather than amino acid changes. If a

variant supplied by the user results in the same amino acid change,

the PS1 value will be assigned as 1. However, if a variant supplied

by the user results in a different amino acid change, then PM5 will

be assigned as 1.

PS2 and PM6 by Manual Scoring

The de novo status of the variants gives strong support for the

pathogenic status for PS2 if both maternity and paternity can be

confirmed; if maternity or paternity is not confirmed, thenmoder-

ate evidence of pathogenicity should be applied to PM6. Because

InterVar cannot directly annotate the de novo status of the user’s

input variants, PS2 and PM6 are treated as user-supplied values in

the second step (manual adjustment) of InterVar.

PS3 and BS3 by Manual Scoring

If in vitro or in vivo functional studies are supportive of a

damaging effect on the gene or gene product, PS3 should be as-

signed as 1. If in vitro or in vivo functional studies show no

damaging effect on protein function or splicing, BS3 should be as-

signed as 1. InterVar does not have the information on functional

studies, so by default these values are 0 and can be overridden by

users. In the future, we might establish a database with validated

genetic variants that are known to affect the function of genes

or gene products.

BA1, BS1, BS2, PS4, and PM2 by Automated Scoring

The AAFs in control populations are useful for scoring the patho-

genicity of variants, given that frequently occurring variants in the

population are unlikely to cause rare diseases. We retrieved infor-

mation on disease prevalence from OrphaNet and translated

OrphaNet identifiers into OMIM identifiers. Here, we used three
The America
datasets to assess the variant frequency: the NHLBI Exome

Sequencing Project (ESP6500), 1000 Genomes Project, and ExAC

Browser. If any of the AAFs in any database is >5%, BA1 will be as-

signed as 1. If the AAF in the ExAC Browser is great than expected

for the disorder caused by mutations in the corresponding gene,

BS1 will be assigned as 1 (here, we set a default cutoff as 1% for

rare disease, but users can specify their own cutoff in the configu-

ration file of InterVar). If a variant is observed in a healthy adult in

the 1000Genomes Project as a homozygote (for diseases defined as

recessive in OMIM) or as a heterozygote otherwise, then BS2 will

be applied.Wemanually removed knownmajor adult-onset disor-

ders from consideration. We did not use the ExAC Browser or

ESP6500 here because these datasets can contain variants from in-

dividuals with various diseases.

Variants that are absent or are present at extremely low fre-

quencies in a large control cohort could represent moderate evi-

dence for pathogenicity. If a variant that is responsible for

dominant diseases is absent in all control subjects from

ESP6500, 1000 Genomes Project, and the ExAC Browser, PM2

will be applied. If the variant causes recessive diseases and has a

very low frequency with AAF < 0.5%, then PM2 can also be

applied. Information on the gene-disease relationship, such as

dominance or recessiveness, is obtained from OMIM.

In some cases, pathogenic variants have a significantly higher

frequency in affected subjects than in control subjects. To handle

these variants, we also cataloged all variants with an odds ratio

(OR) > 5.0 from GWASdb34 version 2. For these variants, PS4

will be applied. For some rare variants where case-control studies

might not reach statistical significance, PS4 also can be down-

graded to a moderate level during the manual adjustment step.

PM1 by Automated Scoring

Many protein domains play essential roles for protein function, so

missense variants in these domains tend to be pathogenic. The

domain information can be inferred from dbNSFP by ANNOVAR

through the ‘‘dbnsfp31a_interpro’’ database. We first annotated

all ClinVar variants (subject to the same data-cleaning procedure

described above) with protein-domain information and then

compiled a list in which domains contained only pathogenic or

likely pathogenic variants without benign or common (allele fre-

quency > 5%) variants. This list is provided within the InterVar

package and will be updated regularly. If the user’s input variants

are located in these domains, then PM1 will be applied.

PM3 and BP2 by Manual Scoring

The pathogenicity of a variant also needs to be evaluated on the

basis of whether variants with known pathogenicity exist in cis

or trans with it. InterVar does not know the cis/trans status for var-

iants, so this needs to be provided by users in the second step

(manual adjustment) of InterVar. For two heterozygous variants

that are present in a gene associated with recessive disorders, if

one is pathogenic and the other is located in trans, then moderate

evidence of PM3 will be applied. If more than two variants are

observed in trans, then moderate evidence for pathogenicity can

be upgraded to strong. If the variants are present in a gene associ-

atedwith dominant diseases, yet one variant is pathogenic and the

other is located in trans, then supporting evidence of benign status

will be applied to BP2 for the other variant. Regardless of models of

disease inheritance, for two variants, if one is pathogenic and the

other is observed in cis, then BP2 will be applied for the other

variant.

PM4 and BP3 by Automated Scoring

Indels and stop losses can change the length of proteins and

disrupt protein function.We annotated the repeat region by using
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the ‘‘rmsk’’ database from the UCSC Genome Browser. This data-

base was created by the RepeatMasker program, which screens

DNA sequences for interspersed repeats and low-complexity

DNA sequences. When the variants are ‘‘non-frameshift inser-

tion,’’ ‘‘non-frameshift deletion’’ in the non-repeat region, or

stop-loss variants, PM4 will be applied. If the variants are ‘‘non-

frameshift insertion’’ or ‘‘non-frameshift deletion’’ in the repeat re-

gion, BP3 will be applied.

PP1 and BS4 by Manual Scoring

Familial segregation of a variant with a disease is an important sign

for linking the variant to the disease. If segregation is found in

multiple affected family members and if this gene is definitively

known to be associated with this disease, then PP1 will be applied.

When there is a lack of segregation in affected members of a fam-

ily, then the benign supporting evidence of BS4 will be applied.

Because InterVar does not know the information on segregation,

this piece of evidence can be provided by users in the second

step (manual adjustment) of InterVar.

PP2 and BP1 by Automated Scoring

For many genes, the spectrum or distribution of pathogenic and

benign variants can be informative for the pathogenicity status.

For a given gene, if the missense variants are common causes of

the disorder and the gene also has very few benign variants,

then a missense variant in this gene can be supporting evidence

for pathogenicity, and PP2 will be applied. However, if the trun-

cating variants are major causes of the disease, then a missense

variant in this gene can be supporting evidence for a benign status,

and BP1 will be applied.

We annotated all variants in ClinVar (subject to the same data-

cleaning procedure described above). For a given gene, if most of

the pathogenic variants (>80% and at least one variant) are

missense, and if a small proportion (<10% and less than one

variant) of missense variants are benign, then for missense vari-

ants, PP2 will be assigned as 1. The treatment for BP1 is similar

to that for PP2, but we assess whether most of pathogenic variants

(>80% and at least one variant) are truncating variants. The trun-

cating variants are defined as stop-gain, stop-loss, frameshift indel,

or those disrupting splice sites. If the user’s variants aremissense in

this gene, BP1 will be assigned as 1.

PP3 and BP4 by Automated Scoring

Whenmultiple pieces of computational evidence support a delete-

rious effect on the gene or gene product (conservation, evolu-

tionary, splicing impact, etc.), then the supporting pathogenic

evidence of PP3 will be assigned as 1. In comparison, when multi-

ple pieces of computational evidence suggest no impact on the

gene or gene product, then supporting benign evidence of BP4

will be assigned as 1. All sets of in silico results must agree when

PP3 or BP4 is assigned.

These multiple pieces of computational evidence can be pro-

vided by ANNOVAR from the ‘‘dbnsfp30a’’ database, where the

MetaSVM score16 is used for deleteriousness prediction and

GERPþþ is used for evolutionary conservation. The splicing im-

pacts can be inferred by ANNOVAR from the ‘‘dbscsnv11’’ data-

base. For the evidence of PP3 and BP4, we set the cutoff to 0.0

for MetaSVM scores (greater scores indicate more likely deleterious

effects), 2.0 for GERPþþ_RS (smaller scores indicate less conserva-

tion), and 0.6 for adaptive boosting (ADA) and random forest (RF)

scores of dbscSNV as splicing impact (larger scores indicate more

likely splice altering).

PP4 by Manual Scoring

For a given gene, if the individual’s phenotype or family history is

highly specific to the disorder associated with the gene, then it is
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supporting evidence for pathogenicity; in such a case, PP4 should

be applied. This information needs to be provided by the user in

the second step (manual adjustment) of InterVar.

PP5 and BP6 by Automated Scoring

If a reputable source has already reported a variant as pathogenic

but the evidence is not provided for independent evaluation,

then PP5 will be applied. When a reputable source has already re-

ported a benign variant but without detailed evidence, then BP6

will be applied. In InterVar, we used the ClinVar dataset (subject

to the same data-cleaning procedure described above) to perform

this analysis by default, but users can select to use HGMD or other

proprietary databases for this analysis.

BP5 by Manual Scoring

If a disease has an alternate molecular basis (caused by more than

one gene) and if a variant is observed in a gene related to the dis-

ease, then it will be supporting evidence for a benign status, and

BP5 will be assigned as 1. Note that this criterion is stronger for

a gene associated with a dominant disorder than for a gene

associated with a recessive disorder. Because of the multiple

exceptions for this criterion, as described before,25 users can adjust

this criterion by using their own knowledge in the manual adjust-

ment step.

BP7 by Automated Scoring

If a synonymous (silent) variant has no effect on splicing and if the

nucleotide position is not highly conserved, then we can classify

this variant as likely benign and assign BP7 as 1. The prediction

on the effect on splicing can be extracted by ANNOVAR with

the ‘‘dbscSNV’’ database. Both scores dbscSNV_RF_SCORE and

dbscSNV_ADA_SCORE should be <0.6 when the variant is pre-

dicted to have no impact on splicing. The conservation informa-

tion is retrieved from the ‘‘dbnsfp30a’’ database, where a GERPþþ
score > 2 indicates that the nucleotide is highly conserved.
InterVar and wInterVar
InterVar is a command-line-driven software written in Python and

can be used as a standalone application on a variety of operating

systems—including Windows, Linux, and MacOS—where Python

is installed. The source code of InterVar is available from GitHub

(see Web Resources).

InterVar takes either pre-annotated files in tab-delimited formats

or unannotated input files in VCF format or ANNOVAR input

format, where each line corresponds to one genetic variant. If

the input files are unannotated, InterVar will call ANNOVAR to

generate necessary annotations. Users can also use software tools

other than ANNOVAR to generate pre-annotated files. The execu-

tion of InterVar mainly consists of two major steps: (1) automati-

cally interpreting the variant by using the criteria outlined above

and (2) manually adjusting specific criteria to re-interpret the clin-

ical significance. However, users can also specify their own evi-

dence file for a subset of the criteria and import it into InterVar

by using the argument ‘‘-evidence_file’’ so that one single step is

sufficient to generate the final results. In the output, on the basis

of all 28 pieces of criteria that are either automatically generated or

manually supplied by the user, each variant will be assigned as

pathogenic, likely pathogenic, uncertain significance, likely

benign, or benign by rules specified in the 2015 ACMG-AMP

guidelines.25

We also developed a web server called wInterVar, which offers a

graphical user interface for InterVar (seeWeb Resources). Users can

directly input their missense variants into wInterVar by chromo-

somal position, by dbSNP identifier, or by gene name with the
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Figure 1. Flowchart of the Two-Step Procedure of InterVar
Underlined and bold fonts denote automated criteria.
nucleic acid change. The wInterVar server will provide full details

on the variants, including all automatically generated criteria,

most of the supportive evidence, and sub-population information.

Users then have the ability to manually adjust these criteria and

resubmit to the server to perform re-interpretation. We scanned

all exons, and for each position we generated all three possible

nucleotide changes. If the mutation was non-synonymous, we

kept it in our database. The human genome contains approxi-

mately 80,000,000 non-synonymous variants, and we pre-

computed the 18 criteria for all of them. Therefore, the execution

of wInterVar is very fast, typically less than 1 s to obtain the result

on a variant. However, the wInterVar server cannot process other

types of variants (such as indels), and the user will need to rely on

InterVar instead.
Results

Summary of the Interpretation Procedure

A flowchart for InterVar is given in Figure 1. InterVar

mainly consists of two major steps: (1) automated scoring

on each of the 18 pieces of criteria and (2) manual review

and adjustment on specific criteria to arrive at a final inter-

pretation. During the first step, InterVar calls an annota-

tion software, such as ANNOVAR,5 to obtain necessary

annotation information on variants and then uses its

own internal annotation database to supplement addi-

tional annotations. Using these annotations on variants

and genes, InterVar performs a preliminary interpretation
The America
of the variant and presents all relevant evidence for

manual review. Currently, 18 pieces of criteria can be auto-

matically generated and used in the first step. During the

second step, the user can manually adjust each of the

criteria on the basis of prior information (such as a vari-

ant’s de novo status) or his or her own domain knowledge

to reach a final interpretation. We emphasize here that

automated scoring is based on default parameters and

that users are advised to examine detailed evidence and

use prior knowledge on ethnicity and/or disease to perform

manual adjustments. A detailed explanation of these 28

criteria is given in Figure 2.

For example, consider missense variant chr12:

52,093,447T>C (GRCh37 coordinate) in exon 7 of SCN8A

(MIM: 600702), which causes early infantile epileptic en-

cephalopathy type 13 (MIM: 614558).We recently reported

this variant as a de novo mutation in a 4-year-old female

who, at 5 months of age, exhibited symptoms of epilepsy

that progressed to a severe condition with very little

movement, including the inability to sit or walk on her

own.35 We illustrate the scoring logic for this variant.

This variant is located in a protein domain called the

ion transport domain. This domain does not have any

benign variants in public databases compiled by InterVar,

so we assigned PM1 as 1. In addition, this variant is not

present in the 1000 Genomes Project, ExAC Browser, or

ESP6500, so PM2 was assigned as 1. For SCN8A, all

known pathogenic variants are missense, so PP2 was
n Journal of Human Genetics 100, 267–280, February 2, 2017 271



Figure 2. Illustration of the 28 Criteria from the 2015 ACMG-AMP Guidelines
For some criteria, the name of the internal database and its size are denoted within parentheses.
assigned as 1. According the 2015 ACMG-AMP rules, the

variant falls into the class of ‘‘uncertain significance.’’ In

the second step, if we manually adjust the criteria by

providing de novo information as PS2 ¼ 1, then the clin-

ical significance will change to ‘‘likely pathogenic’’ on the

basis of ‘‘1 strong (PS1–PS4) and 1–2 moderate (PM1–

PM6).’’ This procedure illustrates how to use automated

interpretation and manual adjustment to derive a final

interpretation for genetic variants.

Interpretation of De Novo Variants in

Neurodevelopmental Disorders

We compiled a dataset of 9,305 de novo variants from

12 published trio-based exome sequencing studies on

autism spectrum disorders,36,37 developmental disor-

ders,38 schizophrenia,39–42 epileptic encephalopathies,43

and intellectual disability.44–47 Among them, 8,346 vari-

ants were detected from affected subjects (n ¼ 6,515),

and 959 were detected from control subjects (n ¼ 900).

Among these 8,346 variants from affected subjects, 4,526

were non-synonymous, resulting in coding sequence
272 The American Journal of Human Genetics 100, 267–280, Februar
changes in 3,462 genes, whereas 616 non-synonymous

variants were present in 592 genes from control subjects.

We next performed automated variant interpretation by

InterVar on all of these variants by using default options in

the program and setting expected prevalence for these dis-

orders as 1% (Table 1). Given that each published exome

sequencing study used Sanger sequencing to validate the

de novo status of the variants, we assigned PM6 as 1, indi-

cating that these variants were assumed to be de novo

without confirmed paternity or maternity. Among these

variants, 4,459 (53.4%) and 493 (51.4%) were interpreted

as having uncertain significance in affected and control

subjects, respectively. Among affected subjects, 430

(5.1%) and 1,666 (20.0%) variants were interpreted as

pathogenic and likely pathogenic, respectively. Among

control subjects, 10 (1.0%) and 206 (21.5%) variants

were interpreted as pathogenic and likely pathogenic,

respectively.

We next combined variants with a benign or likely

benign interpretation as one category (B/LB) and those

with pathogenic or likely pathogenic as another category
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Table 1. Illustration of Automated Interpretation of De Novo Variants from Individuals with Several Different Diseases and Control
Subjects

Interpretation DD SCZ ASD EE ID
Affected
Subjects

Control
Subjects

Benign 7 3 52 0 0 62 0

Likely benign 288 241 1,085 59 56 1,729 250

Uncertain significance 819 466 2,869 180 125 4,459 493

Likely pathogenic 339 199 967 81 80 1,666 206

Pathogenic 125 26 226 17 36 430 10

Total 1,578 935 5,199 337 297 8,346 959

Benign and likely benign 295 244 1,137 59 56 1,791 250

Pathogenic and likely
pathogenic

464 225 1,193 98 116 2,096 216

p value (compared to
control subjects)a

4.71E�7 0.65 0.06 0.00061 2.07E�6 0.0022 –

OR and 95% CI 0.55 (0.44–0.69) 0.94 (0.72–1.21) 0.82 (0.67–1.00) 0.52 (0.35–0.75) 0.42 (0.29–0.60) 0.74 (0.61–0.90) –

Abbreviations are as follows: DDD, developmental disorder; SCZ, schizophrenia; ASD, autism spectrum disorder; EE, epileptic encephalopathy; ID, intellectual
disability; OR, odds ratio; and CI, confidence interval.
ap values were calculated with a two-sided Fisher’s exact test.
(P/LP) and compared their frequency between affected and

control subjects. (Please note that we do not have access to

individual-level data, so our analysis below focused on

comparing detected variants between affected and control

subjects.) Using Fisher’s exact test, we detected a strong

enrichment of P/LP variants among de novo variants in

affected subjects (p ¼ 0.0022) on the basis of automated

interpretation. This result confirms that de novo variants

that might be pathogenic are more prevalent in subjects

with neurodevelopmental disorders than in control sub-

jects. Please note that this analysis leveraged results only

from automated interpretation (step 1) and did not ac-

count for manual adjustment (step 2) based on additional

domain knowledge of the variants, genes, phenotypes, or

diseases.

In comparison, we also predicted the pathogenicity

of these variants by using SIFT and PolyPhen-2 scores

on a subset of the variants for which the scores were

available (Table 2). SIFT predicted 2,242 (26.8%) of

8,346 variants as deleterious (SIFT < 0.05 as the cutoff)

for the subjects with neurodevelopmental disorders and

predicted 283 (29.5%) of 959 variants as deleterious

for control subjects. PolyPhen-2 predicted 3,157 (37.8%)

of 8,346 variants as probably damaging or possibly

damaging (PolyPhen-2_HDIV > 0.453 as the cutoff) for

affected subjects and predicted 403 (42.0%) of 959 vari-

ants as probably damaging or possibly damaging for

control subjects. Comparing affected and control subjects

(Table 2), we did not observe a strong enrichment of

P/LP variants with these two methods (p ¼ 0.64 for SIFT

and p ¼ 0.08 for PolyPhen-2_HDIV). These results demon-

strate that in silico predictions alone might not be suffi-

cient to identify P/LP variants in exome sequencing

studies.
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Comparative Analysis on ClinVar

Although variant databases such as HGMD, ClinVar, and

OMIM have been very helpful for cataloging genetic vari-

ants known to be associated with human diseases, they

also have known limitations, e.g., that a portion of benign

variants are incorrectly classified as pathogenic vari-

ants.48,49 For example, Dorschner et al.50 manually exam-

ined primary literature for 239 unique variants reported

as pathogenic in HGMD and confirmed that only 7.5%

are actually pathogenic from the original publication.

The discrepancy in variant clinical significance between

HGMD and clinical labs also highlights the lack of stan-

dards in interpreting a variant as pathogenic or likely path-

ogenic in the literature. Similarly, Bell et al.51 found that

27% of the pathogenic variants cited in the literature are

common polymorphisms or misannotated, underscoring

the need for better mutation databases. Interestingly, we

recently sequenced a personal genome and identified two

variants reported as pathogenic in ClinVar, but manual ex-

amination of the cited publication indicated that neither

was reported as pathogenic in the original publication.52

This problem has been increasingly recognized in recent

years,48 suggesting that ‘‘known’’ pathogenic variants in

various databases should not be taken at face value and

instead deserve more detailed re-examination. Here, we

analyzed the entire ClinVar dataset and compared their an-

notations with the automated interpretation (step 1) by

InterVar to assess the concordance rates and examine sour-

ces of discordance. We recognized that because InterVar

compiled some of its internal databases from ClinVar, its

interpretation might be slightly biased toward being

more similar to that of ClinVar.

We retrieved ClinVar version 2016-03-02 and selected all

non-conflicting nonsynonymous variants categorized as
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Table 2. Analysis of De Novo Variants by SIFT and PolyPhen-2

Interpretation

SIFT PolyPhen-2

Affected Subjects Control Subjects Affected Subjects Control Subjects

Benign or tolerated 2,608 (31.2%) 343 (35.7%) 1,426 (17.1%) 214 (22.3%)

Deleterious, probably damaging,
or possibly damaging

2,242 (26.8%) 283 (29.5%) 3,157 (37.8%) 403 (42.0%)

Unknown 3,496 (42.0%) 333 (34.8%) 3763 (45.1%) 342 (35.7%)

Total 8,346 959 8,346 959

p value (compared to control subjects)a 0.64 0.08

ap values were calculated with a two-sided Fisher’s exact test.
one of the following: (1) benign or likely benign and (2)

pathogenic or likely pathogenic. We then re-interpreted

these variants by using the automated interpretation func-

tion in InterVar (Table 3). For the benign category in

ClinVar, InterVar also classified 4,898 (80.6%) variants as

benign or likely benign, suggesting that InterVar is largely

consistent with ClinVar on this category of variants. How-

ever, for variants in the pathogenic category, InterVar and

ClinVar have large differences. In fact, InterVar classified

only 2,058 (13.9%) variants in the category as likely path-

ogenic yet none as pathogenic. Obviously, we acknowl-

edge that all of these interpretations by InterVar were

based on only 18 pieces of criteria in step 1, and none of

them were subjected to manual examination; yet, addi-

tional information such as familial segregation, family his-

tory, and de novo status could move some variants with

uncertain significance into a more deleterious category

(likely pathogenic or pathogenic).

Given the differences between ClinVar annotation and

InterVar prediction, we performed a more detailed analysis

on the 513 (3.5%) variants that were classified as patho-

genic by ClinVar but predicted as benign or likely benign

by InterVar. First, we plotted the distribution of the

maximum AAF of these variants in three databases (1000

Genomes Project, ExAC Browser, and NHLBI ESP6500;

Figure 3). From this analysis, we found that there were

>10% variants with AAF > 0.01 and 5% variants with

AAF> 0.1. Clearly, >10% variants might be merely genetic

polymorphisms that were incorrectly cataloged as patho-

genic in ClinVar. Nevertheless, we also confirmed that in

ClinVar, more than half of the pathogenic or likely patho-

genic variants were very rare with an AAF < 0.0001, and

>85% pathogenic variants had an AAF < 0.001, which

fits our expectations. For manual examination of these var-

iants, the cutoff of disease prevalence could be essential for

assigning benign criteria such as BS1.

Analysis on Previously Reported Clinically Actionable

Variants

Clinical exome and genome sequencing are likely to

uncover ‘‘incidental findings’’ that are unrelated to the

indication for ordering the sequencing tests but are

of clinical significance.53 The ACMG has recommended re-
274 The American Journal of Human Genetics 100, 267–280, Februar
turning incidental findings from a minimum set of 56

actionable genes,53 but many researchers have used an

expanded list of genes selected according to domain

knowledge. Several studies have examined incidental

findings from large-scale genome or exome sequencing

projects, so here we investigated how InterVar classifies

clinically actionable genetic variants reported in previous

studies.

Amendola et al.54 previously examined exome se-

quencing data on 4,300 European Americans and 2,203

African Americans as part of NHLBI ESP6500 and reported

616 variants in 112 actionable genes (Table 4). These 616

variants were classified as actionable and pathogenic on

the basis of HGMD annotations. Amendola et al. re-classi-

fied these 616 variants by using their own classification

criteria, such as rules based on allele frequency, segrega-

tion, de novo status, function data, etc. They found only

70 (11.4%) as pathogenic or likely pathogenic, yet most

of them (66.4%) were classified as variants of uncertain sig-

nificance. Automated prediction (step 1) from InterVar

classified only 33 (5.4%) variants as pathogenic or likely

pathogenic, whereas most of the variants (43.2%) were

classified as benign or likely benign. Please note that dur-

ing variant classification, Amendola et al. leveraged infor-

mation such as segregation and de novo status, but we

did not have access to these pieces of information. There-

fore, the number of pathogenic variants classified by

InterVar in step 2 (manual adjustment) could increase

significantly given additional information. Nevertheless,

these results already suggest that the interpretation of

InterVar is consistent with the manual interpretation by

Amendola et al., who concluded that the vast majority of

variants annotated as pathogenic in HGMD are probably

not really pathogenic. This analysis confirms that incorrect

classification of the pathogenic variant, even in ACMG

actionable genes, represents a substantial issue when

HGMD is the only criterion used for variant interpretation.

Comparative Analysis with CLINVITAE

CLINVITAE (see Web Resources) is a database of clinically

observed genetic variants aggregated from public sources

and is operated and made freely available by INVITAE.

Although the vast majority of the variants were collected
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Figure 3. AAF Distribution of Pathogenic or Likely Pathogenic
ClinVar Variants Predicted to Be Benign or Likely Benign by
InterVar and All Pathogenic or Likely Pathogenic ClinVar Variants

Table 3. Illustration of Automated Interpretation of Pathogenic
and Benign Variants Annotated in ClinVar

InterVar (Automated
Interpretation)

ClinVar

Pathogenic or
Likely Pathogenic

Benign or
Likely Benign

Benign 65 (0.4%) 1,505 (24.8%)

Likely benign 448 (3.0%) 3,393 (55.9%)

Uncertain significance 12,207 (82.6%) 1,173 (19.3%)

Likely pathogenic 2,058 (13.9%) 0 (0%)

Pathogenic 0 (0%) 0 (0%)

Sum of five tiers 14,778 6,071

Benign and likely benign 513 (3.5%) 4,898 (80.6%)

Pathogenic and likely
pathogenic

2,058 (13.9%) 0 (0%)
from public databases, 11,696 variants were detected and

classified by the INVITAE team. Unlike ClinVar and

HGMD, which compile information from diverse sources,

CLINVITAE potentially represents a more homogeneous

collection of variants interpreted by a consistent set of

institution-specific rules. Among these 11,696 variants,

5,405 (46.2%) and 717 (6.1%) were classified as benign

or likely benign and pathogenic or likely pathogenic,

respectively. Among them, 4,226 (36.1%) benign or likely

benign variants were also classified as benign or likely

benign by InterVar, whereas only 227 (1.9%) pathogenic

or likely pathogenic variants were classified as pathogenic

or likely pathogenic by InterVar (Table 5). This analysis

again demonstrates that the concordance between auto-

mated interpretation of InterVar and expert-compiled clas-

sification is higher for benign or likely benign variants

than for pathogenic or likely pathogenic variants.

wIntervar: Web Version of InterVar to Facilitate Manual

Interpretation

wInterVar (see Web Resources) is a web implementation of

InterVar so that users can use an online web server to

perform interpretation on individual variants without

using command-line tools. The wInterVar server has two

steps for assessing and adjusting the clinical significance

of variants: users first input a variant to obtain pre-

computed, automated interpretation (Figure 4A). After re-

viewing the results of automated interpretation, users

can then click the ‘‘adjust’’ button to perform the manual

adjustment step by selecting and de-selecting appro-

priate criteria according to additional information and

domain knowledge. The wInterVar server will then

perform the final interpretation with the two-step proced-

ure (Figure 4B).

We assessed the speed of InterVar and wInterVar. Using a

machine with 16GB ofmemory and two Intel XeonX5650

(2.67 GHz) CPUs, the InterVar pipeline takes approxi-

mately 40 min to annotate 3,000,000 variants from a

whole genome. The runtime can be greatly reduced to
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<5 min (~0.1 ms per variant) if an existing ANNOVAR

annotation file is already available. For the wInterVar

server, all annotation results for all possible non-synony-

mous variants were already pre-computed and imported

into MongoDB, a NoSQL database system. Therefore, users

can quickly search specific variants and receive an almost

immediate response (<1 s for a variant). In addition, users

can manually adjust the criteria and re-submit to

wInterVar to obtain the final interpretation with an almost

immediate response.
Discussion

In this article, we have presented two computational tools,

InterVar and wInterVar, for performing evidence-based

clinical interpretation of genetic variants according to

the 2015 ACMG-AMP guidelines. To the best of our knowl-

edge, we are not aware of software tools that are freely

available to the academic community and perform similar

functionalities. We wish to emphasize that although

InterVar is a computational tool, it requires human input

to derive accurate results with a two-step design: in the first

step, InterVar performs automated interpretation with pre-

liminary results, yet in the second step, InterVar takes addi-

tional information provided by human experts to adjust

the criteria and provide a final interpretation. The two-

step procedure allows InterVar to leverage automated in-

formation retrieval as much as possible, yet also allows

additional input by human experts, to obtain the most ac-

curate interpretations for genetic variants.

We applied InterVar to annotate and interpret de novo

variants in subjects with neurodevelopmental disease

and control subjects and observed a strong enrichment

of pathogenic or likely pathogenic variants in affected

subjects. In comparison, simple deleteriousness predic-

tion algorithms such as SIFT and PolyPhen-2 failed to
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Table 5. Comparison of Variant Interpretation by CLINVITAE and
Automated Interpretation by InterVar

Clinical
Significance

InterVar
(Automated
Interpretation) CLINVITAE Concordant

Benign 242 2,407 230

Likely benign 6,593 2,998 2,428

Likely pathogenic 286 106 11

Pathogenic 137 611 132

Uncertain
significance

4,438 5,574 3,047

Sum of five tiers 11,696 11,696 5,848

Benign or likely
benign

6,835 5,405 4,226

Pathogenic or
likely pathogenic

423 717 227

Table 4. Interpretation of 616 HGMD-Classified Pathogenic
Variants from NHLBI ESP6500

Clinical
Significance

InterVar
(Automated
Interpretation)

ESP6500 Team
(Manual
Interpretation) Concordant

Benign 5 0 0

Likely benign 261 137 77

Likely pathogenic 30 38 2

Pathogenic 3 32 0

Uncertain
significance

317 409 234

Sum of five tiers 616 616 313

Benign or likely
benign

266 137 79

Pathogenic or
likely pathogenic

33 70 6
differentiate affected from control subjects. This observa-

tion suggests that one should compile multiple sources of

criteria (in this case, up to 28 criteria), including deleteri-

ousness prediction algorithms, to assess the potential

pathogenicity of genetic variants rather than rely on dele-

teriousness prediction algorithms only.

Currently, a number of public databases, such ClinVar

and HGMD, document the clinical significance of genetic

variants, which are mostly provided by submitters or

manually compiled from scientific literature. Because

different submitters or different authors can have very

different criteria to assess the pathogenicity of genetic var-

iants, the quality of entries in these databases can be

highly heterogeneous. As a result, it is expected that a pro-

portion of pathogenic variants in these databases might

simply be false positives that are misclassified.48–51 Several

studies have demonstrated that after manual re-interpreta-

tion, many of the pathogenic variants are indeed benign or

have uncertain significance.55–57 Our results in the current

study further support the observation that a very large pro-

portion of documented pathogenic or likely pathogenic

variants are indeed polymorphisms segregating in the

population and are unlikely to contribute significantly to

disease risk. These observations further support the impor-

tance of efforts, such as ClinGen, to compile high-quality,

gold-standard datasets with confidence scores to be used

by the community for more accurate interpretation of

genetic variants.

InterVar has several limitations that we wish to discuss

here. First, InterVar needs a variant knowledgebase for ac-

curate interpretation, so some variants in some genes

might be more accurately interpreted than others. For

example, well-studied genes tend to have more entries in

clinical databases and are more likely to be interpreted

accurately. Second, InterVar is designed to interpret genetic

variants that are likely to cause Mendelian diseases or are

highly penetrant for Mendelian diseases (OR > 5) and

cannot handle alleles that increase susceptibility to com-
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mon and complex traits. Therefore, we caution that the

current interpretation is appropriate only for Mendelian

diseases or Mendelian forms of complex diseases. Third,

although we provide a set of default databases to help

implement 18 of the 2015 ACMG-AMP criteria, it is ex-

pected that different users or groups might want to use

their own versions of these criteria. Therefore, we designed

InterVar to be highly flexible in taking user-supplied anno-

tations for each of the criteria to accommodate a variety of

users with different needs.

Another issue we wish to emphasize is that the 2015

ACMG-AMP guidelines use 28 criteria with equal weights.

One underlying rationale might be that it is difficult to

quantify the contribution of each criterion given the

complexity of interpreting genetic evidence.25 Another po-

tential reason is that equal weighting is intuitively easier to

understand and implement by clinicians and researchers.

However, it is expected that different types of criteria

might have different contributions and weights for the

classification of the pathogenicity or quantitative predic-

tion of pathogenicity. If we can accumulate very large data-

sets of true positives and true negatives, it is possible to

apply machine-learning approaches in the future for

more accurate prediction and quantitative assessment of

pathogenicity for genetic variants.

One important caveat that we wish to stress is that

InterVar is better suited to addressing the variant-interpreta-

tion problem for severe congenital or very early-onset devel-

opmental disorders with nearly 100% penetrance, but it

might work less well for late-onset or recessive diseases. For

example, amyotrophic lateral sclerosis (ALS) is a fatal, pro-

gressive neurodegenerative disease, and the non-canonical

IkB kinase family member TANK binding kinase 1 (TBK1

[MIM: 604834]) was recently identified as an ALS-related

gene in whole-exome sequencing of 2,874 ALS individuals

and 6,405 control individuals.58 InterVar classified all

TBK1 variants reported in the study as benign or having un-

certain significance. Another example is TREM2 (MIM:
y 2, 2017



A
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Figure 4. Illustration of wInterVar
(A) Automatic interpretation of genetic variants, which can be entered by several means.
(B) Once users click ‘‘adjust,’’ the full list of criteria is shown for manual adjustment, after which the final results are given.
605086), associated with Alzheimer disease, from a recent

sequencing study on a heterogeneous population of 1,092

affected and 1,107 control subjects.59 Rare variants in

TREM2 (especially SNP rs75932628,whichhas the strongest

association) were reported in their study. However, none of

these variants were predicted to be pathogenic by InterVar.

Onemain reason is that databases such as the ExACBrowser

and ESP6500 were used in compiling the criteria, but they

are technically not appropriate control databases because

they are actually composed of many adult individuals with

diseases. In comparison, the 1000 Genome Project is prob-

ably a more appropriate source of general control subjects,

but its sample size is too small to enable adequate evaluation

of rare variants. In any case, when databases such as the

ExAC Browser and ESP6500 are used, it could be tricky to

assign BS1 and BS2 to adult-onset or late-onset disorders,

and some user-specific adjustments might be necessary for

these diseases.

In summary, we have developed InterVar, a com-

putational tool, and wInterVar, a web server, for the clin-
The America
ical interpretation of genetic variants according to the

2015 ACMG-AMP guidelines. InterVar can automatically

generate the preliminary interpretations for 18 criteria

and then allow manual adjustment of additional criteria

to arrive at the final interpretation. InterVar can be easily

used by researchers and clinicians and will greatly facilitate

our understanding of the functional consequences of ge-

netic variants in human diseases.
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Web Resources

1000 Genomes Project, http://www.1000genomes.org/

ANNOVAR, http://annovar.openbioinformatics.org/

ClinVar, https://www.ncbi.nlm.nih.gov/clinvar/

CLINVITAE, http://clinvitae.invitae.com/

dbNSFP, https://sites.google.com/site/jpopgen/dbNSFP

dbscSNV, https://sites.google.com/site/jpopgen/dbNSFP

dbSNP, http://www.ncbi.nlm.nih.gov/SNP

Ensembl, http://www.ensembl.org/

Exome Aggregation Consortium (ExAC) Browser, http://exac.

broadinstitute.org

GERPþþ, http://mendel.stanford.edu/SidowLab/downloads/gerp/

GWASdb, http://jjwanglab.org/gwasdb

HGMD, http://www.hgmd.org

InterVar, https://github.com/WGLab/InterVar

MedGen, https://www.ncbi.nlm.nih.gov/medgen/

NHLBI Exome Sequencing Project (ESP) Exome Variant Server,

http://evs.gs.washington.edu/EVS/

OMIM, http://omim.org/

OrphaNet, http://www.orpha.net/

PolyPhen-2, http://genetics.bwh.harvard.edu/pph2

RefSeq, http://www.ncbi.nlm.nih.gov/refseq

RepeatMasker, http://www.repeatmasker.org/

SIFT, http://sift.jcvi.org/

UCSC Genome Browser, http://genome.ucsc.edu

wIntervar, http://wintervar.wglab.org/
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