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Abstract

Objective—To identify phenotypes of type 1 diabetes control and associations with maternal/

neonatal characteristics based on blood pressure (BP), glucose and insulin curves during gestation, 

using a novel functional data analysis approach that accounts for sparse longitudinal patterns of 

medical monitoring during pregnancy.

Methods—We performed a retrospective longitudinal cohort study of women with type 1 

diabetes whose BP, glucose and insulin requirements were monitored throughout gestation as part 

of a program-project grant. Scores from sparse functional principal component analysis (fPCA) 

were used to classify gestational profiles according to degree of control for each monitored 

measure. Phenotypes created using fPCA were compared with respect to maternal and neonatal 

characteristics and outcome.

Results—Most of the gestational profile variation in the monitored measures was explained by 

the first principal component (82%–94%). Profiles clustered into three subgroups of high, 

moderate or low heterogeneity, relative to the overall mean response. Phenotypes were associated 

with baseline characteristics, longitudinal changes in glycohemoglobin A1 and weight, and to 

pregnancy-related outcomes (P<0.01).

Conclusion—Three distinct longitudinal patterns of glucose, insulin and BP control were found. 

By identifying these phenotypes, interventions can be targeted for subgroups at highest risk for 

compromised outcome, to optimize diabetes management during pregnancy.
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Maintaining glucose and blood pressure control is essential during pregnancy for women 

with type 1 diabetes. Poor control has long been associated with poor maternal and neonatal 

outcomes.1–3 Variability in glucose, insulin requirement and blood pressure experienced 

throughout gestation has been studied for decades as a proxy for diabetes control, and is 

typically expressed through use of summary measures. The most commonly-reported 

summary measures are standard deviation, coefficient of variation, and mean amplitude of 

glycemic excursion, all of which have been used as clinical indicators for decades.4 

Although these summary statistics provide a value for variation around the mean, the 

underlying longitudinal structure—the mean response function and natural variation over 

pregnancy—is ignored. Furthermore, summary measures generally yield misleading results 

if portions of the longitudinal data are missing for a given individual.5,6 Despite the advent 

of continuous glucose monitoring and more advanced statistical techniques to combat 

heterogeneous data, summary measures are still often used to estimate variability throughout 

the course of gestation, notwithstanding the risk of providing biased findings. Few studies 

have shed light on glucose mean response and variability over gestation without the use of 

these summary measures.7 To our knowledge, no studies have been conducted to gain 

insight into rich, longitudinal data collected simultaneously on glucose, insulin requirements 

and blood pressure throughout the course of pregnancy.

Functional principal components analysis (fPCA) is a classical functional data analysis tool 

that has been applied to individual profiles forming dense collections of data8; however, this 

approach requires complete measurements or a large number of repeated measurements 

taken over common time points across individuals. Indeed, classical fPCA was used in a 

recent study to examine glucose variation obtained from dense collections of continuous 

glucose monitoring data.9 Although the study revealed substantial between- and within-

individual heterogeneity, as in real-world clinical settings, continuous glucose monitoring 

was performed only for brief periods of time during pregnancy on each individual (as 

opposed to the entire duration). Many women with type 1 diabetes who become pregnant 

will commence more intensive monitoring at different times in gestation, may miss 

scheduled visits for monitoring and assessment, or could exempt from measurements 

randomly (e.g. glucometer malfunctions). These settings produce unequal numbers of 

repeated measurements and mistimed measurements, often known in the statistics literature 

as sparse longitudinal data. The number of observations per individual could range from 

small to large. Failing to account for these sources of missing data through appropriate 

estimation methods will lead to biased results10, potentially hampering the introduction of 

new therapies or development of revised or new clinical regimens to optimize care during 

pregnancies complicated by diabetes.

Patterns of longitudinal data, such as the clinical measures monitored during diabetic 

pregnancy, may be classified using fPCA developed for sparse longitudinal data.11,12 This 
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type of approach enables prediction of individual smoothed trajectories, even if only a few 

measurements are available for a given individual, while simultaneously accounting for 

longitudinal correlation. This so-called sparse fPCA is a variant of the traditional PCA that 

finds linear combinations of a small number of features to maximize variance across data. 

As an extension to the classical PCA dimensionality reduction tool and an analogue to 

classical fPCA, sparse fPCA significantly improves the interpretability and relevance of the 

components, and is more likely to reveal the underlying structure of longitudinal data. In 

addition, with the advent of statistical software, sparse components can be computed faster 

for high-dimensional datasets.13,14 In this retrospective cohort study, we aimed to 

characterize the timing and degree of variability in clinical measures monitored over the 

course of gestation in women with type 1 diabetes using a novel statistical approach and 

implementation to accommodate sparse longitudinal data commonly found in these settings.

METHODS

Study cohort

This is a retrospective study of a longitudinal cohort of women with type 1 diabetes who 

were followed prospectively as part of a 17-year interdisciplinary program of diabetes in 

pregnancy. Care management for insulin therapy and glucose control performed throughout 

the study has been reported elsewhere.3 The study presented here has been approved by the 

local IRB.

There were four monitored measures of interest in this study. Briefly, each study subject was 

asked to monitor her glucose level four to six times per day throughout the course of 

pregnancy; these observed concentrations were aggregated into subject-specific, ordered 

weekly values. Insulin requirements (expressed as units of insulin) and systolic and diastolic 

blood pressure (SBP and DBP, respectively, expressed as mmHg) readings were collected at 

each weekly or bi-weekly clinical visit.

Baseline study characteristics of interest included White classification15, race, parity, any 

previous non-live births, age, age at diabetes diagnosis, years since diabetes diagnosis, and 

BMI. Longitudinal measures for this analysis included HbA1 at each trimester and weight 

recorded pre-pregnancy and at weeks 9, 14, 16, and 26 during gestation. Measures specific 

to pregnancy outcome included pregnancy-associated hypertension, preeclampsia, and infant 

weight at birth (in grams).

Longitudinal pattern classification via sparse functional principal components

Prior to conducting the sparse fPCA, we chose a suitable basis for representing the 

eigenfunctions using cubic B-spline basis functions16,17,18. We used a routine from the R 

package “fpca” to implement the restricted maximum likelihood estimation through a 

Newton-Raphson procedure, in order to estimate functional principal components from 

sparse longitudinal data.14 This approach addresses the selection of the number of basis 

functions, as well as the dimension of the process (i.e., number of nonzero eigenvalues) used 

in the model by minimizing an approximation of the leave-one-curve-out cross-validation 

score. We implemented the algorithm for each subject’s monitored glucose-, insulin- and 
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BP-specific collection of longitudinal data, in order to obtain smooth individual functions 

across gestation for each measure.

The individually fitted curves formed the basis for the fPCA for each monitored measure. 

The maximum number of functional principal components (fPCs) retained in each analysis 

was based on the eigenvalue criterion (≥80% of variance explained).19 The individual curve-

fitting routine and sparse fPCA implementation code are available from the authors upon 

request.

Comparisons between phenotypes

For each monitored measure (glucose, insulin and BP), bivariate associations between 

classification membership (phenotype) and continuous variables of interest were examined 

using linear regression with an overall F-test for fixed effects; if statistically significant, 

pairwise comparisons were conducted in post-hoc analysis by comparing least-square 

means. Bivariate associations between phenotype and categorical variables of interest were 

examined using Chi-square analysis or Fisher’s exact test as appropriate.

To determine the extent to which longitudinal changes in weight and HbA1 were related to 

phenotype, we performed a repeated measures analysis, in which weight or HbA1 served as 

the response variable; phenotype and time (in terms of gestation) were included as main 

effects; an interaction term between phenotype and time was included in each model. To 

account for longitudinal correlation, we selected a covariance structure for each response 

variable based on fit statistics. Results corresponding to P<0.01 were considered statistically 

significant, to account for multiple testing. Analyses for comparisons and repeated measures 

analyses were implemented using SAS 9.3 (SAS Institute, Cary, NC).

RESULTS

Study cohort

There were 147 women in the analysis cohort who had repeated monitoring of glucose, 

insulin and blood pressure during pregnancy across all trimesters. Median (IQR) age at 

initial visit was 26.0 (5.0) years; 87.1% of subjects were Caucasian and had been diagnosed 

with type 1 diabetes at 13.4 (6.8) years of age. There were 40 subjects (27.2%) who had at 

least one previous live birth; 73 subjects (nearly 50%) had never been pregnant prior to the 

study. A third of the subjects had prior pregnancies that resulted in non-live births, 12.2% 

had a previous delivery via cesarean section.

Longitudinal pattern classification via sparse functional principal components

Median times for beginning and ending monitoring of the four measures during gestation 

were 8 and 39 weeks, respectively, which gave the temporal range for subject-specific curve 

fitting of each monitored measure. For each monitored outcome, over 95% of the variation 

between individually fitted curves could be expressed in the first two fPCs, and further 

analyses were therefore restricted to the first three fPCs. For each of the monitored 

outcomes, the first fPC, referred to as fPC1, explained ≥80% of the variation between the 

fitted curves. As a result, for each analysis, we classified the fitted curves into three clusters 
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according to the first and third quartiles (Q1 and Q3, respectively) of the fPC1 scores as 

follows. Subjects with scores < Q1 were classified into one group; subjects with scores 

between Q1 and Q3 were in a second group; subjects with scores >Q3 were classified into a 

third group. This classification resulted in a consistent number of the 147 subjects being 

categorized into the three clusters or subgroups (N=37, 73 and 37); however, these 

classifications did not imply that the same subjects were consistently clustered into the same 

subgroups across glucose, insulin, SBP and DBP.

Insulin patterns—There were a median (IQR) of 27 (24–29) weekly measurements for 

subject insulin observed during gestation. The subject-specific observations show that 

insulin variation increased with gestation (Figure 1A) with an extreme observation of insulin 

occurring around the 27th week for an individual woman; the sample mean for insulin over 

time indicates a tendency for insulin to increase later in gestation and end with a slight 

decline.

The subject-specific functions obtained from sparse longitudinal fPCA were each classified 

into one of three subgroups using fPC scores. Nearly 82% of the variation between fitted 

insulin curves was explained by fPC1. Based on mean glucose and variation over time, we 

found that the groups could be characterized as high, moderate and low. The high-insulin 

subgroup exhibited larger mean response and variation (Figure 1B), particularly towards the 

end of gestation, compared to the more moderate subgroup that exhibited steadier, lower 

mean levels of insulin (Figure 1C). The low-insulin subgroup had the least variation, and, on 

average, had lower insulin throughout gestation (Figure 1D). The subgroup mean response 

functions also indicate that differences with respect to mean insulin levels increase over 

gestation, but all showed decline at the end of gestation (Figure 1E).

Glucose patterns—The number of weeks with measurements per subject was 24 (18–28) 

for average glucose concentration. Ninety-nine subjects (67.3%) reported glucose level via 

written record, while the remaining subjects monitored glucose electronically, a method of 

measurement that was made available later in the 17-year study.

There was substantial within- and between-subject heterogeneity in glucose level over 

gestation (Figure 2A). Prior to classification analysis, the sample mean curve showed a 

relatively stable glucose trend over gestation. About 86.5% of the variation between fitted 

glucose curves was explained by fPC1. The fitted subject-specific curves, which were 

obtained with sparse longitudinal fPCA of the raw glucose observations, were categorized 

into three clusters based on fPC scores, and tended to appear as high, moderate and low with 

regard to subject-specific glucose variation during pregnancy. There was a subgroup (N=37) 

with higher glucose mean response and variability over gestation (Figure 2B). Several of the 

subjects (N=73) were clustered as having moderate glucose mean response over gestation 

and exhibited tighter control (Figure 2C), as indicated by a low level of glucose fluctuations 

over gestation, relative to the other two subgroups (Figures 2B and 2D); furthermore, this 

subgroup tended to have relatively lower within-subject variability. The remaining subjects 

fell into a subgroup that exhibited lower mean glucose response throughout gestation (Figure 

2D), relative to the mean glucose curve, with the exception of one profile early in pregnancy 

that had a higher mean glucose response function than the other subjects in the subgroup. 
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This subgroup exhibited within-patient variation that was similar to the moderate subgroup, 

but lower than the high-glucose subgroup. The cluster-specific response functions for 

glucose over gestation also indicate differences with regard to mean glucose over gestation 

between the subgroups (Figure 2E). The degree of overlap between similar high/

moderate/low classifications for glucose and insulin phenotypes ranged from 7 subjects 

(4.8%) to 39 subjects (26.5%).

Blood pressure patterns—The number of weekly measurements per subject was 27 

(24–29) for both DBP and SBP; FPC1 explained roughly 94% and 92% of the variation 

between the fitted curves, respectively. The observed profiles of DBP exhibited tight 

variation around the sample mean (Figure 4A), with the exception of an outlying DBP value 

observed in the first trimester of pregnancy.

The overall mean response indicated that DBP remained relatively stable through the first 24 

weeks of gestation, but began to increase until the end of pregnancy. The sparse longitudinal 

fPCA scores were used to generate subject-specific curves of DBP over gestation and 

classify patients into one of three subgroups corresponding to high, moderate and low DBP 

(N=37, 73, and 37, respectively). The high-level DBP subgroup had profiles that exceed the 

overall mean DBP curve (Figure 3B). The moderate subgroup of DBP curves were above 

and below the mean (Figure 3C), but had variation over gestation time that was similar their 

high-subgroup counterparts. The low subgroup of DBP also had similar variation (Figure 

3D) with curves that fell below the mean DBP response function. The subgroup-specific 

mean DBP curves suggest that profiles are shifted according to DBP at the beginning of 

pregnancy; however, nearing the end of pregnancy, the mean response of DBP in the low-

level subgroup appears to increase at a higher rate than the other two subgroups (Figure 3D).

Scores from fPC1 were again used to classify each subject into one of three subgroups 

according to SBP mean and variability over gestation (N=37, 73 and 37, respectively).

Unlike previous findings, subject-specific SBP curves appeared to have large within- and 

between-subject variability (Figure 4A), regardless of subgroup. The high-level SBP 

subgroup exhibited the greatest heterogeneity of all the subgroups (Figure 4B); however, the 

variation did not appear to change over gestation. The moderate SBP group had few subjects 

with large deviations in their profiles at the beginning and end of pregnancy; overall, this 

subgroup had the lowest degree of variation (Figure 4C). The last subgroup reflected lower 

mean SBP over gestation; similar to the other two subgroups, these subjects also had curves 

with large variation (Figure 4D). All three subgroups tended to have mean SBP functions 

that slightly increased over gestation, but appeared to differ according to SBP level both at 

the beginning and end of pregnancy (Figure 4E).

Comparisons between phenotypes

Insulin phenotypes were associated with White classification (Table 1). The subgroup with 

higher mean insulin and variability (Figure 1B) had the highest mean BMI at baseline, and 

differed from the low-insulin subgroup (Figure 1D) with respect to mean infant birth weight. 

Subjects who were experiencing their first pregnancy tended to be in the moderate glucose 
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phenotype (Figure 2C). The more extreme phenotypes of glucose (Figures 2B and 2D) 

differed according to mean infant birth weight.

Both DBP and SBP phenotypes had associations with White classification, pregnancy-

associated hypertension and preeclampsia (Table 2). Both low-blood pressure phenotypes 

(Figures 3D and 4D) differed from their two corresponding subgroups (Figures 3B, 3C and 

4B, 4C, respectively) regarding mean BMI at baseline. Subjects in the low-SBP subgroup 

(Figure 3D) were diagnosed with type 1 diabetes at a younger age, on average, but were 

living with the disease for a shorter period of time, on average, compared to the other SBP 

subgroups (Figures 3B and 3C).

Repeated measures analysis of HbA1 revealed changes according to trimester but not based 

on any of the phenotype subgroups. There was a significant interaction between maternal 

weight change over time and SBP phenotype (P=0.0024); post-hoc analysis revealed 

significant differences at baseline, as the low SBP subgroup (Figure 4D) had lower mean

±SE weight (123.3±3.7 lbs) than the high and moderate SBP subgroups (144.0±3.7 and 

140.3±2.6 lbs, respectively, both P<0.0001). Each subgroup appeared to have similar weight 

gain over gestation, although the baseline shift remained (results not shown).

There were no significant interaction effects in the models involving DBP or insulin 

phenotypes, but there were overall differences in the main effects. The low-DBP phenotype 

(Figure 3D) had lower mean weight (131.4±3.8 lbs) than the high and moderate DBP 

phenotypes (153.6±3.8, P<0.0001, and 145.6±2.7 lbs, P=0.0025, respectively). The high-

insulin phenotype (Figure 1D) had higher mean weight (156.1±3.8 lbs), compared to 

moderate- and low-insulin phenotypes (142.6±3.8, P=0.0041, and 134.8±2.7 lbs, P=0.0001, 

respectively).

DISCUSSION

Results from this novel application build upon aforementioned research examining summary 

measures of glucose variability. This is the first study, to our knowledge, to extract profile-

level information across entire pregnancy on blood pressure, glucose and insulin control, 

while simultaneously accounting for sparse longitudinal data that is typical in medical 

monitoring. Our approach has implications for clinical use to assess degree in which a 

mother with type 1 diabetes and her offspring may be at risk for adverse outcomes. This 

study adds important information on the specific timing and degree of diabetes control 

during gestation by identifying phenotypes related to variation and offering insights into the 

optimal time for clinical monitoring. In addition, the findings reaffirm the importance of 

entering pregnancy with healthy levels of glucose, insulin requirements and BP. Indeed, SBP 

exhibited the highest degree of variability, but revealed that having a lower baseline value 

may lead to better control throughout pregnancy, thereby improving odds of better maternal, 

fetal and neonatal outcomes.

The current study has limitations. It is possible that the findings could be confounded by 

differences related to reporting glucose via written record in a book, as opposed to use of a 

glucometer. Since a subset of subjects used the former method, we performed a sensitivity 
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analysis of key findings by including book use as a covariate in each regression model; 

conclusions from our phenotype comparisons did not change as a result. It is possible that 

this source of confounding is related to obstetric practices, which evolved during the course 

of the study period. Although we found temporal associations between phenotypes and other 

longitudinal data collected throughout gestation, complex models are needed to evaluate the 

interplay between these large collections of outcomes.20 The analysis approach 

accommodates incomplete longitudinal data in the form of missing at random (known as 

MAR). Although this approach is often used in intent-to-treat analyses, it is possible that the 

missing data mechanism is more complex, given the irregular monitoring of clinical 

measures over pregnancy. Such assumptions may be implemented in standard software, but 

there are no formal methods to examine their validity.21 Despite these limitations, this data 

source provides a unique opportunity to precisely evaluate mean changes and variability in 

clinical measures that are still relevant in modern diabetes and perinatal care.

Overall, this is the first diabetes in pregnancy study to leverage intensive amounts of medical 

monitoring data for phenotypic classification related to glucose, insulin and blood pressure 

control. Phenotypes based on functional data analysis, like those identified from this study, 

are likely to generalize to other chronic conditions that require frequent clinical monitoring 

and complex care regimens during pregnancy, including type 2 diabetes and gestational 

diabetes, and should be evaluated in these populations. Examining longitudinal patterns 

using this methodology may lead to innovations, potentially including interactive web-based 

tools, in the care and monitoring of diabetes during pregnancy.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Observed insulin requirements (Units) and individually fitted curves at gestational 
weeks 8–39
(A) Observed insulin trajectories over time (gray lines) for the 147 women during pregnancy 

with the overall mean insulin over time (black); (B) Individually fitted trajectories (gray 

curves) of women with higher mean and variability over pregnancy, relative to the overall 

mean insulin (black curve); (C) Individually fitted trajectories (gray curves) of women with 

moderate mean insulin and less variability over pregnancy, relative to the overall mean 

insulin (black curve); (D) Individually fitted trajectories (gray curves) of women with lower 

mean glucose and moderate variability over pregnancy, relative to the overall mean insulin 

(black curve); (E) The three mean fitted curves for the corresponding insulin-specific 

classifications (solid, dash and dash-dot).
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Figure 2. Observed glucose (mg/dL) and individually fitted curves at gestational weeks 8–39
(A) Observed glucose trajectories over time (gray lines) for the 147 women during 

pregnancy with the overall mean glucose over time (black); (B) Individually fitted 

trajectories (gray curves) of women with higher mean and variability over pregnancy, 

relative to the overall mean glucose (black curve); (C) Individually fitted trajectories (gray 

curves) of women with moderate mean glucose and less variability over pregnancy, relative 

to the overall mean glucose (black curve); (D) Individually fitted trajectories (gray curves) of 

women with lower mean glucose and moderate variability over pregnancy, relative to the 

overall mean glucose (black curve); (E) The three mean fitted curves for the corresponding 

glucose-specific classifications (solid, dash and dash-dot).
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Figure 3. Observed diastolic blood pressure (mmHg) and individually fitted curves at gestational 
weeks 8–39
(A) Observed glucose trajectories over time (gray lines) for the 147 women during 

pregnancy with the overall mean diastolic blood pressure (DBP) over time (black); (B) 
Individually fitted trajectories (gray curves) of women with higher mean and variability over 

pregnancy, relative to the overall mean DBP (black curve); (C) Individually fitted 

trajectories (gray curves) of women with moderate mean DBP and less variability over 

pregnancy, relative to the overall mean DBP (black curve); (D) Individually fitted 

trajectories (gray curves) of women with lower mean DBP and moderate variability over 

pregnancy, relative to the overall mean DBP (black curve); (E) The three mean fitted curves 

for the corresponding DBP-specific classifications (solid, dash and dash-dot).
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Figure 4. Observed systolic blood pressure (mmHg) and individually fitted curves at gestational 
weeks 8–39
(A) Observed glucose trajectories over time (gray lines) for the 147 women during 

pregnancy with the overall mean systolic blood pressure (SBP) over time (black); (B) 
Individually fitted trajectories (gray curves) of women with higher mean and variability over 

pregnancy, relative to the overall mean SBP (black curve); (C) Individually fitted trajectories 

(gray curves) of women with moderate mean SBP and less variability over pregnancy, 

relative to the overall mean SBP (black curve); (D) Individually fitted trajectories (gray 

curves) of women with lower mean SBP and moderate variability over pregnancy, relative to 

the overall mean SBP (black curve); (E) The three mean fitted curves for the corresponding 

SBP-specific classifications (solid, dash and dash-dot).
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