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ABSTRACT Developing genomic selection (GS) models is an important step in applying GS to accelerate
the rate of genetic gain in grain yield in plant breeding. In this study, seven genomic prediction models
under two cross-validation (CV) scenarios were tested on 287 advanced elite spring wheat lines phenotyped
for grain yield (GY), thousand-grain weight (GW), grain number (GN), and thermal time for flowering (TTF) in
18 international environments (year-location combinations) in major wheat-producing countries in 2010 and
2011. Prediction models with genomic and pedigree information included main effects and interaction with
environments. Two random CV schemes were applied to predict a subset of lines that were not observed in
any of the 18 environments (CV1), and a subset of lines that were not observed in a set of the environments,
but were observed in other environments (CV2). Genomic prediction models, including genotype x envi-
ronment (GxE) interaction, had the highest average prediction ability under the CV1 scenario for GY (0.31),
GN (0.32), GW (0.45), and TTF (0.27). For CV2, the average prediction ability of the model including the
interaction terms was generally high for GY (0.38), GN (0.43), GW (0.63), and TTF (0.53). Wheat lines in site-
year combinations in Mexico and India had relatively high prediction ability for GY and GW. Results in-
dicated that prediction ability of lines not observed in certain environments could be relatively high for
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genomic selection when predicting GXE interaction in multi-environment trials.

Wheat is the most widely cultivated cereal crop in the world, and
provides 20% of the protein and calories consumed by the world
population (FAOSTAT). Several studies have reported that the present
rate of genetic gain in spring wheat is <1% yr—' (Aisawi et al. 2015;
Sayre et al. 1997; Manes et al. 2012; Lopes et al. 2012); that rate needs to
improve to meet future wheat demand (Reynolds et al. 2012). This can
be done through improvements in plant structure and reproduction,
and in crop physiology (radiation use efficiency), as well as improved
genotyping or phenotyping methods, increased genetic diversity of
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breeding germplasm, or through the use of complementary genomic
selection approaches in plant breeding (Reynolds et al. 2009; Tester and
Langridge 2010).

Traditional breeders use the pedigree selection method for breeding
most crops, which requires several generations of testing and advancing
thelines. An alternative method is marker-assisted selection (MAS), where
markers associated with genes of major effect are used (Spindel et al. 2015).
The first to propose predicting breeding values of complex traits for
unobserved phenotypes using all available high density markers were
Meuwissen et al. (2001). This initial study was followed, in plants, by
Bernardo and Yu (2007), who demonstrated, by simulation, that whole
genome regression predicts complex traits more accurately than using
only a few markers. These seminal investigations led to the application of
different statistical parametric and nonparametric genomic models with
pedigree information in different crops (Crossa et al. 2010, 2014; Jarquin
et al. 2014; Pérez-Rodriguez et al. 2015; Velu et al. 2016; de los Campos
et al. 2013; de los Campos and Pérez-Rodriguez 2013; Arruda et al. 2015).

All the initial genomic prediction models were developed for single-
environment prediction. However, GS can accelerate genetic gains in
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Figure 1 Geographical distribution of the sites where the wheat association mapping initiative (WAMI) panel was grown in 2010-2011 in some of
the major wheat growing areas. The map was created using ArcGIS Desktop Arcmap software.

wheat breeding, especially when multi-environment testing of lines is
routine in their development and release (Braun et al. 2010). Multi-
environment testing is prone to high levels of genotype x environment
(GXE) interaction due to varying climatic zones, dynamic weather

parameters, and different management factors. Burguefio et al.
(2012) were the first to use marker- and pedigree-based Best Linear
Unbiased Predictor (BLUP) models for assessing GXE under geno-
mic prediction; these models account for correlated environmental

M Table 1 Descriptive statistics of the wheat association mapping initiative (WAMI) panel grown in several international environments

Bangladesh Joydebpur BGLD J10 22*03 7314 + 1249 30.9 = 41 1260 = 54
BGLD J11 3.4 +05 11,326 = 1807 31.1 = 41 1261 = 64

India Delhi India D10 3.8+06 11,520 + 2018 33623 1343 = 22
Dharwad India H10 31 +04 11,415 = 1914 27.6 = 3.1 1336 = 13

Indore India 111 57 *+09 17,542 = 3125 327 = 3.7 1304 + 46

Karnal India K10 42 +0.7 11,729 = 2185 36.5 = 4.1 1223 * 46

Ludhiana India L11 43 +0.7 11,386 = 1502 383+ 28 1422 + 64

Varanasi India V10 32+06 14,189 + 3079 232=*23 1242 = 25

Mexico Drought? Mex D10 3.7 +04 9902 + 1204 37.7 =45 1175 = 45
Heat? Mex H10 40+04 13,341 + 1849 305 =35 976 = 41

Heat drought? Mex HD10 3.4 +04 11,831 = 1931 292+ 42 959 + 32

Irrigated?® Mex 110 7.0+ 0.3 15,032 = 1201 434 = 45 1339 = 33

Nepal Bhairahawa Nepal B10 27 +0.5 8654 + 1958 31.9 + 4.4 1435 + 45
Nepal B11 25+05 7770 + 1618 329 +43 1377 *= 49

Pakistan Islamabad Pak 110 3.2+09 10,836 = 3158 29.8 + 3.1 1204 + 74
Pak 111 69 +20 21,920 + 6417 31.8 = 3.0 1105 = 38

Iran Darab Iran D10 53 +0.9 16,299 + 2690 33.0+ 3.3 1343 + 22
Sudan Wad Medani Sudan W10 29 +04 8534 + 1664 347 = 3.9 1474 = 99

aCampo Experimental Norman E. Borlaug (CENEB), Mexico, different environments.
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Figure 2 Boxplot of the data collected from
18 environments around the world for traits (A)

GY and (B) GN. Environments (site-year combi-

nations) are defined in Table 1.
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(2014) proposed a random effect genomic BLUP (GBLUP) model,
where the main effect and the GXE interaction effects of markers

structures, and thus predict performance of unobserved pheno-
types in several environments. Heslot et al. (2014) incorporated
crop modeling data for studying genomic GXE, and Jarquin et al.

and environmental covariates are introduced via covariance
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Figure 3 Boxplot of the data collected from 18 environments around the world for traits (A) GW and (B) TTF. Environments (site-year

combinations) are defined in Table 1.
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Figure 4 Comparison of boxplot distributions of prediction ability

diction CV scenarios: (A) CV1 and (B) CV2 for GY. Different letters
denote significant differences among groups (post hoc nonparamet-

ric Tukey's test, P < 0.05). Models: M1Y

M3Y

(correlations) for each model (M1-M7) for trait GY using two pre-
Y

E+L+A+e;

E+L+G+GE+e; M6

=E+L+e; M2Y:

E+L+A+AE+e; M5 Y
E+L+G+A+GE+AE+e.

E+L+G+e; M4 Y
E+L+G+A+e; M7 Y

Dharwad, Karnataka (India H); Indian Institute of Wheat and
Barley Research, Karnal, India (India K); Punjab Agricultural
University, Ludhiana, India (India L); Darab Hassan Abad, Fars,

Iran (Iran D); Banaras Hindu University, Varanasi (India V);
National Wheat Research Program, Bhairahawa, Rupandehi

(Nepal B); and National Agricultural Research Centre, Islamabad

(PAK ). In addition, phenotyping was done under four different

treatments at the Norman Borlaug Experiment Station, Cd.
Obregon, Sonora, Mexico: irrigated yield potential (Mex I), heat
stress (Mex H), drought stress (Mex D), and heat and drought

stress (Mex HD) (Figure 1). Table 1 shows the countries, loca-

tions, and abbreviations used in this study, as well as the four
traits that were recorded and analyzed: GY per square meter, GN
per square meter, GW estimated using standard protocols (Sayre
et al. 1997), and TTF estimated based on a base temperature of

zero and the sowing date. Minimum and maximum tempera-

The WAMI panel was genotyped using 90K Illumina SNPs array
(Sukumaran et al. 2015a). From the polymorphic SNPs after using

tures, and the coordinates of the environments, were described
a minor allele frequency cut-off of 5%, 15K SNPs were used for

in an earlier publication (Sukumaran et al. 2016).

1B.IR translocation was described in earlier publications (Lopes

genomic prediction. The population structure associated with the
et al. 2015; Sukumaran et al. 2015a).
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where w is the overall mean, E; is the random effect of the ith
environment, L; is the random effect of the jth line, EL; is the in-
teraction between the ith environment and the jth line, and ejj is the
random error term. All random effects follow a iid multivariate nor-
mal distribution such that E; ~N(0,Ic%), L;j ~ N(0,Io?),
EL;j ~ N(0,I0%,;), and e; ~ N(0,I02) where o}, o7, and o}
are the environment, line, and line X environment variances,
respectively.

In the model above, the random effect of the line (L;) can be replaced
by g;, which is an approximation of the genetic value of the jth line from
the genomic relationship matrix. Also, the effects of the line (L;) can be
replaced by a;, which is the additive effect obtained from the pedigree
information. In the models described below, we used either g; or a;,
both g and aj, as well as their interactions with environment
E;(gEjj, or aEj). Full descriptions of the different reaction norm
models can be found in Jarquin et al. (2014) and Zhang et al. (2014),
among others. Below, we give a brief description of the different re-
action norm models that were fitted using pedigree and genomic
information.

Reaction norm models

We fitted seven different models (M1-M7) with different components
including E = environments, L = line, A = pedigree, G = genomic, AE =
pedigree X environment interaction, GE = genomic X environment
interaction, and e = residual error.

M1: Environment and line main effects (Y =E + L + e)

The response of the phenotypes (y;;) from the baseline model, but
excluding the interaction term, ELy, is described as

yij:M+Ei+Lj+eij (1)

M2: Environment, line, and pedigree main effects
(Y=E+L+A+e)

By adding the random effect that incorporates pedigree information by
means of the numerical relationship matrix (A) to M1, we get model
M2, defined as

yij=M+E,'+Lj+aj+eij )

where g; is a random additive effect of the line, which, in this case accounts
for pedigree-relationships, where @ = (g, ...,d;)" contains the pedigree
values of all the lines, and is assumed to follow a multivariate normal
density with zero mean and covariance matrix Cov(a) = Ao, where A
is the numerical relationship matrix, and o2 is the additive genetic variance.
The random effectsa = (g, . . ., ;)" are correlated such that model M2
allows borrowing of information across lines based on the numerical
relationship matrix (A) computed from the pedigree information.

M3: Environment, line, and genomic main effects
(Y=E+L+G+e)

Model M3 is fitted by adding the genomic random effect of the line g; to M1,
which is an approximation of the genetic value of the jth line, and is defined
by the regression on marker covariates g; = > | x;c;, where x; is the
genotype of the jth line at the /th marker, and ¢; is the effect of the Ith
marker assuming iid ¢; ~ N(0,0?) (I=1,.. .,p), and ¢ is the variance of
the marker effects. The vector g = (g1,...,g)" contains the genomic
values of all the lines, and is assumed to follow a multivariate normal
density with zero mean and covariance matrix Cov(g) = Ga'g7 where G
is the genomic relationship matrix computed as suggested by VanRaden
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Figure 7 Comparison of boxplot distributions of prediction ability
(correlations) for each model (M1-M7) for trait grain number using two
prediction CV scenarios (A) CV1 and (B) CV2 for trait thermal time to
flowering (TTF). Different letters denote significant differences among
groups (post hoc nonparametric Tukey’s test, P < 0.05). Models: M1
Y = E+L+e; M2 Y= E+L+A+e; M3 Y= E+L+G+e; M4 Y= E+L+A+AE+e;
M5 Y= E+L+G+GE+e; M6 Y= E+L+G+A+e; M7 Y= E+L+G+A+
GE +AE+e.

(2008) (i.e., Goe(XX'/23°F_ pi(1—py)), with X as the centered and

standardized matrix of molecular markers and p; the frequency of the
Ith marker); and 0§0C0'§ is the genomic variance. Thus, model M3 is

yi=m+E+L+g+e; 3)

with g ~ N(0, Gag). The random effects g = (g1, ..., )’ are corre-
lated such that model M3 allows borrowing information across lines.

M4: Environment, line, pedigree, and pedigree x
environment interaction effects Y=E+L+ A + AE +¢)
By adding the interaction between the additive relationship matrix and
environments (Ea;;) to model M2, model M4 becomes

yij:M+Ei+Lj+aj+Ea,~j+eg, (4)

where the term Eay; is the interaction between the additive
value of the ith genotype in the jth environment and
Ea ~ N[0, (Z,GZ,)°(ZgZy)o},] Matrices Z, and Zg are the in-
cidence matrices for the effects of the additive genetic values of ge-
notypes and environments, respectively, o%, is the variance
component of the interaction term Eaj;, and “°” stands for Hadamart
product between two matrices.
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MS5: Environments, lines, genomic, genomic x
environment interaction effect (genomic x

environment) (Y=E+L+ G+ GE + e)

By adding the interaction between markers and environments (Eg;) to
model M3, model M5 becomes

ylj:M+Ei+Lj+gj+Eg,~j+eiﬁ (5)

where the term Egj; is the interaction between the genetic value of the
ith genotype in the jth environment; then
Eg ~ NJ0, (ZgGZ’g)"(ZEZ’E)[o%g]. Matrices Zg and Zg are the in-
cidence matrices for the effects of the genetic values of the genotypes
and the environments, respectively, cr%g is the variance component of
the interaction term Egj;.

Mé6: Environment, line, pedigree, and genomic main
effects(Y=E+L+A+G +e)

We added both the pedigree and genomic effects of the lines (gj, and a;)
to model M1, so that it contains the genomic random vector
g=1(g1,..-,g)’, and the pedigree random vector a = (a,...,a)".
Therefore, model M6 is

yij =+ Ei+Li+ g+ aj + ey, (6)

M7: Environment, line, pedigree, genomic, pedigree x
environment interaction and genomic X environment
interaction effects M7 =E+L+A+G + AE + GE + ¢)
By adding both the interaction between pedigree and environment
(Eajj), and the interaction between markers (genomic) and environ-
ments (Eg;) to model M6, model M7 becomes

yij=M+Ei+Lj+‘gj+aj+Egij+Eaij+e,j, (7)
All the terms in this model have already been defined above.

Prediction assessment by cross-validation

Two distinct cross-validation (CV) schemes were used. The first, CV1,
evaluates the prediction ability of models when a set of lines has not been
evaluated in any of the environments (Burgueno et al. 2012). Predictions
derived using CV1 are based entirely on phenotypic records of other
lines. The second scheme, CV2, evaluates the prediction ability of
models when some lines have been evaluated in some environments,
but not in others. In CV2 prediction, information from related lines and
the correlated environments is used, and prediction assessment benefits
from borrowing information between lines within an environment,
between lines across environments, and among correlated environ-
ments (Burgueno et al. 2012). Prediction ability is the Pearson corre-
lation coefficient between the observed and predicted values for each
genotype.

Inboth CV1and CV2, a fivefold cross-validation scheme was used to
generate the training (TRN) and testing (TST) sets, and to assess the
prediction ability of each testing set. The data were divided randomly
into five subsets, with 80% of the lines assigned to the training set and
20% assigned to the testing set. Four subsets were combined to form the
training set, and the remaining subset was used as the validation set.
Permutation of five subsets led to five possible training and validation
data sets. This procedure was repeated 20 times, and a total of 100 runs
was performed on each population for each trait-environment combi-
nation. The same partitions were analyzed with all models. The average
value of the correlations between the phenotype and the genomic
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estimated breeding values from 100 runs was calculated in each pop-
ulation for each trait-environment combination, and was defined as the
prediction ability.

Software

The genomic prediction analyses were computed using R, and the
models were fitted using the BGLR package (de los Campos et al.
2013; de los Campos and Pérez-Rodriguez 2013). The ANOVA was
performed in the SAS 9.2 (SAS Institute Inc 2010) program, and the
boxplots created in R. Tukey’s test for significant differences between
the models’ predictions (correlations) were generated in the SAS 9.2
(SAS Institute Inc 2010) program.

Data availability

All the phenotypic data for each environment and trait, as well as the
genomic data, can be downloaded from the link http://hdl.handle.net/
11529/10714.

RESULTS

Variation in the studied traits

The WAMI panel was grown in seven countries, comprising a total of
18 environments (site-year combinations). India had the largest number
of environments (6) followed by Mexico (4), and Bangladesh, Nepal,
Pakistan, Iran, and Sudan with one site each. The ANOVA showed
significant differences between the wheat lines and environments (Table
Al, Appendix A). Environment Mex 110 was the highest yielding
environment (7.02 ton/ha), followed by Pak I11 (6.9 ton/ha). The
lowest yield was obtained in BGLD J10 (2.2 ton/ha) with a GW value
of 30.9. The highest GW value was recorded in Mex I10 (43.4), followed
by India L11 (38.3), and the lowest was India H10 (27.6). TTF ranged
from 976°D in Mex H10 to 1474°D in Sudan W. The highest GN was
recorded in Pak I11 (21920), followed by Iran D10 (Table 1). Herita-
bility estimates of individual and combined environments for each trait
were also calculated. Trait GW (0.74) had the highest H? values, fol-
lowed by GN (0.51), TTF (0.48), and GY (0.41) (Table Al, Appendix
A). A box plot of the data at the individual locations indicated TTF had
the highest variation and the lowest G X E was observed for GW (Figure
2 and Figure 3).

Prediction ability of different models for

international sites

We used seven models (M1-M7) to predict the lines that were not
observed under CV1 and CV2 scenarios. For GY, prediction ability
values for individual sites ranged from —0.05 (M1) to 0.52 (M6) (Table
2). The highest value obtained for CV1 was in Mex D10 (0.52). The
models’ average prediction abilities were —0.08, 0.11, 0.21, 0.22, 0.22,
0.29, and 0.31 for M1-M?7, respectively. Models 6 and 7 had the highest
significant prediction ability, followed by models 3, 4, and 5 (Figure 4).
For CV2, the values ranged from 0.10 (Sudan W10) to 0.54 (India D10,
India V10). On average, the CV2 correlation values for each model
were 0.31, 0.31, 0.32, 0.32, 0.35, 0.37, and 0.38 for M1-M7, respectively
(Table 2). Tukey’s test identified that M5-M7 had significantly higher
prediction accuracies than the other models for CV2 (Figure 4).

For CV1, 28 environment-model combinations had prediction ability
values above 0.30 for GY. Among the sites, when using M7, Mexican
environments (Mex 110, Mex D10, and Mex H10) had high prediction
ability values (>0.41) for CV1 using M6 and M7. CV2 values were above
0.40 for 52 site-model combinations. For India V10 and India D10,
prediction ability was above 0.5 for all models. In the CV1 scenario,
14 sites had the highest values when M6 and M7 were used (Table 2).
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Trait GN mostly followed a similar pattern as that shown for GY but
the CV1 values ranged from —0.05 (BGLD J10) to 0.56 (Mex I10).
Forty-three environment-model combinations had CV1 values >0.30.
Models 6 and 7 had five sites with CV1 values >0.4. Two sites (Sudan
W10 and Mex 110) had CV1 values > 0.4 for six models. Models 6 and
7 had CV1 values > 0.50 for four environments (Mex H10, Mex HD10,
Sudan W10, and Mex I10). On average, the highest CV1 values were
recorded for M5 (0.32) and M7 (0.32) (Table 3). Tukey’s test also grouped
M5 and M7 with the highest prediction ability models for CV1 and CV2
scenarios (Figure 5).

For CV2,36 environment-model combinations had GN values >0.5.
The values ranged from 0.08 (Iran D10) to 0.69 (Mex HD10). Five
environments (Mex D10, Mex H10, Mex HD10, Sudan W10, and
Mex 110) had values >0.5 for all models. On average, the increase in
CV2 values from M1 to M7 was 0.04, with M5 and M7 recording the
highest average increases (0.43) (Table 3).

Trait GW had the highest prediction values in CV1 (0.72, Iran D10)
and CV2 (0.88, Iran D10) scenarios. Models 6 and 7 had eight envi-
ronments with prediction values in CV1 >0.5. Thirty-six environment-
model combinations had prediction values for CV1 >0.50, with M6
and M7 predicting the values for CV1 of five sites with
correlation >0.6. On average, the model with the highest CV1 values
was M3, followed by M7. Mex I10 and Mex D10 had the highest CV1
(0.72 for both M6 and M7) and CV2 values (0.88 for M6 and M7)
(Table 4). Tukey’s test group showed models M3 and M7 as the most
significant models with the highest prediction ability in the CV1
scenario (Figure 6). In the CV2 scenario, all models had the same
prediction ability (0.63) (Figure 6 and Table 4).

For TTF, the prediction ability in the CV1 scenario ranged
from —0.11 (India L11, M1) to 044 (India K11, M5). A total of
29 model-site combinations had CV1 values >0.3, with M7 predicting
eight sites with correlations >0.3. Mex 110 had five models predicting
the sites with >0.3 for CV1, followed by Nepal. On average, M5 had the
highest CV1 values (0.28) when compared with other models (Table 5).
For CV2, values ranged from 0.40 (Mex H10) to 0.80 (BGLD]J10). All
sites had correlation values >0.3, and 85 environment-model combi-
nations had correlation values >0.50. Thirty-five sites (31%) had CV2
values >0.7 (Table 5). On average, correlations for M5-M7 for CV1
were 0.28, 0.24, and 0.27, respectively, and prediction ability values for
M5-M7 for CV2 were 0.54, 0.52, and 0.53, respectively. Tukey’s test
groups indicated that M5-M7 were the best predictive models for CV1,
while for CV2 all models had the same prediction ability (Figure 7).

In summary, for the complex trait GY, M6 and M7 with interactions
had the highest average prediction ability across environments for CV1
(0.29 and 0.31, respectively), and for CV2 (0.37 and 0.38, respectively).
For the less complex trait GW, M3 and M7 showed the highest mean
prediction ability for CV1 (0.45), and it was around 0.63 for all models in
CV2. For grain number (GN) (which is a GY component and a complex
trait), M5 and M7 gave the highest prediction ability for CV1 (0.32) and
CV2 (0.43). For trait TTF, M5-M7 (0.28, 0.24, and 0.27, respectively) were
the best for CV1; all models performed similarly for CV2 (0.52-0.53).

Trends in prediction ability vs. heritability

The best model for GY was M7 and, for CV1, it showed increasing values
of environment heritability with their corresponding prediction accu-
racies, whereas M1 prediction ability was not related to heritability values
(Figure B1-A, Appendix B). For GY in the CV2 scenario, the best and
worst models had similar prediction ability, and showed an increasing
trend of up to H? = 0.50; values decreased thereafter (Figure B1-B,
Appendix B). For trait GW in the CV1 scenario, a positive trend of in-
creased prediction ability with increased H? values was observed for the
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best model (M3), which had no interaction terms. The worst model (M1)
did not show a response with increased H? values (Figure B2-A, Appendix
B). For the CV2 scenario, the best and worst models showed increased
correlation values, and an increase in H? values (Figure B2-B, Appendix B).

For GN, the correlations and H? values of the best model (M7)
showed a positive trend in the CV1 scenario, whereas the basic model
(M1) showed no association with H? values (Figure B3-A, Appendix B).
Similar to GY, the best and basic models showed very close prediction
ability and H? values for environments in the CV2 scenario for GN
(Figure B3-B, Appendix B). For TTF, the best model (M5) did not show
greater prediction ability, the positive trend was lower (R? = 0.12), and
the basic model M1 showed no association with H? values (R? = 0.08)
(Figure B4-A, Appendix B). In the CV2 scenario, the best and basic
model for TTF did not show high association between prediction values
and H? estimates, with some sites with high heritability estimates show-
ing lower prediction values (Fig. B4-B, Appendix B).

DISCUSSION

The WAMI panel has been extensively studied for several complex traits:
adaptation to density (Sukumaran et al. 2015b), GY and yield compo-
nents (Sukumaran et al. 2015a), drought stress (Edae et al. 2013, 2014),
and earliness per se (Sukumaran et al. 2016). Since it was also pheno-
typed under diverse environments around the world, it is a perfect
panel for testing some of the genomic and pedigree selection models.
Data from these testing sites were used routinely to select lines for
release as varieties, and for crossing them to generate new prebreeding
lines (Reynolds and Langridge 2016). Physiological breeding is aimed at
improving wheat productivity through complex physiological traits.
These traits are often controlled by genes with small effects; if they
can be proven to be of value in the breeding program, they are more
effectively selected using genomic selection methods than using MAS.

Several models have been proposed for the genomic prediction
schemes; however, it is important to test them on diverse environmental
databefore using them in the breeding program. Models 6 and 7 were the
best models, for they had the highest average prediction ability values for
the CV1 and CV2 scenarios for GY among all environments. Here, we
evaluated seven models (some with the GXE term), and concluded that
these models can predict GY with moderate to high levels of prediction
ability, whereas less complex traits, such as GW, can be predicted
without including any interaction terms in the model.

The results of this study agree with those of a recent study on Zn and
Fe grain concentration in spring wheat (Velu et al. 2016). Models that
include GXE interaction terms showed higher prediction accuracies.
Also, prediction ability was generally associated with trait heritability,
as in earlier reports (Muranty et al. 2015). The highest prediction ability
was for GW, which is a high heritability trait in the WAMI panel
(Sukumaran et al. 2015a). Another observation was that, for some
environments, M3 gave high prediction ability for GW in the CV1
scenario, whereas model M2 was the best in CV2. In this study, we
evaluated the correlation between genomic- and pedigree-based esti-
mated breeding values, with phenotypic data from field trials. With a
reasonable number of molecular markers, and incorporating GXE
terms in the models, higher prediction ability was obtained for the
“genomic” component when compared to pedigree-based prediction
models (Burguefio et al. 2011). This was also dependent on trait her-
itability, as GW had higher prediction ability values even when using
M3 (Muranty et al. 2015).

Genotypic values of lines in several environments were predicted
using genomic prediction models; when compared across environments,
the highest prediction ability was recorded at environments in Cd.
Obregon (Mexico) for GY, GN, GW, and TTF. Relatively good climate,

-=.G3:Genes| Genomes | Genetics



as well as optimal management of the Cd. Obregon site, are big factors
influencing heritability of yield and prediction ability; sites with high
heritability have higher prediction ability. However, our analysis also
showed that there is no linear association between heritability and
prediction ability values; nevertheless, prediction ability could be a
function of H? values and other parameters (Spindel et al. 2015). An-
other factor that could increase genomic prediction ability is incorpo-
rating high-dimensional environmental covariates (Jarquin et al. 2014;
Pérez-Rodriguez et al. 2015). Recent studies on wheat have shown that
GS selection could reshape wheat breeding because it produces higher
genetic gains than conventional breeding (Bassi et al. 2016).

Conclusions
Genotype X environment prediction models in genomic selection and
pedigree-based selection can help accelerate breeding cycles for com-
plex traits such as grain yield in multi-environmental trials. Tradition-
ally, breeders have depended on phenotypic selection for generation
advancement. Results of the present study show that GS is a comple-
mentary method to phenotypic selection with medium-to-high predic-
tion ability values. Genomic prediction of GY, and other traits in spring
wheat lines evaluated in a large and diverse number of international
environments, indicated that sites in Mexico and India could be key sites
for genomic-assisted breeding. A set of wheat lines not observed in several
site-year combinations were predicted with correlations of 0.3-0.5 in
Mexico and India (CV1) for models that included genomic and pedigree
interaction with environments. When some of these lines were observed
in some environments, this correlation increased to 0.45-0.53 (CV2).
For less complex traits, such as GW, the prediction ability of lines not
observed in sets of environments increased to about 0.6 for Mexican
environments (CV1). Sets of wheat lines observed in some environ-
ments, but not in others, were predicted with correlations of up to 0.8 in
Mexican and India environments (CV2) for genomic-enabled predic-
tion models including (or not) genomic and pedigree interactions with
environments.
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APPENDIX A

W Table A1 ANOVA of the 18 environments for GY, GN, GW, and TTF

Env 17 1621.45% 17 10,710,471,211 17 12,355.91 16 186,946,414,
Rep (Env) 18 5.09%+ 18 91,729,154.79 18 138.41 17 646,553.8
Entry 293 3.89% 293 51,442,282.18 293 233.89 287 12,232,101
Env*Entry 4981 1.24% 4981 12,314,123.59 4981 15.90 4592 29,846,089
Error 5236 0.90 5236 9,058,283.004 5241 7.67 5051 8,835,189
Model R-square 0.88 0.84 0.90 0.96
Coefficient of variation 22.7 23.65 8.41 3.33

Mean 4.17 (ton/ha) 12,727.66 (number) 32.91 (gms) 1255.1 (°D)
Broad-sense heritability (H?) 0.41 0.51 0.74 0.48

df, degrees of freedom, MS mean squares, Env, environment; Rep, replication; °D, degree days.

*+* significant at a = 0.001 level of significance.
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Figure B1 Comparison between heritability values and the
correlation between observed and predicted values for the best
and worst models in predicting trait GY in different environments
for two cross-validation scenarios: (A) CV1 (the best and worst
models were M7 and M1, respectively), and (B) CV2 (the best
and worst models were M7 and M1, respectively).
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Figure B2 Comparison between heritability values and the
correlation between observed and predicted values for the best
and worst models in predicting trait GW in different environ-
ments for two cross-validation scenarios (A) CV1 (the best and
worst models were M3 and M1, respectively) and (B) CV2 (the
best and worst models were Mé and M1, respectively).

Figure B3 Comparison between heritability values and the
correlation between observed and predicted values for the best
and worst models in predicting trait GN in different environ-
ments for two cross validation scenarios: (A) CV1 (the best and
worst models were M6 and M1, respectively) and (B) CV2 (the
best and worst models were Mé and M1, respectively).
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Figure B4 Comparison between heritability values and the
correlation between observed and predicted values for the best
and worst models in predicting trait TTF in different environ-
ments for two cross-validation scenarios: (A) CV1 (the best and
worst models were M5 and M1, respectively) and (B) CV2 (the
best and worst models were M7 and M1, respectively).

Volume 7 February 2017 | Genomic Prediction GxE Interaction in Wheat | 495



