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Abstract

Anaplastic lymphoma kinase (ALK) is a validated molecular target in several ALK-rearranged 

malignancies, including non-small-cell lung cancer (NSCLC). However, the clinical benefit of 

targeting ALK using tyrosine kinase inhibitors (TKIs) is almost universally limited by the 

emergence of drug resistance. Diverse mechanisms of resistance to ALK TKIs have now been 

discovered, and these basic mechanisms are informing the development of novel therapeutic 

strategies to overcome resistance in the clinic. In this Review, we summarize the current successes 

and challenges of targeting ALK.

Keywords

ALK; anaplastic lymphoma kinase; TKI; resistance; NSCLC

INTRODUCTION

The discovery of anaplastic lymphoma kinase (ALK) dates back to 1994 when a 

chromosomal rearrangement t(2;5), resulting in a nucleophosmin (NPM1)-ALK fusion, was 

described in anaplastic large-cell lymphoma (ALCL) (1). Subsequent work over the next two 

decades identified ALK fusion proteins as the oncogenic driver in numerous different 

malignancies. Perhaps most widely recognized is the echinoderm microtubule-associated 

protein-like 4 (EML4)-ALK fusion detected in non-small-cell lung cancer (NSCLC) in 2007 

(2). ALK-rearranged cancers have since emerged as a salient example of the paradigm of 

“oncogene addiction.”

In the span of less than a decade, collaborative efforts among basic and clinical scientists in 

academia and the pharmaceutical industry have led to the development of numerous ALK 

tyrosine kinase inhibitors (TKIs). To date, three ALK TKIs (crizotinib, ceritinib, and 

alectinib) have received approval by the US Food and Drug Administration (FDA) for 

treatment of advanced “ALK-positive” NSCLC (i.e., NSCLC harboring an ALK 
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rearrangement), with clinical trials demonstrating remarkable responses in this patient 

population (3–8). Yet, as with any targeted therapy, tumor cells evolve and invariably acquire 

resistance to ALK TKIs, leading to clinical relapse. Since the first demonstration of 

crizotinib’s activity in ALK-positive NSCLC, a multitude of studies have focused on 

elucidating mechanisms of resistance to ALK inhibition.

The rapid pace of ALK-targeted drug development, and the knowledge gained in parallel on 

resistance mechanisms, illustrate the power of an iterative, systematic discovery process—at 

the bench and the bedside—to advance cancer research and transform patients’ lives. This 

Review will provide an up-to-date, mechanistic framework for understanding how ALK, and 

the mechanisms of resistance to ALK TKIs, may be effectively targeted in order to extend 

and improve the lives of patients with ALK-driven cancers.

ALK BIOLOGY

The Function of Native ALK

ALK encodes a highly conserved receptor tyrosine kinase (RTK) within the insulin receptor 

superfamily, comprised of an extracellular domain, a single-pass transmembrane region, and 

an intracellular kinase domain (9). In adult humans, ALK expression is limited to the 

nervous system, testes, and small intestines (1). Activation of endogenous ALK requires 

ligand-dependent receptor dimerization and autophosphorylation. Recent work has 

established Augmentor α and β (FAM150) as the ligand for ALK (10–12). Although little is 

known about the biological function of ALK in humans, insights may be gleaned from 

studying model systems.

In Drosophila melanogaster, Alk is activated by its ligand Jelly belly (Jeb) and regulates the 

development of the gut musculature and neuronal circuitry within the visual system (13–16). 

In mice, Alk is expressed in the nervous system at the embryonic and neonatal stage, but 

minimally expressed in adults (9). Alk knockout mice notably achieve a normal life span, 

exhibiting mild abnormalities involving the frontal cortex and hippocampus and 

hypogonadotropic hypogonadism (17–19). Interestingly, visual disturbance and 

hypogonadism have been reported in patients treated with the first-generation, multitargeted 

ALK inhibitor crizotinib (3, 4). These toxicities, however, are unlikely to be ALK-related, 

given their decreased incidence with more selective ALK TKIs such as ceritinib and 

alectinib (5–8).

ALK Rearrangements in Cancer

With the advent of next generation sequencing (NGS)-based diagnostics, more than 20 

different ALK fusion partner genes have been reported across multiple malignancies. In each 

cancer type, the full spectrum of chimeric ALK proteins and their individual frequency 

varies (Table 1). For example, in ALCL where ALK rearrangements are seen in ~55% of 

adult patients (and nearly universally in pediatric patients), NPM1-ALK resulting from 

t(2;5)(p23;q35) is the most common fusion, accounting for up to 80% of cases (1, 20–29). 

Inflammatory myofibroblastic tumor (IMT) was the first solid tumor found to harbor ALK 
rearrangements, which occur in up to 50% of cases (30). In ALK-positive IMT, NPM1-ALK 
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has not been reported, but a variety of other fusion partners not seen in ALCL have instead 

been identified (Table 1) (30–37).

NSCLC was the second solid tumor in which oncogenic ALK fusions were detected. Soda 

and colleagues reported the identification of EML4-ALK in a small cohort of Japanese 

NSCLC patients (2). Since then, ALK fusions have been detected in 3–7% of NSCLCs, and 

have been associated with absence of smoking, younger age, and adenocarcinoma histology 

(38). Even though the relative proportion of NSCLCs harboring an ALK rearrangement is 

significantly lower than that of ALCL or IMT, NSCLC patients constitute the largest subset 

of patients with an ALK-rearranged cancer due to the high incidence of lung cancer 

worldwide (39). Notably, studies in NSCLC have identified several additional ALK fusion 

proteins (40–45), which collectively occur less frequently than EML4-ALK. Furthermore, a 

number of breakpoint variants may be seen for a given fusion protein. The classic example is 

EML4-ALK, with over 10 distinct variants (46). In most cases, the breakpoint in ALK at 

intron 19, just preceding exon 20, is conserved.

At low frequency, ALK rearrangements have been detected in other cancers, including 

colorectal, breast, renal cell, esophageal, ovarian, and anaplastic thyroid carcinoma, and 

diffuse large B-cell lymphoma (Table 1). Several common themes have emerged based on 

the identified ALK rearrangements (47). First, in all ALK fusions, the entire ALK kinase 

domain is preserved. Second, the N-terminal partner contributes its promoter and 

oligomerization domain to the ALK fusion protein, leading to aberrant expression and 

constitutive activation of ALK. Consequently, the level of ALK fusion expression and the 

degree of signaling may vary depending on the partner gene. Indeed, in vitro studies using 

NIH3T3 cells have suggested differential effects of ALK fusion proteins on cell proliferation 

and invasion depending on the exact fusion (48). These findings have not yet been validated 

in patients, but could be clinically relevant if they translate into differential sensitivity of 

ALK fusions to TKIs in the clinic, as described below (49). Lastly, ALK fusion proteins 

interact with a complex network of proteins and signal via multiple downstream pathways, 

including JAK/STAT, PI3K/AKT, and MEK/ERK, driving aberrant proliferation and survival 

(Figure 1) (50, 51). In the setting of chronic TKI exposure, dysregulation of these signaling 

nodes may enable acquired resistance to ALK inhibition (see bypass signaling section 

below).

Additional questions remain regarding the biology of ALK. For example, it is unclear why 

certain fusion partners dominate in certain cancers (e.g., NPM1-ALK in ALCL and EML4-
ALK in NSCLC). The etiology of ALK rearrangements, and their predilection for younger 

patients, also remains unknown. Finally, activating point mutations in ALK have been 

identified in a subset of patients with familial or sporadic neuroblastoma, and investigations 

into the biology of mutant ALK are ongoing. ALK mutations outside the context of TKI 

resistance are beyond the scope of this Review, and are covered elsewhere (13, 47).

TARGETING ONCOGENIC ALK

Within months of the identification of EML4-ALK in NSCLC, preclinical studies 

established the transforming potential of this ALK fusion (2, 52). Transgenic mice 
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expressing EML4-ALK in lung alveolar epithelial cells developed innumerable 

adenocarcinoma nodules in their lungs soon after birth (52). The dependency of ALK-

rearranged lung cancer cells on ALK signaling for survival and growth (i.e., “addiction” to 

ALK) was demonstrated in cell lines and mouse models (52, 53), spurring the development 

of TKIs targeting ALK.

Although originally developed as a potent MET inhibitor, crizotinib was the first ALK-

directed TKI to enter the clinic (53). In 2011, crizotinib was granted accelerated approval by 

the FDA based on the results of phase I/II studies demonstrating robust clinical activity in 

advanced ALK-rearranged NSCLC (54). Soon thereafter, two phase III trials showed that 

crizotinib was superior to first- and second-line cytotoxic chemotherapy in advanced ALK-

rearranged NSCLC (3, 4). Across all crizotinib trials, the objective response rate (ORR) in 

ALK-positive NSCLC patients ranged from 60–74%, with median progression-free survival 

(PFS) of 8–11 months. Subsequently, two second-generation ALK inhibitors, ceritinib and 

alectinib, received accelerated approval for patients with ALK-positive NSCLC previously 

treated with crizotinib. In the phase 1 ASCEND-1 trial, ceritinib demonstrated an ORR of 

56% and median PFS of 6.9 months in crizotinib-pre-treated ALK-rearranged NSCLC 

patients (5, 6). In two phase II studies, alectinib induced objective responses in ~50% of 

crizotinib-resistant ALK-rearranged NSCLCs (7, 8); median PFS in both studies was 8–9 

months. Another second-generation inhibitor, brigatinib, has been associated with a 

confirmed ORR of 62% and a median PFS of 13.2 months in crizotinib-pre-treated patients 

in one phase I/II study (55). These second-generation inhibitors are more potent than 

crizotinib, can overcome the most common crizotinib-resistant mutations including the 

L1196M gatekeeper mutation, are active in crizotinib-resistant tumors without ALK 
resistance mutations, and are more effective than crizotinib against central nervous system 

(CNS) metastases (5–8).

ALK inhibitors have not yet been approved for use in other, non-lung ALK-driven cancers, 

although reports have been published of patients’ responses to ALK TKIs in ALK-positive 

ALCL and IMT (56–58). Multiple clinical trials are underway evaluating the activity of 

ALK TKIs across different tumors. In particular, the National Cancer Institute (NCI)-

Molecular Analysis for Therapy Choice (MATCH) trial is enrolling adult patients with any 

advanced solid tumors and lymphomas refractory to standard therapy (NCT02465060); 

those patients found to have ALK-rearranged cancers (other than NSCLC and ALCL) will 

be eligible to receive treatment with crizotinib. Hence, the NCI-MATCH protocol will allow 

for systematic analysis of response to ALK inhibition in patients with ALK-rearranged 

cancers, irrespective of the cancer type.

Despite initial responses, patients treated with ALK TKIs inevitably progress within 1–2 

years due to acquired resistance (3–8). This resistance is an expected consequence of tumor 

evolution (59) and is similar in principle to what has been observed with other targeted 

therapies (e.g., KIT inhibitors in gastrointestinal stromal tumors (GISTs) and epidermal 

growth factor receptor (EGFR) inhibitors in EGFR-mutant NSCLC).
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MECHANISMS OF RESISTANCE TO ALK TKIs

Current Approaches to Study TKI Resistance

Numerous ALK TKI resistance mechanisms have been identified since the discovery of 

ALK as a therapeutic target in NSCLC. These discoveries have relied on the use of diverse 

experimental systems and approaches (Figure 2). Traditionally, sequencing analyses of pre-

TKI and post-TKI tumor biopsies, followed by functional validation of candidate resistance 

mechanisms, have been a common approach (60–63). As an example, many of the 

secondary resistance mutations within the ALK tyrosine kinase domain were discovered in 

this manner.

To overcome the inherent limitations in biopsy specimens with regards to tumor quantity and 

quality, more recent studies have employed patient-derived cell lines and xenograft (PDX) 

models (62, 64). These models can serve as a platform for systematic loss-of-function (e.g., 

CRISPR, shRNA, or pharmacologic) and gain-of-function (e.g., open reading frame (ORF) 

library) screens. For example, compound drug screens in patient-derived cell lines led to the 

identification of MEK and SRC activation as novel ALK TKI resistance mechanisms 

(further discussed below) (64). Liquid biopsies can also overcome some of the challenges of 

tumor biopsies (discussed below).

Together with traditional in vitro generated cell line models (63, 65) and random 

mutagenesis screens (66, 67), these experimental approaches have led to the identification of 

two major classes of ALK TKI resistance mechanisms: (i) ALK-dependent, “on-target” 

mechanisms including ALK secondary resistance mutations or amplification, where the 

tumor cell dependency on ALK signaling persists; and (ii) ALK-independent, “off-target” 

mechanisms including activation of bypass tracks and lineage changes, where the tumor 

cells effectively escape dependency on ALK. While pharmacological properties of TKIs can 

also limit ALK TKI efficacy, particularly for CNS disease, these issues are beyond the scope 

of this Review and have been discussed elsewhere (68). Below, we explore the biological 

mechanisms of acquired ALK TKI resistance primarily based on data obtained from studies 

of ALK-positive NSCLC.

ALK-Dependent Resistance: Secondary Mutations in the ALK Tyrosine Kinase Domain

In general, secondary mutations within the target kinase cause drug resistance by re-

inducing kinase activation and signaling despite the presence of the TKI. These resistance 

mutations can directly hinder TKI binding to the target kinase, alter the kinase’s 

conformation, and/or alter the ATP-binding affinity of the kinase. Unlike in EGFR-mutant 

NSCLC, where the T790M gatekeeper mutation is the predominant, clinically-observed 

EGFR mutation causing resistance to first- and second-generation EGFR TKIs, a much 

broader spectrum of on-target mutations has been identified in ALK-positive NSCLC treated 

with ALK TKIs (Figure 3) (69). This situation is reminiscent of the wide array of resistance 

mutations observed after treatment with the ABL inhibitor imatinib in patients with chronic 

myelogenous leukemia (CML). The difference in spectrum of resistance mutations may be 

attributable to the genetic mechanism of oncogene activation (i.e., gene rearrangements 

involving ALK or ABL, versus activating point mutations within the EGFR kinase domain) 

Lin et al. Page 5

Cancer Discov. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and/or the mode of TKI binding (i.e., to the inactive kinase conformation for imatinib and 

crizotinib, versus the active conformation for EGFR TKIs erlotinib and gefitinib) (70, 71). 

Both of these factors may influence the spectrum of drug-resistant mutations that arise in 

TKI-resistant patients.

The first ALK resistance mutation reported was the L1196M gatekeeper mutation, 

analogous to EGFR T790M (61). This mutation, also identified in a cell line model of 

crizotinib resistance (65), alters the gatekeeper residue at the bottom of the ATP-binding 

pocket and impairs TKI binding. The G1269A mutation also lies in the ATP-binding pocket 

and hinders crizotinib binding (72). Other resistance mutations affect residues adjacent to 

the N-terminus (C1156Y, L1152R, and I1151Tins) and C-terminus of the αC helix 

(F1174C/L/V) (61–63, 73). The exact structural mechanisms by which these mutations 

cause resistance are unclear, although they may enhance the kinase’s ATP-binding affinity 

and increase its enzymatic activity (63, 74). The I1171T/N/S mutation may distort the αC 

helix to interfere with TKI binding (75–78). Solvent-front mutations (G1202R, G1202del, 

D1203N, and S1206Y/C) represent another class of ALK resistance mutations that impair 

drug binding likely through steric hindrance (63, 73, 76–78). Numerous studies have 

revealed that G1202R in particular confers high level resistance to first- and second-

generation ALK TKIs (63, 76, 78). It remains to be seen whether the same spectrum of 

mutations will be detected in other ALK-positive cancers treated with ALK TKIs; to date, 

several of the same mutations have been identified in ALCL cell lines (e.g., I1171T/N, 

F1174C, L1196Q) and an IMT patient post-crizotinib (e.g., F1174L) (79–81).

Given the structural differences among the available ALK TKIs, it is perhaps not surprising 

that each ALK TKI appears to be associated with a specific profile of secondary ALK 
resistance mutations (Figure 3A). A notable example involves the general difference in 

resistance mutations that arise on the first-generation ALK TKI crizotinib versus second-

generation ALK TKIs (e.g., ceritinib, alectinib, brigatinib) (Figure 3). Recently, over 100 

repeat biopsies from patients with ALK-positive NSCLC progressing on first- and second-

generation AKI TKIs were analyzed (78). Secondary ALK mutations were observed in 20–

30% of patients progressing on crizotinib, versus 56% of patients progressing on second-

generation ALK TKIs (Figures 3B, 3C) (63, 72, 78). In line with prior studies, L1196M and 

G1269A were the most common resistance mutations detected in post-crizotinib samples. 

Interestingly, G1202R was found in only 2% of post-crizotinib samples, whereas it was the 

predominant resistance mechanism post-ceritinib, -alectinib, and -brigatinib (frequency 

ranging between 21–43%) (78). This distinction likely reflects the greater potency of 

second-generation ALK TKIs versus crizotinib, resulting in the suppression of other, less 

potent resistance mutations that are seen with crizotinib. Of note, the third-generation pan-

inhibitory ALK TKI lorlatinib has been shown to effectively inhibit G1202R in cell lines and 

in patients (78, 82).

Several other ALK resistance mutations also show differential sensitivity/resistance to 

distinct ALK TKIs. For example, I1171 mutations are frequently identified in alectinib-

resistant specimens, but not in ceritinib-resistant cases (75–78). Cell lines harboring I1171 

mutations are resistant to alectinib, but sensitive to ceritinib. Conversely, F1174 mutations 

confer resistance to ceritinib, but are sensitive to alectinib, both in preclinical and clinical 
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studies (73, 76, 78). Defining the resistance mutation profiles associated with each ALK TKI 

will be critical to the rational sequencing of ALK TKIs in patients.

In the setting of failure of a second-generation ALK TKI, the development of a secondary 

ALK resistance mutation implies that ALK may still be functioning as the oncogenic driver. 

In patient-derived NSCLC cell lines with resistance to second-generation ALK TKIs, the 

third-generation ALK TKI lorlatinib could inhibit the growth of cell lines harboring ALK 
resistance mutations, but was inactive against those lines without ALK resistance mutations 

(78). This preclinical work suggests that defining the ALK status is particularly crucial in 

patients who have progressed on a second-generation ALK TKI. In this working model 

(Figure 4), those patients whose ALK TKI-resistant tumors harbor secondary mutations 

should be treated with another ALK TKI tailored to that resistance mutation, whereas those 

patients whose resistant tumors do not harbor an ALK resistance mutation should consider 

ALK-based combinatorial strategies (discussed below), rather than monotherapy with 

another ALK TKI.

As patients are treated with sequential ALK TKIs, compound resistance mutations can 

emerge, which adds another layer of complexity. Examples include C1156Y/I1171N after 

progression on sequential crizotinib, ceritinib, and alectinib; and E1210K/D1203N after 

sequential crizotinib and brigatinib (78). Functional studies in Ba/F3 cells suggest that 

compound mutations generally confer increased resistance to ALK TKIs (78). Similar 

examples exist in other oncogene-driven cancers treated using sequential TKIs. For example, 

in EGFR-mutant NSCLC treated with a first-generation followed by a third-generation 

EGFR TKI, compound T790M/C797S mutations arise, and when in cis, confer resistance to 

all available EGFR TKIs (83, 84). In the case of ALK TKI-resistant cells with compound 

mutations, however, in vitro studies suggest that the highly potent TKI lorlatinib may remain 

a potentially effective option (78).

It should be noted that the presence of compound mutations does not always translate into 

increased drug resistance. As an illustrative example, a compound C1156Y/L1198F 

mutation was recently discovered in a patient with ALK-positive NSCLC who had relapsed 

on crizotinib due to C1156Y, followed by sequential ceritinib and lorlatinib (74). While 

C1156Y is sensitive to lorlatinib, the addition of L1198F disrupts binding of the drug and 

leads to lorlatinib resistance. Interestingly, biochemical and cellular assays demonstrated 

that the L1198F mutation paradoxically leads to re-sensitization to the less potent and 

selective inhibitor crizotinib. Based on the in vitro findings, the patient was re-treated with 

crizotinib, and had a durable response (74). This case underscores the emerging complexity 

of ALK resistance mutations and the importance of serial biopsies. It also serves as proof of 

principle that timely collaborative research at the bench and the bedside can reveal important 

biological insights into tumor evolution and translate into immediate clinical benefit for 

patients.

ALK-Dependent Resistance: Amplification of ALK

ALK amplification occurs less frequently than secondary mutations, but it is a recognized 

cause of acquired resistance to crizotinib. In one series of crizotinib-resistant NSCLC cases, 

high-level ALK amplification was identified in 1 of 15 (6.7%), without an accompanying 
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ALK mutation (63). Another series found new ALK copy number gain in 2 of 11 post-

crizotinib cases (18.2%), although one of these also had a concomitant ALK resistance 

mutation (72). Notably, a study using an ALK-positive cell line made resistant to crizotinib 

in vitro demonstrated that ALK amplification resulted in partial resistance, whereas the 

addition of the L1196M gatekeeper mutation resulted in high level resistance (65). ALK 
amplification has not yet been detected as a resistance mechanism after next-generation 

ALK TKIs (78), and therefore, may not be a clinically relevant resistance mechanism in the 

face of more potent ALK inhibition.

ALK-Independent Resistance: Activation of Bypass Signaling Pathways

Secondary ALK mutations and/or amplification account for ~30% of crizotinib resistance in 

ALK-positive NSCLC, yet most crizotinib-resistant tumors—including those without an 

identifiable on-target mechanism—remain ALK-dependent with sensitivity to next-

generation ALK TKIs (78). In contrast, 40–50% of cases resistant to second-generation 

ALK TKIs do not harbor on-target resistance mechanisms (Figures 3B, 3C), and these are no 

longer ALK-dependent based on studies described above (78, 85). One important category 

of ALK-independent, or off-target, resistance mechanism is the activation of bypass 

signaling track(s) through genetic alterations, autocrine signaling, or dysregulation of 

feedback signaling, resulting in the reactivation of downstream effectors required for tumor 

cell growth and survival.

Numerous examples of bypass signaling activation have been discovered as a cause of ALK 

TKI resistance (Figure 1). EGFR activation was the first identified bypass mechanism (62, 

63, 86). Phospho-RTK array analysis of ALK-rearranged lung cancer cell lines revealed 

increased EGFR phosphorylation in crizotinib-resistant cell lines lacking secondary ALK 
alterations, compared to parental crizotinib-sensitive cells (63). This was associated with 

higher EGFR mRNA expression and persistent activation of downstream ERK and AKT 

signaling. Interestingly, these cells did not harbor any EGFR mutations or amplification, 

suggesting that EGFR activation may result from receptor and/or ligand upregulation (63, 

86). In patients, assessment of paired pre- and post-crizotinib biopsy samples identified 

increased EGFR activation in 4 of 9 cases (44.4%) (63).

Subsequent work has implicated additional members of the HER receptor family in ALK 

TKI resistance (63, 87, 88). In a lentiviral ORF library screen designed to identify mediators 

of ALK TKI resistance, neuregulin-1 (NRG1), the ligand for ERBB3 (HER3) and ERBB4 

(HER4) tyrosine kinases, emerged as the strongest driver of resistance (87). The resistant 

phenotype induced by NRG1 overexpression was abrogated by combined inhibition of ALK 

and HER2, the dimerization partner for HER3. Consistent with these findings, gene 

expression profiling of crizotinib-resistant versus crizotinib-naïve NSCLC tumor samples 

using RNA sequencing (RNA-seq) followed by single-sample gene set enrichment analysis 

(ssGSEA) identified EGFR and HER2 signatures as two of the most enriched gene 

expression signatures in resistant tumors (87). It is unknown whether dual blockade of 

EGFR/HER2 and ALK could be effective in treating patients with acquired resistance to 

ALK TKIs, but toxicities of the combination may be a major hurdle (further discussed 

below).
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MET amplification is an example of bypass signaling that highlights the importance of 

considering the full spectrum of kinase targets for a given TKI in anticipating resistance 

mechanisms. MET activation is a known bypass signaling track in EGFR-mutant NSCLC 

(89, 90), but does not cause resistance to crizotinib, a potent ALK and MET inhibitor, in 

ALK-positive lung cancer. However, most next-generation ALK TKIs in development do not 

have anti-MET activity, and indeed, MET has recently been reported as a bypass mechanism 

in patients who have failed second-generation inhibitors like alectinib. In one case report, a 

post-alectinib biopsy did not reveal genetic alterations in ALK or EGFR, but demonstrated 

MET amplification by fluorescence in situ hybridization (FISH). This patient subsequently 

responded to crizotinib (91).

Direct reactivation of downstream effector proteins can also enable acquired resistance. 

MEK reactivation is a key example of this resistance mechanism (64, 92). In a recent study 

using a patient-derived ALK-rearranged lung cancer cell line post-ceritinib, a compound 

drug screen identified the MEK inhibitor selumetinib (AZD6244) as a potent hit combined 

with ceritinib (64). Subsequent NGS of this cell line revealed a MAP2K1 K57N activating 

mutation as the underlying genetic alteration leading to MEK activation. More importantly, a 

separate study demonstrated that ALK/MEK dual blockade may be effective not only in 

overcoming but also delaying ALK TKI resistance (92). In ALK-positive lung 

adenocarcinoma cell lines and mouse xenograft models, the RAS-MEK pathway was found 

to be the critical downstream effector of EML4-ALK. Upfront combination therapy with 

ALK and MEK inhibitors led to an increase in the magnitude and duration of treatment 

responses, and suppression of TKI resistance. Based on these findings, multiple combination 

regimens of ALK and MEK inhibitors may soon enter early-phase clinical testing.

Other examples of bypass signaling tracks clinically implicated in ALK TKI resistance 

include PIK3CA mutations (1 of 27 samples (3.7%), post-alectinib; a case post-ceritinib) 

(64, 78), KIT amplification (1 of 6 samples (16.7%), post-crizotinib) (63), IGF-1R activation 

(4 of 5 samples (80%), post-crizotinib) (93), and SRC activation (64) (Figure 1). Parallel use 

of different experimental platforms has been pivotal to the discovery and validation of off-

target resistance mechanisms. With the growing use of genomic sequencing, proteomic, and 

phospho-proteomic technologies, more candidate off-target mechanisms will likely be 

discovered. In one series utilizing targeted NGS, mutations were detected post-second-

generation ALK TKI in TP53 (in 56% of 27 specimens examined), DDR2, BRAF, FGFR2, 

MET, NRAS, and PIK3CA (each in 1 specimen) (78). Systematic assessment of pre- and 

post-TKI paired biopsies together with rigorous functional validation of candidate resistance 

mechanisms will be critical to identify those bypass tracks that represent therapeutic targets 

in resistant ALK-positive patients.

ALK-Independent Resistance: Lineage Changes

Phenotypic changes such as epithelial-to-mesenchymal transition (EMT) and small cell lung 

cancer (SCLC) transformation can contribute to the development of ALK TKI resistance. 

With EMT, tumor cells acquire a mesenchymal morphology along with migratory and 

invasive capacities. At the molecular level, they gain the expression of mesenchymal 

markers (e.g., vimentin) and lose epithelial markers (e.g., E-cadherin). This phenomenon has 
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been reported in ALK TKI-resistant cell lines and tumor samples (78, 94, 95). In one series, 

immunohistochemical (IHC) staining on ceritinib-resistant biopsies revealed evidence of 

EMT in 5 of 12 cases, although in 3 of these, concurrent ALK resistance mutations were 

detected. Therefore, the relative contribution of EMT to the ALK TKI resistant phenotype 

remains to be established. The molecular mechanism by which EMT mediates ALK TKI 

resistance is also not known. At least in EGFR-mutant NSCLCs that acquire EGFR TKI 

resistance via EMT, preliminary studies suggest a role for AXL and IGF-1R activation (96, 

97). In another study, the SRC/FAK pathway emerged as a key signaling node in 

mesenchymal EGFR TKI-resistant cancer cells, whose growth was inhibited by the 

multitargeted SRC inhibitor dasatinib (98).

Histologic change of tumor cells from adenocarcinoma to SCLC has been observed in 3–

10% of EGFR TKI-resistant NSCLCs (90), and a small number of recent case reports have 

now described resistance to crizotinib and alectinib mediated by this mechanism (99–102). 

Conceptually, this lineage change may contribute to ALK TKI resistance in a manner similar 

to EGFR TKI resistance, which has been associated with the acquisition of RB loss and 

genetic or epigenetic features of classical SCLC (103). As successful strategies are 

developed to target ALK resistance mutations and bypass signaling tracks (see below), 

lineage changes may emerge as an increasingly important mechanism of TKI resistance. 

Therefore, a better biologic understanding of this process is needed.

ALK-Independent Resistance: Drug Efflux Pump

P-glycoprotein (P-gp) is a highly conserved ATP-dependent efflux pump encoded by the 

multidrug resistance 1 (MDR1) gene, also known as ATP-binding cassette sub-family B 

member 1 (ABCB1) (104). Recent work has identified P-gp overexpression as a potential 

resistance mechanism in 3 of 11 ALK-positive, crizotinib- or ceritinib-resistant NSCLC 

patients (105). In a patient-derived cell line overexpressing P-gp, shRNA-mediated 

knockdown of ABCB1 or pharmacologic inhibition of P-gp using verapamil re-sensitized 

the resistant cells to crizotinib and ceritinib (105). These findings need to be validated in 

larger patient cohorts. Importantly, P-gp can limit the CNS penetration of crizotinib and 

ceritinib (106, 107); alectinib, by comparison, is not a P-gp substrate and is able to achieve 

higher CNS levels (105, 108). Rational design of novel TKIs that are not substrates of P-gp 

or other ABC efflux transporters may help enhance penetration into the brain.

Primary ALK TKI Resistance

In addition to secondary (acquired) resistance, primary (intrinsic) resistance—defined as de 
novo lack of treatment response—can be seen after treatment with a TKI. For example, a 

small number (~5%) of ALK-positive NSCLC patients treated with first-line crizotinib have 

progressive disease as their best response (4). Mechanisms of intrinsic resistance are poorly 

understood, and this represents an important gap in the field of ALK TKI resistance. In 

theory, any of the acquired resistance mechanisms outlined above could cause primary 

resistance if they were pre-existing in TKI-naïve tumors. Indeed, in the case of EGFR-

mutant lung cancers, primary resistance can arise due to a pre-existing T790M gatekeeper 

mutation (109, 110). However, the occurrence of de novo ALK resistance mutations appears 

to be rare in ALK-positive lung cancers (111). Similarly, pre-existing genetic alterations 
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affecting bypass signaling could cause primary resistance (112), but have not yet been 

reported in ALK-positive NSCLC.

A number of studies have examined whether the specific ALK fusion variant may influence 

de novo sensitivity to ALK inhibitors. Differential ALK TKI sensitivity of EML4-ALK 
fusion variants was initially suggested by an in vitro study using a Ba/F3 cell line, in which 

variant v3a showed the least sensitivity to crizotinib and the tool compound TAE684, 

followed by v1 and v3b with intermediate sensitivity, and v2 with the greatest sensitivity 

(113). Drug sensitivity was found to correlate with the overall protein stability of each fusion 

variant. More recently, a retrospective analysis of 55 EML4-ALK-positive NSCLC patients 

treated with crizotinib demonstrated a higher disease control rate and longer median PFS 

among those with EML4-ALK variant 1 compared to those with non-variant 1, suggesting 

that the precise ALK fusion variant may be clinically relevant (114). However, given the 

small number of patients in this retrospective analysis, these findings will need to be 

validated in larger studies (49).

It should be noted that a fraction of primary resistant cases may in fact be due to false-

positive genotyping. The registration trials of the currently approved ALK TKIs required 

ALK positivity by the break-apart FISH assay, which can yield false-positive results due to 

technical issues and variability in pathologist interpretation (115). On the other hand, ALK 
FISH may also yield false-negative results. The alternative FDA-approved diagnostic, IHC, 

has several advantages over FISH, but also has imperfect sensitivity and specificity, 

highlighting the importance of using multiple diagnostic methods including targeted NGS 

when clinically warranted (116, 117).

TUMOR HETEROGENEITY AND RESISTANCE

Polyclonal Resistance

A number of studies have demonstrated that heterogeneous resistance mechanisms may exist 

in tumor sites within one patient, or in tumor cells within one site, complicating efforts to 

therapeutically target resistant tumors. For example, ALK kinase domain resistance 

mutations have been reported to co-occur with ALK amplification (72) and with bypassing 

signaling activation such as c-KIT amplification (63). In another study, sequencing of 11 

resistant tumor lesions acquired at autopsy from an ALK-positive, ceritinib-resistant NSCLC 

patient revealed a MAP2K1 activating mutation and a PIK3CA activating mutation in 

separate tumor sites (64). These findings collectively demonstrate the phenomenon of 

“polyclonal resistance,” whereby tumors acquire drug resistance through the simultaneous 

development of multiple resistance mechanisms. Over time, with exposure to the selective 

pressures of different TKIs, the clonal composition of these tumors can continue to evolve 

(68, 74, 118).

Liquid Biopsies

The ability to detect and characterize polyclonal resistance in patients is critical, as targeting 

only one subclonal cell population can potentially lead to therapy failures (118). As multiple 

tissue biopsies are usually not feasible, non-invasive liquid biopsies and analyses of 
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circulating tumor DNA (ctDNA) represent a promising avenue to identify polyclonal 

resistance. The potential of liquid biopsies was recently highlighted in the context of 

colorectal cancer. In a patient progressing on the anti-EGFR monoclonal antibody 

cetuximab, discrete metastatic lesions were found to harbor different resistance mechanisms 

(e.g., a MAP2K1 mutation and a KRAS mutation), modulating treatment responses in a 

lesion-specific manner. While single-lesion tumor biopsies failed to capture this 

heterogeneity, both resistance mutations were detected in the patient’s serial plasma ctDNA 

(118).

In lung cancer, significant inroads have been made in using plasma-based assays to detect 

EGFR mutations, including the T790M gatekeeper mutation (119, 120). Indeed, a plasma-

based EGFR mutation test was recently FDA-approved based on data from a phase IV 

single-arm study of gefitinib (121), serving as a proof of concept that this diagnostic 

approach can be clinically implemented. Studies are now assessing whether liquid biopsies 

can similarly detect ALK fusions and resistance mutations in patients treated with ALK 

TKIs. Preliminary results appear promising (122, 123). In one study, cell-free DNA (cfDNA) 

isolated from plasma could be used to monitor the emergence and temporal evolution of 

ALK resistance mutations, including G1202R, during treatment with alectinib (122). 

However, more data is required before plasma-based assays can be routinely used in the 

clinic for monitoring ALK-positive patients. First, the ability of liquid biopsies to detect 

oncogenic fusions in general needs to be optimized. Second, their utility in real-time 

treatment monitoring and therapeutic stratification also needs to be further demonstrated 

through prospective and clinical intervention studies; this is one goal of the NCI-sponsored 

ALK Master Protocol. Ultimately, liquid biopsies have the potential to become a powerful 

diagnostic tool that complements repeat tumor biopsies, and at the same time, allows for 

more precise understanding at the genetic level of the longitudinal evolution and global 

landscape of resistance mechanisms.

DEVELOPING STRATEGIES TO OVERCOME RESISTANCE

Our understanding of the molecular mechanisms of ALK TKI resistance continues to 

mature, informing the development of new therapeutic strategies. The aim of targeting 

mechanisms of TKI resistance is two-fold: (i) effectively treat the relapsed disease by 

overcoming the dominant resistance mechanism, and (ii) enhance the depth and duration of 

tumor response upfront by preventing the emergence of resistance (60). While most efforts 

thus far have focused on the former, strategies to prevent resistance upfront are likely to have 

greater impact in the clinic.

Novel ALK TKIs: Many Options

Given the wide array of resistance mutations that can arise, multiple structurally distinct 

ALK inhibitors are needed. ALK TKIs that are currently available or being developed are 

listed in Table 2. As with the approved inhibitors crizotinib, ceritinib and alectinib, we 

anticipate that these emerging ALK TKIs will: (i) possess different potencies against 

resistant ALK mutants, (ii) differ in target kinase selectivity, and (iii) give rise to a distinct 

spectrum of ALK resistance mutations.
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For example, brigatinib (AP26113) is a potent ALK inhibitor that inhibits most crizotinib-

resistant ALK mutants (124–129). In the phase II ALTA trial, 222 patients with advanced 

ALK-positive NSCLC who progressed on crizotinib were randomized to two different 

dosing schedules of brigatinib. The confirmed ORR ranged from 45–54%, with median PFS 

of 9.2–12.9 months (127), similar to the phase II data seen with alectinib. A phase III trial 

(ALTA-1L; NCT02737501) is ongoing to assess the efficacy of brigatinib versus crizotinib 

in TKI-naïve ALK-positive NSCLC. In the interim, brigatinib has received breakthrough 

therapy designation by the FDA for the treatment of crizotinib-resistant, ALK-rearranged 

NSCLC. Some preclinical studies of brigatinib suggest activity against the G1202R mutation 

in cell lines and mouse models (128, 130), and a confirmed response to brigatinib has been 

reported in a patient with G1202R-mutant NSCLC (129). However, G1202R has also been 

detected in 43% (3/7) of ALK-positive NSCLC biopsies post-brigatinib (78). More 

importantly, a patient who relapsed after brigatinib with documented ALK G1202R in a 

repeat biopsy went on to have a durable response to lorlatinib (131), suggesting that while 

brigatinib may have some activity against G1202R, its potency is compromised by this 

mutation.

Entrectinib (RXDX-101) and ensartinib (X-396) are notable for their additional kinase 

targets. Entrectinib inhibits TRK in addition to ROS1 and ALK (132, 133). Updated results 

from a phase I study of entrectinib showed significant responses in TKI-naïve patients with 

NTRK-, ROS1-, and ALK1-rearranged solid tumors (confirmed ORR of 100%, 86%, and 

57%, respectively) (134). A phase II basket study of entrectinib is currently recruiting 

participants (NCT02568267). Similar to crizotinib, ensartinib has activity against ROS1 and 

MET in addition to ALK, and also targets AXL (135, 136). Preliminary analysis of 

ensartinib’s activity in ALK-rearranged NSCLC demonstrated responses in 7 of 8 patients 

who were crizotinib-naïve and in 11 of 19 patients who were previously treated with 

crizotinib (136). A phase III randomized trial (eXalt3; NCT02767804) will compare 

ensartinib to crizotinib in TKI-naïve ALK-positive NSCLC.

Lastly, lorlatinib (PF-06463922) is a third-generation ALK TKI that offers several 

advantages over second-generation TKIs. Lorlatinib has activity against all of the known 

ALK resistance mutations including G1202R, and is highly selective for ALK/ROS1 (78, 

82, 137). In the phase I portion of an ongoing phase I/II study (NCT01970865), lorlatinib 

was associated with an ORR of 46% among 41 patients with ALK-positive NSCLC, many 

of whom had progressed after two or more ALK TKIs (85). Responses to lorlatinib have 

also been reported in patients with ALK G1202R-positive NSCLC (78, 85, 131). Notably, 

lorlatinib was developed to evade P-gp-mediated efflux, and thus can achieve excellent CNS 

penetration (105). In the phase I study, the intracranial ORR to lorlatinib was 39% among all 

patients (85), and CNS responses have been noted after failure of prior crizotinib, ceritinib 

and alectinib, including dramatic improvements in leptomeningeal disease. Despite its 

promising activity, resistance to lorlatinib also emerges. A compound C1156Y/L1198F 

mutation was detected in a patient relapsing on lorlatinib (74). Structural studies suggest that 

this mutation causes steric hindrance to the binding of lorlatinib, and when superimposed on 

another ALK mutation, C1156Y, it confers high level resistance to lorlatinib (74). Studies 

are ongoing to uncover additional lorlatinib resistance mechanisms.
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Sequencing of ALK TKIs

The recent advances reviewed above underscore the critical need for repeat biopsies to guide 

therapeutic strategies. We strongly recommend pursuing repeat biopsies—when feasible and 

safe—in patients progressing on an ALK TKI. Particularly for patients who relapse on a 

second-generation ALK TKI, the detection of on-target versus off-target resistance 

mechanisms in repeat biopsy specimens is an essential factor in selecting the next therapy. 

The former generally indicates persistent ALK dependency and potential sensitivity to 

another ALK TKI, while the latter suggests the need to pursue an alternative approach (e.g., 

clinical trial of an ALK-based combination regimen or standard cytotoxic chemotherapy) 

(Figure 4). In addition, the detection of a particular ALK resistance mutation may inform the 

choice of the next ALK TKI, as discussed above, both in the crizotinib-resistant setting as 

well as after failure of a second-generation ALK TKI.

While general guidelines are emerging for determining the optimal later-line ALK TKI, 

which TKI to use in the first-line setting remains an ongoing controversy. Currently, 

crizotinib is the only FDA-approved agent for use in TKI-naïve ALK-positive NSCLC (4); a 

second-generation ALK inhibitor (e.g., ceritinib, alectinib) can be used once patients relapse 

on, or are intolerant of, crizotinib. However, the upfront use of a more potent and selective 

second-generation ALK inhibitor may substantially delay disease progression through 

various mechanisms. First, next-generation ALK TKIs have activity against multiple 

crizotinib-resistant mutations including the most common L1196M and G1269A mutations 

(82, 138), and may thus suppress the outgrowth of any pre-existing clones that harbor these 

mutations and also prevent them from emerging de novo. Additionally, most second-

generation TKIs have greater CNS activity than crizotinib, and would hence delay the 

development of brain and leptomeningeal metastases which are commonly seen in 

crizotinib-treated patients (7, 8, 139, 140).

The first reported results comparing a second-generation ALK TKI to crizotinib in the TKI-

naïve setting came from the J-ALEX study, comparing alectinib to crizotinib in Japanese 

patients with ALK-positive NSCLC. Preliminary results suggest that front-line alectinib may 

be superior to crizotinib (141). The median PFS in the crizotinib arm was 10.2 months (95% 

confidence interval (CI), 8.2–12.0 months), while the median PFS was not reached in the 

alectinib arm (95% CI, 20.3 months-not estimated) (141). Based on these results, alectinib 

was recently granted FDA breakthrough therapy designation for first-line treatment of ALK-

positive NSCLC. It is worth noting that there are a number of important limitations to the J-

ALEX study, including an imbalance of patients with baseline brain metastases and a higher 

than expected rate of toxicities with crizotinib. A similar but global phase III trial (ALEX) 

comparing first-line alectinib to crizotinib in ALK-positive NSCLC is ongoing 

(NCT02075840), and results of this study will likely be practice-changing. The ALEX trials 

have not allowed patient crossover at the time of progression. Therefore, they will not 

address the more relevant comparison of first-line alectinib versus sequential crizotinib 

followed by alectinib.
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Combination Regimens

The knowledge of bypass signaling tracks that can foster ALK TKI resistance has fueled 

efforts to develop combinatorial approaches for use in patients who relapse on TKI therapy, 

or in the upfront setting to delay resistance and potentially enable more durable responses 

than those achieved using monotherapy alone. Similarly, the discovery that each ALK TKI is 

associated with a unique spectrum of ALK resistance mutations suggests that combinations 

of ALK TKIs could be beneficial in overcoming or preventing on-target resistance 

mechanisms. Different combinations of targeted agents, chemotherapies, and/or 

immunotherapies with ALK TKIs are currently being evaluated. However, many of the 

ongoing studies are not biomarker-driven.

Clinical trials to test the efficacy of dual ALK and MEK blockade are being developed in 

light of the compelling preclinical data discussed above (64, 92). Combinations of ceritinib 

and LEE011, a CDK4/6 inhibitor, and of ceritinib and everolimus, an mTOR inhibitor, are in 

early-phase testing in NSCLC (NCT02292550 and NCT02321501, respectively); preclinical 

data for these approaches are limited. The combination of alectinib with bevacizumab, an 

anti-angiogenesis agent targeting vascular endothelial growth factor (VEGF), is being tested 

in patients with ALK-positive NSCLC with at least one CNS target lesion (NCT02521051). 

The rationale is that bevacizumab may help augment the systemic and intracranial drug 

activity by modulating the tumor vasculature (142). Findings from the ALK TKI resistance 

studies described above would also support efforts to therapeutically co-target ALK with 

MET, EGFR, KIT, or SRC (Figure 1).

Several studies are investigating the efficacy and tolerability of an ALK TKI combined with 

immunotherapy in lung cancer (e.g., crizotinib with nivolumab or ipilimumab 

(NCT01998126) or pembrolizumab (NCT02511184); ceritinib with nivolumab 

(NCT02393625); alectinib with atezolizumab (NCT02013219); lorlatinib with avelumab 

(NCT02584634)). However, there is limited preclinical data thus far to support this 

combination strategy. Although PD-1/PD-L1 inhibitors have demonstrated durable activity 

in a subset of NSCLC, responses are limited to ~20% of patients, and have been associated 

with high PD-L1 expression, high tumor mutational load, and smoking history (143–150). 

ALK-positive NSCLC patients tend to be never-smokers with a low tumor mutational load 

(151). Moreover, a recent study demonstrated that ALK-positive NSCLCs tend to lack 

concurrent PD-L1 expression and CD8+ tumor-infiltrating lymphocytes in the tumor 

microenvironment—an important component of response to immunotherapy (152). Indeed, 

no responses were seen among 6 ALK-positive NSCLC patients treated with checkpoint 

inhibitors in a small retrospective analysis (152), and in large randomized studies of 

previously treated NSCLC, subgroup analyses demonstrated no survival benefit to 

checkpoint inhibitors over chemotherapy in never-smokers and/or EGFR-mutant patients 

(144, 145). Therefore, the potential benefit of combining immunotherapies with ALK TKIs 

is unclear at this time, and the optimal sequencing and timing of such an approach warrants 

careful investigation. In addition, future studies will need to define the level of PD-L1 

expression in a larger cohort of ALK-positive (and other oncogene-driven) NSCLCs, and 

explore whether additional biomarkers predictive of response to immunotherapy may be 

present in a subset of these patients.
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Ultimately, any successful combination regimen will need to have demonstrated not only 

superior efficacy compared to monotherapy, but also tolerability and feasible dosing in 

patients. Toxicities are often exacerbated when two drugs are given in combination, and even 

unanticipated toxicities may arise. For example, combination of the third-generation EGFR 

TKI osimertinib plus the PD-L1 inhibitor durvalumab (MEDI4736) was found to cause 

interstitial lung disease in 38% of the patients, compared to 2–3% in patients receiving either 

osimertinib or durvalumab as monotherapy (153). Similarly, combined pan-HER and ALK/

ROS1/MET inhibition using dacomitinib and crizotinib, respectively, led to grade 3 or 4 

treatment-related adverse events in 43% of NSCLC patients, most common of which were 

diarrhea, rash, and fatigue (154). Design of alternative dosing schedules, such as the use of 

submaximal doses of each individual drug, or pulsed or intermittent dosing, may help 

mitigate toxicities.

Targeting Oligoprogressive or Oligopersistent Disease

Clinically, the course and pace of disease progression on a TKI can be variable among 

patients. While most patients develop systemic, multisite progression requiring a change in 

systemic therapy, a subset of patients develop progression limited to only one or a few 

anatomic sites, with the remaining disease sites continuing to be controlled by the TKI. This 

phenomenon has been termed “oligoprogression” (155, 156). In the case of oligoprogressive 

disease, local ablative therapy (LAT) using surgery or radiation may serve as a strategy that 

offers several advantages (Figure 4). First, LAT can eradicate the TKI-resistant clone(s) at 

the progressing sites and potentially delay the evolution of more heterogeneous resistant 

tumor cell populations. Second, it permits the continued, maximal use of the TKI that is 

otherwise active against sensitive tumor clones in sites that are not progressing.

The feasibility and utility of the LAT approach has been suggested by a limited number of 

single-institution, retrospective studies. In one study including 25 EGFR-mutant and ALK-

positive NSCLC patients with oligoprogressive disease on erlotinib and crizotinib, 

respectively, LAT followed by recommencement of the TKI led to an additional 6.2 months 

of median PFS (157). In an updated analysis of 14 ALK-positive NSCLC patients with 

extracranial oligoprogression on crizotinib, LAT led to 6- and 12-month actuarial local 

lesion control rate of 100% and 86%, respectively. The median time to second progression 

was 5.5 months, and median duration on crizotinib was 28 months (158). These results 

provide the rationale for larger, prospective studies of the local ablative strategy.

Taken one step further, patients may achieve an overall tumor response to a TKI but continue 

to have a few sites of persistent, residual disease (“oligopersistent disease”) (155). Similar to 

the oligoprogressive situation, these sites of oligopersistent disease may serve as a reservoir 

of residual, TKI-insensitive tumor cells that can eventually drive systemic therapy failure 

(159). In one randomized phase II study, the efficacy of adding local consolidative therapy 

after induction systemic therapy was compared to maintenance systemic therapy or 

surveillance in oligometastatic NSCLC (160). Among 49 patients including 8 with EGFR-

mutant or ALK-positive NSCLC who achieved disease control after the induction systemic 

therapy (e.g., platinum-doublet chemotherapy, erlotinib, or crizotinib), the addition of local 

therapy versus no local therapy led to an improved median PFS (11.9 months versus 3.9 
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months), suggesting that aggressive treatment of oligopersistent sites of disease may help 

improve patient outcomes. Another phase II trial is assessing the efficacy of treating up to 5 

sites of oligopersistent disease using stereotactic body radiation therapy (SBRT) within 6 

months of initiating TKI therapy, specifically in patients with EGFR-mutant, ALK-

rearranged, or ROS1-rearranged NSCLC (NCT02314364).

Targeting Persister Cells

An emerging question in ALK-rearranged cancers involves the role of drug-tolerant persister 

cells in driving residual disease on TKIs and ultimately therapy failure. Recent work 

suggests that persister cells, which survive the initial TKI exposure through adaptive 

mechanisms, can eventually acquire overt genetic alterations leading to full-fledged 

resistance and clinical relapse (161, 162).

In EGFR-mutant NSCLC, persister cells have been identified as an important nidus for the 

de novo development of heterogeneous EGFR TKI resistance mechanisms including EGFR 
T790M (162, 163). The persister cell-derived, de novo EGFR T790M-mutant cells emerge 

later than, and are biologically distinct from, the early-resistant, pre-existing EGFR T790M-

mutant cells (163). Compared to early-arising T790M-mutant cells, late-arising T790M-

mutant cells exhibit diminished apoptotic response to the T790M-mutant-selective EGFR 

TKI WZ4002. However, this can be overcome by the addition of navitoclax, a BCL2 

inhibitor. Based on these preclinical findings, the combination of osimertinib and navitoclax 

is now being evaluated in EGFR-mutant lung cancer patients after progression on a first-

generation EGFR TKI (NCT02520778).

A role for persister cells in mediating ALK TKI resistance has yet to be determined. It will 

be important to characterize the biology of persister cells and identify their therapeutic 

vulnerabilities which could be targeted to prevent de novo resistance. More broadly, there is 

a growing need to focus research efforts on designing and validating strategies to eradicate 

residual disease in order to suppress the emergence of resistance upfront. This anticipatory 

approach—rather than treating resistance once it has already developed—has the greatest 

potential to truly transform patient outcomes.

CONCLUSIONS

ALK is an established therapeutic target in lung cancer and several other hematologic and 

solid malignancies, including ALCL and IMT. Since its discovery as a fusion oncogene in 

1994, much insight has been gained into the biology of both native and oncogenic ALK. In 

parallel, numerous ALK inhibitors have entered the clinic, and to date, three have become 

standard therapies for advanced ALK-positive lung cancer.

Despite the remarkable responses seen with ALK TKIs, patients invariably relapse due to 

acquired resistance, and therefore, developing strategies to overcome or prevent resistance is 

an urgent priority. With the growing knowledge of resistance mechanisms, new treatment 

approaches can be rationally designed. These new approaches hold the promise of more 

effectively overcoming and suppressing drug resistance, translating into deeper and more 

prolonged responses in patients with ALK-driven cancers.
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Significance

Effective long-term treatment of ALK-rearranged cancers requires a mechanistic 

understanding of resistance to ALK TKIs so that rational therapies can be selected to 

combat resistance. This Review underscores the importance of serial biopsies in 

capturing the dynamic therapeutic vulnerabilities within a patient’s tumor, and offers a 

perspective into the complexity of on-target and off-target ALK TKI resistance 

mechanisms. Therapeutic strategies that can successfully overcome, and potentially 

prevent, these resistance mechanisms will have the greatest impact on patient outcome.
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Figure 1. Oncogenic ALK signaling
The ALK fusion protein is constitutively active and signals via phospholipase Cγ (PLCγ), 

JAK-STAT, RAS-RAF-MEK-ERK, and PI3K-AKT-mTOR pathways (13). This signaling 

results in the aberrant regulation of a number of genes (some of which are represented here), 

ultimately driving cell cycle progression, survival, proliferation, and angiogenesis (50). 

Secondary mutations in the ALK kinase domain (starred) cause acquired resistance to ALK 

TKIs. Several of the bypass signaling tracks implicated in ALK TKI resistance are also 

shown here —EGFR, HER2/HER3, MET, KIT, and IGF-1R with their respective ligands.
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Figure 2. Experimental platforms for discovery and validation of TKI resistance mechanisms
Tumor biopsy specimens from patients obtained at baseline (pre-TKI), on TKI, and after 

relapse on a TKI (post-TKI) serve as the gold standard model for studying resistance 

mechanisms. Liquid biopsies with circulating tumor DNA (ctDNA) analyses are being 

increasingly utilized. Generation of patient-derived cell lines and xenografts (PDX), if 

successful, can help facilitate the execution of systematic functional assays. Based on the 

identified resistance mechanisms, novel therapeutic strategies may be developed and tested 

preclinically, prior to entering clinical trials.
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Figure 3. Acquired resistance mechanisms to ALK TKIs
(A) The reported frequency of each secondary resistance mutation in the ALK kinase 

domain is depicted for post-crizotinib (n = 55), post-ceritinib (n = 24), post-alectinib (n = 

17), and post-brigatinib (n = 7) cases, based on reference 78. The absence of a colored bar 

representing an ALK TKI (e.g., a blue bar representing brigatinib) indicates that the 

particular ALK mutation was not detected in the tested cases progressing after that specific 

ALK TKI (78). In (B) and (C), the differential frequency of ALK secondary mutations in 

crizotinib-resistant versus second-generation ALK TKI (e.g., ceritinib, alectinib, brigatinib)-

resistant cases (20–30% versus 50–70%, respectively) is highlighted. Notably, the frequency 

of the G1202R mutation is significantly higher after relapse on a second-generation ALK 

TKI compared to crizotinib. ALK amplification appears to be an infrequent mechanism of 

resistance to second-generation ALK TKIs, although the exact frequency has not been 

determined (N.D.). WT = wild-type.
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Figure 4. Guidelines for selecting treatment after progression on an ALK TKI
When patients have oligoprogression on an ALK TKI, local ablative therapies can be 

considered. (A) When patients have systemic relapse on crizotinib, repeat biopsies should 

ideally be pursued if feasible, as the detection of particular ALK resistance mutations in a 

small number of patients (e.g., I1171, F1174, or G1202R mutations) may impact the choice 

of next-generation ALK TKI. However, the absence of an ALK resistance mutation after 

crizotinib usually does not translate into ALK independence, and these patients should go on 

to be treated with a next-generation ALK inhibitor. (B) After relapse on a second- or later-

generation ALK TKI, we strongly recommend repeat biopsies at the time of progression to 

determine the resistance mechanism. The detection of a secondary ALK resistance mutation 

is suggestive of continued ALK dependency of tumor cells, and therefore, sensitivity to 

another ALK TKI that has activity against the mutant kinase. If an ALK resistance mutation 

is not identified, resistance may have arisen due to bypass signaling, lineage changes, or 

other ALK-independent mechanisms. In these cases, the tumor cells are likely no longer 
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ALK-dependent, and combinatorial approaches or standard chemotherapy may be more 

effective.
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Table 1

ALK rearrangements in cancer.

Cancer type Frequency of ALK rearrangements ALK fusion partner gene Location of fusion partner References

NSCLC 3–7% TPR
CRIM1
EML4*
STRN
TFG
HIP1
PTPN3
KIF5B
KLC1
CLTC

1q25
2p21
2p21
2p22.2
3q12.2
7q11.23
9q31
10p11.22
14q32.3
17q23.1

2, 40–45

ALCL ~55% (in adults) TPM3
ATIC
TFG
NPM1*
TRAF1
CLTC
RNF213
TPM4
MYH9
MSN

1q21.2
2q35
3q12.2
5q35.1
9q33-q34
17q23.1
17q25.3
19p13.1
22q13.1
Xq11.1

1, 21–29

IMT Up to 50% TPM3
RANBP2
ATIC
SEC31A
CARS
PPFIBP1
CLTC
TPM4

1q21.2
2q12.3
2q35
4q21.22
11p15.5
12p12.1
17q23.1
19p13.1

30–37

DLBCL < 1% RANBP2
EML4
SEC31A
SQSTM1
NPM1
CLTC

2q12.3
2p21
4q21.22
5q35
5q35.1
17q23.1

164–171

Colorectal cancer < 1% EML4
WDCP

2p21
2p23.3

172–175

Breast cancer N.D. EML4 2p21 173

RCC < 1% TPM3
EML4
STRN
VCL

1q21.2
2p21
2p22.2
10q22.2

176–179

RMC N.D. VCL 10q22.2 180

Esophageal cancer N.D. TPM4 19p13.1 181, 182

Ovarian cancer N.D. FN1 2q34 183

Abbreviations: ALK, anaplastic lymphoma kinase; NSCLC, non-small-cell lung cancer; TPR, translocated promoter region, nuclear basket protein; 
CRIM1, cysteine rich transmembrane BMP regulator 1; EML4, echinoderm microtubule associated protein like 4; STRN, striatin; TFG, TRK-fused 
gene; HIP1, huntingtin interacting protein 1; PTPN3, protein tyrosine phosphatase, non-receptor type 3; KIF5B, kinesin family member 5B; KLC1, 
kinesin light chain 1; CLTC, clathrin heavy chain; ALCL, anaplastic large cell lymphoma; TPM3, tropomyosin 3; NPM1, nucleophosmin; TRAF1, 
TNF receptor associated factor 1; RNF213, ring finger protein 213; TPM4, tropomyosin 4; MYH9, myosin, heavy chain 9, non-muscle; MSN, 
moesin; IMT, inflammatory myofibroblastic tumor; RANBP2, RAN binding protein 2; SEC31A, SEC31 homolog A; CARS, cysteinyl-tRNA 
synthetase; PPFIBP1, PTPRF interacting protein, binding protein 1; DLBCL, diffuse large B-cell lymphoma; SQSTM1, sequestosome 1; WDCP, 
WD repeat and coiled coil containing; N.D., not determined; RCC, renal cell carcinoma; VCL, vinculin; RMC, renal medullary carcinoma; FN1, 
fibronectin 1.

*
EML4 and NPM1 are the most common fusion partner genes in NSCLC and ALCL, respectively.
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