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The Superior Temporal Sulcus Is Causally Connected to the
Amygdala: A Combined TBS-fMRI Study

David Pitcher,! “Shruti Japee,” Lionel Rauth,> and “Leslie G. Ungerleider?
Department of Psychology, University of York, Heslington, York, YO105DD, United Kingdom, and 2Section on Neurocircuitry, Laboratory of Brain and
Cognition, National Institute of Mental Health, Bethesda, Maryland 20892

Nonhuman primate neuroanatomical studies have identified a cortical pathway from the superior temporal sulcus (STS) projecting into
dorsal subregions of the amygdala, but whether this same pathway exists in humans is unknown. Here, we addressed this question by
combining theta burst transcranial magnetic stimulation (TBS) with fMRI to test the prediction that the STS and amygdala are function-
ally connected during face perception. Human participants (N = 17) were scanned, over two sessions, while viewing 3 s video clips of
moving faces, bodies, and objects. During these sessions, TBS was delivered over the face-selective right posterior STS (rpSTS) or over the
vertex control site. A region-of-interest analysis revealed results consistent with our hypothesis. Namely, TBS delivered over the rpSTS
reduced the neural response to faces (but not to bodies or objects) in the rpSTS, right anterior STS (raSTS), and right amygdala, compared
with TBS delivered over the vertex. By contrast, TBS delivered over the rpSTS did not significantly reduce the neural response to faces in
the right fusiform face area or right occipital face area. This pattern of results is consistent with the existence of a cortico-amygdala
pathway in humans for processing face information projecting from the rpSTS, via the raSTS, into the amygdala. This conclusion is
consistent with nonhuman primate neuroanatomy and with existing face perception models.
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Neuroimaging studies have identified multiple face-selective regions in the brain, but the functional connections between these
regions are unknown. In the present study, participants were scanned with fMRI while viewing movie clips of faces, bodies, and
objects before and after transient disruption of the face-selective right posterior superior temporal sulcus (rpSTS). Results showed
that TBS disruption reduced the neural response to faces, but not to bodies or objects, in the rpSTS, right anterior STS (raSTS), and
right amygdala. These results are consistent with the existence of a cortico-amygdala pathway in humans for processing face
information projecting from the rpSTS, via the raSTS, into the amygdala. This conclusion is consistent with nonhuman primate
neuroanatomy and with existing face perception models. j

ignificance Statement

gaze (Puce et al., 1998; Allison et al., 2000; Hoffman and Haxby,
2000; Pitcher et al., 2011b; Pitcher, 2014 ), but the connections of
the pSTS with other brain areas are unknown. One possibility,
suggested by nonhuman primate neuroanatomical studies, is that
faces are processed via a cortical pathway projecting from the
banks of the STS to dorsal subregions of the amygdala (Aggleton
et al., 1980; Stefanacci and Amaral, 2000, 2002).

Like the pSTS, the amygdala has been strongly implicated in
neuroimaging studies of facial expression recognition (Morris et

Introduction

Faces provide a constantly changing source of information about
other people’s moods, intentions, and the focus of their attention.
In humans, a face-selective region in the posterior superior tem-
poral sulcus (pSTS) is believed to be a cortical locus for process-
ing the dynamic aspects of faces, such as facial expression and eye
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al., 1996; Whalen et al., 1998; Hoffman et al., 2007). In addition,
lesion studies in humans and in macaques, have shown that dam-
age to the amygdala impairs facial expression recognition (Adol-
phs et al., 1994, 1999; Calder et al., 1996; Hadj-Bouziane et al.,
2012). Based on this evidence, a functional connection between
the pSTS and amygdala has been proposed in face processing
models (Haxby et al., 2000; Calder and Young, 2005). More re-
cent neuroimaging studies (Calder et al., 2007; Pinsk et al., 2009;
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Figure 1.

Pitcher et al., 2011a) have identified an additional face-selective
region in the right anterior STS (raSTS), further suggesting the
existence of a cortical pathway projecting down the STS into the
amygdala specialized for face perception. In the present study, we
directly tested this proposal using a virtual lesion approach
(Pitcher et al., 2014). fMRI was combined with thetaburst trans-
cranial magnetic stimulation (TBS) to establish whether the
rpSTS is causally connected to the amygdala when viewing video
clips of faces.

Neurologically healthy participants completed two fMRI ses-
sions, performed on separate days, while viewing 3 s videos of
moving faces, bodies, and objects (Pitcher et al., 2011a). Scanning
was performed before and after TBS (Huang et al., 2005) was
delivered over the functionally localized right pSTS (rpSTS) or
the vertex, a point on the top of the head that acted as a TBS
control site. We then measured what effect TBS disruption had
on the neural responses evoked in the rpSTS and in the amygdala,
as well as in other face-selective regions, including the raSTS,
right fusiform face area (rFFA) (Kanwisher etal., 1997; McCarthy
etal., 1997) and right occipital face area (rOFA) (Gauthier et al.,
2000). We reasoned that, if the rpSTS, raSTS, and right amygdala
were components of a pathway for face processing, then tran-
siently disrupting the rpSTS would reduce the neural activity
evoked by faces in all three regions.

Materials and Methods

Participants. A total of 27 right-handed participants (15 females, 12
males) with normal or corrected-to-normal vision gave informed con-
sent as directed by the National Institutes of Health Institutional Review
Board. Four participants (2 females, 2 males) failed to complete both
TBS/fMRI sessions and were excluded from further analysis.

Stimuli. Stimuli were 3 s video clips from three different categories
(faces, bodies, and objects) that had been used in previous fMRI and TMS
studies of face perception (Pitcher et al., 2011a, 2012, 2014). Stills taken
from example videos are shown in Figure 1. There were 60 video clips for

Staticimages taken from three example videos of the dynamic face, body, and object video clips.

each category in which distinct exemplars appeared multiple times. Vid-
eos of faces and bodies were filmed on a black background, and framed
close-up to reveal only the faces or bodies of 7 children as they danced or
played with toys or with adults (who were out of frame). Fifteen different
moving objects were selected that minimized any suggestion of animacy
of the object itself or of a hidden actor moving the object (these included
mobiles, wind-up toys, toy planes and tractors, balls rolling down sloped
inclines). Stimuli were presented in categorical blocks and, within each
block, stimuli were randomly selected from the entire set for that stimu-
lus category. Hence, the same actor or object could appear within the
same block.

A separate group of participants (N = 20) rated the emotional valence
of our stimuli using a Likert scale (1= least emotionally Valent, 7 = most
emotionally valent). The mean scores and SEs were as follows: faces =
4.65 (0.35), bodies = 2.85 (0.32) and objects = 2.65 (0.35). A repeated-
measures ANOVA showed that faces were rated as significantly more
emotionally valent than bodies (p = 0.001) and objects (p = 0.001).
There was no significant difference between bodies and object (p = 0.5).

Procedure. Participants completed three separate fMRI sessions, each
performed on a different day. The first session was an fMRI experiment
designed to individually localize the TBS sites in each participant. The
data collected in this initial session were used for TBS target site identi-
fication only. During the two subsequent fMRI sessions, participants
were scanned before and after receiving TBS over either the rpSTS or the
vertex. Stimulation site order was balanced across participants.

Combined TBS/fMRI sessions. Functional data were acquired over 12
blocked-design functional runs lasting 234 s each. Functional runs pre-
sented short video clips of faces, bodies, and objects in 18 s blocks that
contained six 3 s video clips from that category. Participants were in-
structed to press a button when the subject in the stimulus was repeated
in the same block (e.g., a repeat of the same actor, body, or object). The
order of repeats was randomized and happened an average of once per
block.

During each scanning session, participants exited the scanner to re-
ceive TBS over either the rpSTS or the vertex, dividing the session into six
pre-TBS functional runs and six post-TBS functional runs. TBS over the
rpSTS, and vertex was balanced across participants. TBS was performed
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in a separate room from the scanner and, once completed, participants
reentered the scanner room immediately. Participants were out of the
scanner for no more than 7 min. Poststimulation scanning for all partic-
ipants began within 5 min of TBS delivery.

Brain imaging and analysis. Participants were scanned on a research
dedicated 3 tesla GE scanner. Whole-brain images were acquired using a
32-channel head coil (36 slices, 3 X 3 X 3 mm, 0.6 mm interslice gap,
TR = 25, TE = 30 ms). Slices were aligned with the anterior/posterior
commissure. In addition, a high-resolution T1-weighted MP-RAGE an-
atomical scan (T1-weighted FLASH, 1 X 1 X 1 mm resolution) was
acquired to anatomically localize functional activations. In each scanning
session, functional data were acquired over 12 blocked-design functional
runs lasting 234 s. Six runs were collected before TBS being delivered, and
six runs were collected after TBS was delivered.

fMRI data were analyzed using AFNT (http://afni.nimh.nih.gov/afni).
Data from the first four TRs from each run were discarded. The remain-
ing images were slice-time corrected and realigned to the last volume of
the last run before TBS during the TBS to vertex session, and to the
corresponding anatomical scan. The volume registered data were spa-
tially smoothed with a 4 mm FWHM Gaussian kernel. Signal intensity
was normalized to the mean signal value within each run and multiplied
by 100 so that the data represented percentage signal change from the
mean signal value before analysis.

A GLM was established by convolving the standard hemodynamic
response function with the 3 regressors of interest (one for each stimulus
category: faces, bodies, and objects). Regressors of no interest (e.g., 6
head movement parameters obtained during volume registration and
AFNT’s baseline estimates) were also included in this GLM.

Data from pre-TBS runs 1, 3, and 5 from the rpSTS stimulation session
and pre-TBS runs 2, 4, and 6 from the vertex stimulation session, were
used to identify face-selective regions of interest (ROIs). Regions that
showed a greater response to dynamic faces than dynamic objects were
identified as face-selective. The remaining runs (pre-TBS runs 2, 4, and 6
and post-TBS runs 1-6 from the rpSTS stimulation session and pre-TBS
runs 1, 3, and 5 and post-TBS runs 1-6 from the vertex stimulation
session) were used to examine the effect of TBS stimulation within the
face selective ROIs.

TBS site localization and parameters. Stimulation sites were localized
using individual structural and functional images collected during an
fMRI localizer task that each participant completed before the combined
TBS/fMRI sessions. In the localizer session, participants viewed the same
dynamic face, body, and object stimuli described above. The stimulation
site targeted in the rpSTS of each participant was the peak voxel in the
face-selective ROI identified using a contrast of greater activation by
dynamic faces than dynamic objects. The vertex site was identified as a
point on the top of the head halfway between the nasion (the tip of the
nose) and the inion (the point at the back of the head). TBS sites were
identified using the Brainsight TMS-MRI coregistration system (Rogue
Research), and the proper coil locations were then marked on each par-
ticipant’s scalp using a marker pen.

A Magstim Super Rapid Stimulator (Magstim) was used to deliver the
TBS via a figure-eight coil with a wing diameter of 70 mm. TBS was
delivered at an intensity of 80% of active motor threshold or 30% of
machine output (whichever was higher) over each participant’s func-
tionally localized rpSTS or vertex. We used a continuous TBS paradigm
(Huang et al., 2005) of 3 pulses at 50 Hz repeated at 200 ms intervals for
a 60 s uninterrupted train of 900 pulses. This same protocol was used in
a previous combined TBS/fMRI study of face perception (Pitcher et al.,
2014). The Stimulator coil handle was held pointing upwardand parallel
to the midline.

Results

Face-selective ROIs, including those in the amygdala, were iden-
tified individually in each participant with independent data us-
ing a contrast of fMRI responses evoked by dynamic faces greater
than responses evoked by dynamic objects (using a statistical
threshold of p = 0.0001). We identified five core ROIs: the rpSTS,
the raSTS, the rFFA, the rOFA, and the amygdala in 17 of the 23
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participants. The BOLD response to the three stimulus categories
(faces, bodies, and objects) was calculated in each ROI before and
after TBS was delivered over the rpSTS and the vertex control site
(Fig. 2). Pre-TBS stimulation data were calculated by taking three
runs from each of the two pre-TBS sessions so there were six
pre-TBS runs and six post runs collected in each of the post-TBS
rpSTS and post-TBS vertex sessions (for more information, see
Materials and Methods).

An analysis of the pre-TBS data collected during the rpSTS
and vertex stimulation sessions demonstrated that there were no
significant differences between the sessions. The data were en-
tered into a 2 (TMS Session: Pre-TBS to rpSTS; Pre-TBS to ver-
tex) X 3 (Stimuli: Faces; Bodies; Objects) X 5 (ROI: rpSTS;
raSTS; rFFA; rOFA; Right amygdala) repeated-measures
ANOVA. Crucially, there was no main effect of session (F(, ¢, =
0.2, p = 0.70) as well as no interaction between session and ROI
(Fla6a) = 2.1, p = 0.15), session and stimuli (F, 5,, = 0.9, p =
0.40), and no three-way interaction between session, ROI, and
stimuli (Fg 1,5y = 0.5, p = 0.90). Because we did not find any
differences in baseline activity in the two pre-TBS conditions, we
combined the 3 runs from pre-TBS to rpSTS and 3 runs from
pre-TBS to vertex. This was done to use the same amount of
data (6 runs) for pre-TBS baseline condition as the post-TBS
conditions.

To establish what effect TBS stimulation had on the BOLD
responses in face-selective regions, the data were entered into a 3
(Stimulus category: Faces; Bodies; Objects) by 3 (TBS: Pre-TBS;
TBS to rpSTS; TBS to vertex) X 5 (ROL rpSTS; raSTS; rFFA;
rOFA; Right amygdala) repeated-measures ANOVA. Results
showed significant main effects of stimulus category (F, ;,) =
181, p < 0.001) and ROI (F, 44, = 54, p < 0.001) but not of TBS
(Fa,32) = 1.9, p = 0.164). There was a significant interaction
between stimulus category and ROI (Fg ;54 = 18, p < 0.001)
and, crucially, also between stimulus category and TBS (F 444y =
2.5, p = 0.041). There was no interaction between stimulus cat-
egory, TBS, and ROI (F ¢ 556, = 0.7, p = 0.76).

Post hoc tests showed that TBS delivered over the rpSTS sig-
nificantly reduced the BOLD response to faces relative to the
pre-TBS baseline in the rpSTS (p = 0.019), the raSTS (p =
0.047), and the amygdala (p = 0.008) but not in the rFFA (p =
0.41) or the rOFA (p = 0.27). There were no significant effects of
TBS disruption for the body (p > 0.35) or object (p > 0.44)
stimulus categories in any of the ROIs.

Discussion

In the present study, we investigated the causal connections of the
face-selective pSTS using a combination of TBS and fMRI. One
likely region that receives input from the pSTS, as suggested by
nonhuman primate neuroanatomy, is the amygdala (Aggleton et
al., 1980; Stefanacci and Amaral, 2000, 2002). A functional con-
nection between the pSTS and the amygdala is proposed in mod-
els of face perception (Haxby et al., 2000; Calder and Young,
2005) and is consistent with fMRI data showing that the
amygdala responds selectively when viewing different facial ex-
pressions (Morris et al., 1996; Whalen et al., 1998). The results of
the present study, showing that transient disruption of the right
pSTS reduced the BOLD response to faces (but not to bodies or
objects) in both the rpSTS and the right amygdala, indicate that
the two regions are functionally connected. In addition, TBS de-
livered over the rpSTS also reduced the BOLD response to faces in
the raSTS, a second face-selective STS region, downstream of the
rpSTS, located close to the temporal pole (Pinsk et al., 2009;
Pitcher at al., 2011a). These results are consistent with the exis-
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Figure 2.

Percentage signal change data for the dynamic face, body, and object stimuli before and after TBS in the five core ROIs: the rpSTS, raSTS, right amygdala, rFFA, and rOFA. Error bars

indicate standard error. Brain slices show examples of the face-selective (dynamic faces > dynamic objects) ROIs in a typical participant. TBS delivered over the rpSTS selectively and significantly

reduced the BOLD response to dynamic faces only in the rpSTS, raSTS and right amygdale. *Sig

tence of a cortico-amygdala pathway for processing face informa-
tion projecting from the rpSTS, via the raSTS, into the amygdala.

The classic models of two visual cortical streams do not ac-
count for how changeable facial aspects, such as expression and
eye gaze, are processed in the human brain (Ungerleider and
Mishkin, 1982; Goodale and Milner, 1992). In humans, neither
the dorsal nor ventral pathways include the pSTS (but see Kravitz
et al., 2013), suggesting the possibility that it may be part of a
putative third pathway. A third pathway, beginning in the
motion-selective region MT and projecting down the STS, de-
voted to motion processing was proposed in a prior macaque
neuroanatomical study (Boussaoud et al., 1990). Further ana-
tomical evidence for this third pathway comes from a human
tractography study demonstrating that face-selective regions in
the STS are only sparsely connected with face-selective regions on
the ventral surface of the brain, such as the FFA (Gschwind et al.,
2012). The present data further support the existence of this third
pathway by showing that TBS delivered over the rpSTS reduced
the BOLD response to faces in the downstream face-selective
region in the raSTS and in the right amygdala.

nificant effects.

Further evidence suggests that the functional inputs to the STS
essential for face perception may be, at least in part, independent
of the ventral pathway. Neuropsychological studies have shown
that patients with lesions of the ventral occipitotemporal cortex
still exhibit neural activation to face stimuli in the pSTS (Steeves
et al., 2006; Dalrymple et al., 2011; Rezlescu et al., 2012, 2014).
More recently, in our prior combined TBS/fMRI study, we dem-
onstrated that the neural response to dynamic face information
in the rpSTS was unaffected by TBS disruption of the rOFA, the
presumed main input to the face cortical network and part of the
ventral pathway (Pitcher et al., 2014). In the present study, TBS
delivered over the rpSTS reduced the BOLD response to dynamic
faces in the rFFA and rOFA (Fig. 2), but this reduction was not
statistically significant. A functional connection between the
pSTS and the FFA is predicted in face processing models (Haxby
et al., 2000; Calder and Young, 2005), but the evidence for this
connection is inconsistent. In the first experiment of our earlier
study (Pitcher et al., 2014), TBS delivered over the rpSTS reduced
the BOLD response to faces in the rFFA (Pitcher et al., 2014, their
Fig. 3), but in the second experiment TBS delivered over the
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rpSTS had no effect on the BOLD response to faces in the rFFA
(Pitcher et al., 2014, their Fig. 4). This inconsistency suggests that
further work is required to establish whether and how the pSTS
and FFA are functionally connected.

Face-selective regions in the STS respond more strongly to
dynamic than static faces, whereas ventrally located face-selective
regions, like the FFA and OFA, show a weaker, or no, preference
for dynamic over static faces (Labar et al., 2003; Fox et al., 2009;
Pitcher et al., 2011a). This pattern of enhanced responses to dy-
namic, compared with static, faces in lateral relative to ventral
face-selective regions has also been shown in macaques (Fisher
and Freiwald, 2015). These results suggest that dynamic face in-
formation is processed via a functionally distinct cortical path-
way, at least partially independent of the rOFA and rFFA, which
begins in early visual cortex and projects, via motion-sensitive
V5/MT, into the pSTS.

Although the face stimuli used in the current study did not
explicitly express emotions, they were rated as more emotional
than the body and object stimuli. Despite this, we are confident
that our experimental effect was face-specific (and not a general
emotion effect) because our TBS target region in the rpSTS was
defined using a contrast of faces greater than objects and because
this region showed almost no response to objects (Fig. 2).
However, given that our face stimuli contained more emotional
salience than the bodies and objects, we cannot eliminate the
possibility that the rpSTS may be conveying emotional informa-
tion about the face, rather than just face information per se. Al-
though the STS has not previously been implicated in emotion
processing, except in the context of faces and bodies (de Gelder et
al., 2015), based on the current study, we cannot categorically say
whether the TBS effect is face-related or emotion-related, but
rather that it is related to faces with emotional content. This issue
will have to be addressed in a future study using face videos that
differ in emotional content (e.g., happy faces vs neutral faces). If
TBS delivered over the rpSTS reduced the BOLD signal in the
amygdala only for the emotional faces but not for neutral faces,
then one could conclude that the rpSTS conveys information
about the expression in the face, and not just face information per
se. A parallel experiment with videos of emotional and neutral
body expressions will further help uncover whether the causal
link between pSTS and amygdala conveys general emotion or
category-specific information.

In conclusion, the existing neuropsychological, TBS, and
fMRI evidence suggests that face information can reach the pSTS
independently of the ventral pathway, further suggesting the ex-
istence of a functionally distinct cortical pathway (O’Toole et al.,
2002; Pitcher et al., 2014). The current findings provide evidence
to support this hypothesis by showing that this face-selective
pathway extends into anterior portions of the STS, and then into
the amygdala.
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