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Abstract

The receiver operating characteristic (ROC) curve is the most popular statistical tool for evaluating 

the discriminatory capability of a given continuous biomarker. The need to compare two correlated 

ROC curves arises when individuals are measured with two biomarkers, which induces paired and 

thus correlated measurements. Many researchers have focused on comparing two correlated ROC 
curves in terms of the area under the curve (AUC), which summarizes the overall performance of 

the marker. However, particular values of specificity may be of interest. We focus on comparing 

two correlated ROC curves at a given specificity level. We propose parametric approaches, 

transformations to normality, and nonparametric kernel-based approaches. Our methods can be 

straightforwardly extended for inference in terms of ROC−1(t). This is of particular interest for 

comparing the accuracy of two correlated biomarkers at a given sensitivity level. Extensions also 

involve inference for the AUC and accommodating covariates. We evaluate the robustness of our 

techniques through simulations, compare to other known approaches and present a real data 

application involving prostate cancer screening.
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1. Introduction

The early detection of prostate cancer is primarily based on the serum concentration of 

prostate-specific antigen (PSA). The use of PSA as a screening biomarker, however, has 

raised concerns about the potential for overdiagnosis and overtreatment, which results in 

increased treatment-related morbidity and cost (see [1]). The disadvantage of using PSA as a 

screening tool is that it is not specific to cancer; other conditions such as prostatitis or 

urinary tract infections may increase PSA levels (see [2]). That study reported such concerns 

and the use of a non-coding, large chain RNA known as prostate cancer antigen 3 (PCA3) in 

prostate cancer screening. They evaluated the incremental value in terms of the diagnostic 

accuracy of PCA3 compared to that of PSA-based screening. Addressing the concerns of 
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over or underdiagnosis implies that we might need to focus on the performance of the 

biomarkers at specific false positive rates (or sensitivity levels). Namely in such situations 

we typically want to force high sensitivity for aggressive cancer while reduce the false 

positive rate for benign tumors.

The receiver operating characteristic (ROC) curve is a tool for determining the overall 

effectiveness of a continuous or ordinal biomarker. Assuming continuous measurements for 

the healthy and diseased individuals, denoted by WA and WB respectively, and under the 

further assumption that higher marker scores are more indicative of the disease (without loss 

of generality), then sensitivity equals the so-called true positive rate TPR = sens(c) = P(WB 

> c) and specificity equals the so-called true negative rate TNR = spec(c) = P(WA < c), 

where c is a decision cutoff. For different cutoff values c, we obtain different pairs of 

sensitivity and specificity. The ROC is the curve obtained by all possible pairs of sensitivity 

and specificity as c moves through the real line: ROC(c) = {(FPR(c), TPR(c)), c ∈ (−∞, 

∞)} where FPR is the false positive rate and is equal to P(WA > c). It can be shown that if 

WA ~ FA(·) and WB ~ FB(·), then the underlying ROC can be written as a function of the 

corresponding survival functions, SA(·) = 1 – FA(·) and SB = 1 – FB(·), yielding 

, t ∈ (0, 1). A summary index for the biomarker’s effectiveness is the 

area under the curve (AUC) and is simply defined by  ROC(t)dt. For a detailed overview 

regarding ROC curves see [3].

In paired studies, where two biomarkers are to be compared, individuals are measured with 

both biomarkers; hence, their measurements are correlated. Let W1A be the scores of the 

healthy individuals when measured with biomarker 1, and W2A their corresponding scores 

obtained by biomarker 2 (random variables W1B and W2B are similarly defined for the 

diseased group). For the i–th healthy individual it holds that Corr(W1Ai, W2Ai) ≠ 0 and for 

the j–th diseased individual it holds that Corr(W1Bj, W2Bj) ≠ 0. We assume that for a given a 

marker, whose measurements are denoted with W, a subject’s measurement does not affect 

another subject’s measurement, regardless the group in which they belong, namely Corr(Wi, 

Wj) = 0, for ∀i ≠ j. As pointed out by a referee, such an assumption might not always hold. 

For example if measurements are taken within clustered individuals, e.g. within the same 

family, same block, or a condition that could hold for multiple subjects (such as hormone 

replacement use by women) it might be the case that measurements of one subject are 

correlated with those of another. Covariate adjustments as fixed effects (e.g. hormone 

replacement therapy) or random effect terms (e.g. family) could be added into a biomarker 

model to address these issues. However, such settings are beyond the scope of our study. 

There are three main comparison scenarios on which researchers commonly focus (see also 

[4, 5]): (1) Testing whether two ROC curves are equal for all FPRs, (2) Testing whether their 

AUCs (or partial AUCs) are equal, and (3) Testing whether two ROC curves are equal at a 

particular FPR. In practice, the first comparison scenario is not popular because primary 

interest lies in specific FPRs and it is rather rare for two biomarkers to perform equally well 

at all FPR regions. For approaches relevant to this setting, see [6–9]. Most researchers have 

focused on the AUC. DeLong et al. [10] focused on the nonparametric setting and based 

their approach on the theory of generalized U-statistics. Metz et al. [11] explored methods 

based on the maximum likelihood and developed the ROCKIT software. Zhou and Gatsonis 
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[12] considered a nonparametric framework for partially paired designs, and Zou [13] 

considered a semiparametric approach involving monotone transformations. Molodianovitch 

et al. [14] investigated the use of the Box-Cox power family of transformations. While two 

ROCs exhibit the same AUCs, they might differ substantially, i.e. when two ROC curves 

intersect. In practice, clinicians may need to compare two biomarkers at specific FPRs or 

even at specific TPRs to avoid overdiagnosis or underdiagnosis. Such issues arise in the 

aforementioned prostate cancer example. Hence, particular interest lies in scenario (3), on 

which we focus in this paper. The literature for this scenario is limited. Linnet [15] and 

Wiend et al. [16] developed nonparametric approaches that refer to the empirical setting. 

The empirical ROC curve is a step function that exhibits jumps when the number of 

individuals related to each FPR, TPR, changes, as the cutoff spans the real line. Hence, the 

crude empirical estimate has the disadvantage of providing the same TPR for different FPRs. 

This is not the case for the true ROC curve, for which a natural assumption is that it is a 

smooth curve.

Even though fixing a decision cutoff directly implies a specific FPR level at which to 

compare the two ROC curves, caution is needed depending on the focus of the study. When 

the focus is on biomarker discovery then it might be of interest to simply fix directly the 

FPR level at minimally tolerable levels, for example 5%, in case the clinical interest is to 

avoid overdiagnosis. If, on the other hand, clinical interest lies in achieving initially a high 

level of sensitivity then one needs to focus on comparisons where TPR is fixed in high 

values say 95%. When, however, a biomarker is established and its cutoff (decision 

threshold) has been validated, then clinical interest may lie in comparing the two ROC 

curves at that established cutoff so that comparison would also provide the best biomarker in 

terms of clinical classification.

In this paper, we focus on testing for equality between two correlated ROC curves at a 

particular t = FPR point. We consider smooth functions for the ROC curve. The paper is 

organized as follows: In Section 2, we explore the common assumption of normality, in 

which we assume two bivariate normal distributions that respectively refer to (W1A, W2A) 

and (W1B, W2B). We proceed to the construction of a statistic based on the delta method. In 

Section 3, we extend this delta-based methodology by exploring the Box-Cox transformation 

to normality, while the variability of the transformation-related parameters is also taken into 

account. In Section 4, we propose a technique based on a kernel bootstrap as a 

nonparametric approach. All our approaches are capable of accommodating covariates that 

might affect the accuracy of the biomarkers under study. In Section 5, we show how our 

methods can be extended to test the equality of two AUCs. In Section 6, we present a 

simulation study, showing that all our methods result in tests with satisfactory size and 

power. For that scenario, we consider comparisons with the most celebrated method, which 

is presented in [10]. In Section 7, we illustrate our methods on a real data set obtained from 

patients with prostate cancer and conclude with a discussion.
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2. Assuming Bivariate Normality

Here we assume that [W1AW2A]′ follows a bivariate normal distribution with corresponding 

means μ1A, μ2A, corresponding variances ,  and covariance covA. Similarly for 

[W1BW2B]′. Thus, the corresponding likelihood of the data is (see also [14] and [17]).

(1)

where p = (μ1A, σ1A, μ2A, σ2A, μ1B, σ1B, μ2B, σ2B, covA, covB) and ΣA and ΣB are the 

corresponding covariance matrices, namely , and 

.

Maximizing (1) yields the estimate . From the inverse of the observed Fisher’s information 

matrix I (which is presented in Web Appendix Part B), we obtain an estimate of the variance 

covariance matrix V, namely , of all the parameters in vector . The two underlying ROC 
curves under the normality assumptions can be written in closed form as

and similarly for ROC2(t). Their corresponding estimates are obtained by plugging in the 

maximum likelihood estimates of the underlying parameters: 

. Approximations of their corresponding variances 

can be obtained on the basis of the delta method. All derivatives of the ROC1(t) function 

with respect to its corresponding parameters are tractable in closed form (see Web Appendix 

B). Hence, based on the delta method we can approximate the variance of :

(2)
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where  is the corresponding estimate of V1, the covariance matrix of μ1A, σ1A, μ1B, σ1B, 

which can be extracted by . Similarly for  where  is also extracted from 

 and is the estimated covariance matrix of parameters μ2A, σ2A, μ2B, σ2B. For their 

corresponding covariance, we obtain

(3)

where  is the 8 × 8 upper left part of . Based on the statistic

(4)

we may proceed to inference. The simulation studies (see Tables 1 and 2) show overall good 

performance in terms of the size of this test. However, under the null hypothesis, for highly 

accurate biomarkers and for large values of the FPR, the size of this test declines, making 

the test conservative for high FPR regions. This is because the test (4) implies normality of 

the estimated curves  without taking into account the fact that 

, i = 1, 2. The same phenomenon appears to hold for the power of the test. 

An alternative version of the above statistic would involve the comparison of a 

transformation of ROC1(t) and ROC2(t) from [0, 1] to the real line. A convenient 

transformation under this framework that serves that purpose would be the inverse normal 

cdf Φ(·) since it would enhance the elegance of all derivatives of the ROCi(t), i = 1, 2 

function with respect to its location and scale parameters. For the required partial derivatives 

see Web Appendix B. Hence, one can proceed straightforwardly with the delta method since 

all covariance matrices that are to be extracted from the inverted information matrix remain 

unchanged under this transformation. We denote the proposed statistic with Z*:

(5)

2.1. Accommodating Covariates

Perhaps the accuracy of the biomarkers under study depends on some covariates that 

(partially) characterize the profile of a subject. Let p be the number of the available 

covariates as Z1, Z2, …, Zp. Without loss of generality and to keep the notation simple, we 

consider that p covariates are available for all underlying groups. A common way to 
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incorporate them under an ROC framework is to use the linear regression model. We 

consider that the covariates may have a different effect with respect to each of the two 

biomarkers. We consider linear regression models of the following form:

(6)

where  is the value of the j–th covariate for the i–th healthy individual of the first 

marker (namely for (1A)), and the expressions and notation are analogous for the remaining 

three regression models. To incorporate the correlation of the two markers, we assume that 

Cov(ϵ1Ai, ϵ2Ai) ≠ 0, Cov(ϵ1Bi, ϵ2Bi) ≠ 0, Cov(ϵ1Ai, ϵ1Bi) = 0, Cov(ϵ2Ai, ϵ2Bi) = 0. Under the 

further assumptions of zero mean, homoscedasticity and pairwise bivariate normality for the 

error variances within each regression model (i.e., (1A), (2A), (1B) and (2B)), we have

and for the joint density function of the data from the diseased individuals the expression is 

similar. The corresponding likelihood of the data is

(7)

where pZ = (βA, σ1A, σ2A, covA, βB, σ1B, σ2B, covB) with 

 and . 

Fisher’s information matrix in this setting is given by the block diagonal matrix IZ = 

−diag{MA, MB} where MA and MB contain all second order partial derivatives that refer to 

vectors (βA, σ1A, σ2A, covA) and (βB, σ1B, σ2B, covB) respectively. The corresponding 

derivatives are presented in the Web Appendix (Part B). Similarly, one can derive MB and 

hence, by inversion of IZ, obtain an estimate of the corresponding covariance matrix VZ, . 

The ROC curves under this setting are
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(8)

where with Z(1A) and Z(1B) we denote the given covariate profile for both the healthy and 

diseased individuals. For the corresponding partial derivatives see Web Appendix B. 

Approximations of their corresponding variances can be obtained on the basis of the delta 

method. Specifically,  can be approximated by

where  is the corresponding estimate of V1Z, the variance covariance matrix of (β(1), 

β(2), σ1A, σ1B), which can be extracted by . The variance approximation is similar for 

. The covariance ,  is 

approximated with a similar fashion by using  which can be constructed on the basis of 

. Based on the statistic Z*, we may proceed to inference:

The partial derivatives involved in the delta method, which are required for the construction 

of the Z test and Z* test, are given in the Web Appendix (Part B). One might assume that 

, , σ1A = σ1B, σ2A = σ2B if such assumptions are justified by the 

underlying clinical setting. The first two equality assumptions are implying that the 

covariates have the same effect for both the healthy and the diseased which is often realistic 

since one may argue that covariates are not to be considered directly as biomarkers 

themselves. Here we present the more general case for the shake of notation.

3. Box-Cox Transformation

When normality is not justified, it is common practice to use a monotone transformation that 

will lead to approximate normality. The Box-Cox transformation (see [18]) has been used 

when the available data do not conform to the binormal assumption (see [4]; [19]). For 
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paired data designs and the corresponding likelihood see under the Box-Cox transformation 

see [14]. The Box-Cox transformation that would transform a random variable Y to the 

approximate normal Y(λ) is defined by , if λ ≠ 0 and as log(Y), if λ = 0. The 

transformation parameters, λ1 and λ2, for each marker, will be estimated by the data and 

hence their variance must be taken into account. This issue is also addressed in [20] under a 

different framework. Note that the fact that the underlying densities are marginally 

transformed to approximate normality is not sufficient to ensure that the underlying bivariate 

distribution is a bivariate normal distribution. However, in order to take into account the 

underlying correlation within the healthy and diseased groups, we will assume bivariate 

normality after the Box-Cox transformation. Hence, we consider , , , 

as the Box-Cox transformed marker measurements. In this case, the likelihood is of the 

following form:

(9)

where ,  and the 

parameter vector of interest is 

.

By maximizing (9), we obtain . By inverting the negative Hessian matrix, we derive an 

estimate of the covariance matrix of all 12 parameters, denoted as G. The information matrix 

in this case, denoted as I(λ1,λ2), is a 12 × 12 matrix and is given in the Web Appendix (Part 

B). By calculating I(λ1,λ2) at the maximum likelihood estimates of all parameters followed 

by inversion, we obtain an estimate of the corresponding covariance matrix, denoted as . 

We then obtain the corresponding variances and covariance for the two transformed ROC 

curves:
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(10)

where  is the corresponding estimate of , the variance covariance matrix of , 

, , , which can be extracted by . Similarly for  where 

 is also extracted from . The covariance , can be 

approximated by

(11)

where  is the 8 × 8 upper left part of . The variability of the transformation parameters 

has been taken into account at this stage and, based on statistic Z or the proposed statistic 

Z*, we can proceed to inference.

3.1. Accommodating Covariates

Consider models (6). A more robust approach is to assume that instead of direct normality 

for the response, normality is achieved by the Box-Cox transformation. The likelihood of the 

data in this case is of the following form:

(12)
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where  and similarly for , , . By maximizing 

(12), we obtain an estimate of , . Obtaining and inverting the corresponding 

Fisher’s information matrix (see the Web Appendix B for its derivation) allows us to proceed 

to the delta method. The partial derivatives of ROC1(t) and ROC2(t) with respect to all 

regression coefficients and corresponding variances are presented in the Web Appendix (Part 

B).

4. Kernel-based Approach

In scenarios in which the Box-Cox transformation is not sufficient, a nonparametric 

approach is preferable. We explore a kernel-based approach. We consider two bivariate 

kernel density estimates, one for WA and one for WB. The simplest bivariate or multivariate 

kernel estimator is obtained through the product kernel form, also known as the 

multiplicative kernel. This form has the appealing property that marginally the densities have 

the same form as in the univariate setting, which reduces the computational burden of the 

numerical integration. Kernel based ROC curves have also been discussed in [21]. For an 

overview of kernel density estimation and multivariate kernel estimators, see [22–24]. Using 

the bivariate kernel product, the bivariate kernel density for the data from the healthy 

individuals is of the following form:

(13)

and the expression similar for the data from the diseased individuals, where 

, h1A and h2A are bandwidths for the healthy individuals and h1B and h2B 

are the bandwidths for the diseased individuals. Scott [22] presented bandwidths that are 

optimal in terms of the asymptotic integrated mean squared error (AMISE) when normal 

kernels are employed. Here, we explore the use of normal kernels and such bandwidths that 

are of the form 

, where 

std(W1A), std(W2A), and ρA refer to the standard deviations, and correlation of the 

corresponding samples and their estimates can be directly plugged in to obtain the 

corresponding estimated bandwidths. The expressions for h1B, h1B, h2B are similar. Based 

on (13), we can derive the marginal distributions and hence the two correlated kernel-based 

estimates  and , k = 1, 2, where 

 is the survival function related to a random variable W. By performing 

the bootstrap in which the kernels are refitted for each bootstrap sample (sampled in pairs), 

we can obtain the needed estimates of , , 

 and proceed to inference using the statistic Z*, as stated in the 

previous sections. Performing the bootstrap takes into account both the correlation within 
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the healthy and diseased individuals as well as the variability of the bandwidths. The 

proposed approach is summarized by the following algorithm:

• Step 1: Sample with replacement nA pairs of (W1Ai,W2Ai), i = 1, 2, … , nA and 

nB pairs of (W1Bj,W2Bj) j = 1, 2, … , nB and obtain the bootstrap-based data set: 

 and .

• Step 2: Based on  and , estimate the corresponding 

kernel survival functions and obtain the transformed kernel-based ROC 

estimates: , k = 1, 2.

• Step 3: Repeat Steps 1-2 m times and based on these m bootstrap estimates of 

Φ−1(ROCk(t)), obtain , , 

. and proceed to inference based on Z*.

4.1. Accommodating Covariates

We consider two multivariate normal kernel densities:

(14)

and similarly for , where K(·) refers to the normal kernel and the 

bandwidth related to the healthy group (A) of the first marker is 

. Similarly 

for h2A, h1B, h2B. For the bandwidths of the covariates one could assume simple plug in 

bandwidths of the form  since the correlation is 

taken into account by the product of the kernels. However, more sophisticated bandwidth 

techniques could be employed that involve bandwidth matrices (see [23, 24] among others). 

By appropriate integration one can derive kernel based estimates of the conditional densities 

of the scores given the covariates fWij|Z1,Z2,…,Zp where i = 1, 2 and j = A,B. The 

construction of the underlying kernel based ROC estimate is then straightforward. The 

proposed bootstrap based approach in this setting involves resampling with replacement and 

deriving the necessary conditional density estimates. Based on these densities we can 

construct the corresponding ROC curves for each bootstrap sample. We repeat m times, and 

based on these m bootstrap ROC estimates, we can calculate the necessary variances and 

covariances involved in statistic Z*. A further advantage of this non-parametric technique is 

that the assumption of an underlying linear model is relaxed.
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5. Comparing Areas under the ROC Curve

In the previous section, we focused on comparing two correlated ROC curves at a specific 

FPR. Even though the AUC suffers from the drawbacks stated in the Introduction, its use is 

celebrated. Our methods can be straightforwardly expanded for AUC comparison. Under the 

assumption that the measurements of the healthy and diseased individuals follow two 

bivariate normal distributions, the AUC for the first biomarker can be written in closed form 

(see also [3], for an overview regarding the AUC estimation): 

, and similarly for biomarker 2. The transformation Φ(·) 

convenient in terms of ROC(t) since it will reduce all partial derivatives to simpler 

expressions. In addition, it circumvents the fact that inference of AUC is based on 

approximate normality (and hence the underlying implied support lies on the real line) of the 

corresponding estimate . By definition, 0 < AUC < 1 (even though clinically we can 

assume that 0.5 < AUC < 1) and hence a transformation to the real line might be useful, 

especially in settings where we are dealing with biomarkers for which there is a threshold 

that corresponds to a sensitivity or specificity near 1. In this setting, the partial derivatives 

involved in the delta method are persented in Web Appendix B.

One can proceed straightforwardly to the delta method by using the variance matrix V1 that 

refers to all the parameters involved. The corresponding partial derivatives for AUC2 are 

analogous, and one can proceed to the delta method for the approximation of  by 

using the variance matrix V2. The covariance  can be approximated by 

the delta method using V12. The assumption of normality in terms of the AUC has been used 

before ( [14]). In their case, the corresponding test statistic was constructed directly in terms 

of the AUC. They also investigated the use of the Box-Cox transformation and presented a 

large simulation study that indicated that the Box-Cox approach is preferred over the 

standard empirical-based method presented in [10]. The Box-Cox approach in our context 

will be constructed in an analogous way, as presented in Section 3. We also take into account 

the variability of the transformation parameters. An alternative approach might involve 

considering the transformation parameters as fixed, as indicated in [14]. The Box-Cox 

approach, although robust, may not be appropriate when multimodal densities are involved 

in the cases and/or controls. When normality (or bivariate normality) is not justified after the 

transformation, then a nonparametric approach would be preferable. Our kernel-based 

approach can be straightforwardly extended in terms of the AUC by replacing  with 

 throughout the algorithm presented in Section 4, by using the following statistic.

In cases where covariates are present, the proposed approach in terms of the AUC is 

analogous to the one presented in Section 4.1 and is obtained by substituting ROCk,Z(t) with 

the AUC for a specific covariate profile, AUCk,Z(t) throughout. The necessary partial 
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derivatives are presented in Web Appendix B. The involved covariance matrices remain the 

same as in the settings in which comparisons in terms of ROC(t) were explored. The 

proposed kernel-based approach in terms of the AUC is completely analogous to that 

described in the previous section. Note that when covariates are present, the expression 

ROC(t)k,Z, k = 1, 2 is replaced by AUCk,Z, k = 1, 2 throughout.

6. Simulation Studies

Here, we evaluate our approaches through a simulation study in terms of size and power. All 

the parameter values we considered for every scenario (data generated from bivariate 

normals, gammas, and lognormals) are presented in Table 1. For the simulations related to 

statistical power, we considered points on the ROC curves such that theoretical differences 

of ROC2(t) – ROC1(t) = 0.05, 0.10, 0.15, and 0.20 are obtained. All simulation results are 

presented in the Web Appendix (Part A).

We first explore the known maximum likelihood approach. The results are presented in 

Table 1 of the Web Appendix (Part A). In terms of the size, we compare both tests presented 

in this study, namely Z and Z*. We observe that in most settings, both tests provide a size 

close to the nominal level. An essential difference in the performance of the two tests arises 

for higher t values, as expected. We observe that the Z test has unacceptably low values of 

size. This is somewhat corrected as the sample size increases, but even for sample sizes of 

(200,200) we observe a size equal to 0.032 (in the setting of ρ = 0.6, and AUC1 = AUC2 = 

0.8), while for the same scenario, when the sample sizes are equal to (100, 100) the 

corresponding size equals 0.01. We note that this problem appears to be more vivid as t 
and/or as the AUC increases. This is expected since the more accurate the marker, the closer 

is the ROC curve to the TPR = 1 line, and normality of the , k = 1, 2 might not be 

justified due to the bound. The merit of using the Φ−1(·) is clear based on the results shown 

in Tables 1 and 2 in the Web Appendix (Part A). Z* provides a value close to the nominal 

level of size in all cases. It is also robust in settings of larger t values, as well as for large 

AUC values for all sample sizes. We note that, for example, in the setting of ρ = 0.6, AUC1 

= AUC2 = 0.8, (nA, nB) = 100, 100 its size equals 0.0450. In Web Appendix (Part A) Table 

2, we present the corresponding simulation results for the power of the tests. We observe that 

the Z test is outperformed by the Z* test in all scenarios in which the two tests do not yield 

the same power. For large sample sizes (200,200), both tests achieve a power equal to one 

and generally exhibit the same performance. For smaller sample sizes, the differences in 

terms of power are impressive. For example, for sample sizes of (50,50), correlation ρ = 0.6 

and d = ROC2(t) – ROC1(t) = 0.05, the Z test achieves a power equal to 0.245; whereas the 

Z* test achieves a power of 0.839. We observe in all scenarios that power increases as 

correlation increases, as expected.

For the Box-Cox approach, we consider data generated from both normal and non-normal 

distributions. We first discuss the former. We observe that in terms of size, the Z* test based 

on the Box-Cox approach yields size results close to the nominal level in all settings, in 

contrast to the Z test based on the same approach (Web Appendix A, Table 3). As in the 

setting in which the likelihood-based tests were used, we observe the same pattern. The Z 
test fails to provide reasonable size values for higher t values and/or higher AUC values for 
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the reason stated before. This is remedied by the Z* test. The results are also analogous in 

terms of power (Web Appendix A, Table 4). As an example, we mention that for (nA, nB) = 

(50, 50) and d = 0.05, the Z test yields power no larger than 0.223; whereas the power 

achieved by the Z* test reaches up to 0.696. For large sample sizes, both tests exhibit power 

> 0.990 in all scenarios. For this setting (i.e., when data are generated from multivariate 

normal distributions), we also consider the bootstrap approach under the empirical estimate. 

These results are not presented for brevity. We mention one observation: for such a 

technique and true correlation set to 0.8, FPR set to 0.8, AUC1 = AUC2 = 0.8, and sample 

sizes (100, 100), (200, 200), (100, 200), we obtain size values of 0.0150, 0.0200, and 

0.0200, respectively, which indicates inferior performance compared to the Box-Cox 

approach.

To evaluate the robustness of the Box-Cox approach, we consider generating data from two 

bivariate gamma distributions (see [26]) as well as two bivariate lognormal distributions. 

The simulation results for these scenarios are presented in Web Appendix A, Table 4. We 

examine the performance of only the Z* test for reasons stated before. We observe that the 

Z* test provides size values close to the nominal level in all scenarios and results are better 

for larger sample sizes, as expected. We note that in some settings, the results appear to be 

somewhat more conservative for data generated under the gamma distribution compared to 

the lognormal distribution. This might be true since the lognormal distribution lies in the 

Box-Cox family whereas the gamma distribution does not. In terms of power, we obtain 

satisfactory results that reach levels of approximately 1 for larger sample sizes and higher 

correlation values (Web Appendix A, Table 5). Smaller values are achieved for smaller 

sample sizes and small values of correlation, especially for d = 0.05, as expected. The 

simulation results are essentially better with respect to power in almost all settings when the 

data are generated with bivariate lognormal distributions compared to gamma distributions.

For the kernel-based Z* test, we consider the same scenarios. In terms of size, we obtain 

satisfactory results in almost all settings, and in terms of power, we see reduced levels 

compared to those of the Box-Cox approach, as expected (Web Appendix A, Table 6). This 

is the price to pay for not making any parametric assumptions. Nevertheless, we observe that 

the kernel-based Z* test achieves high power values for larger sample sizes, and even for 

small values of d.

We also explore the extension of our approaches for testing the hypothesis AUC1 = AUC2 

against the alternative hypothesis AUC1 ≠ AUC2. We consider exploring the Box-Cox and 

kernel-based Z* tests along with the commonly used approach presented in [10]. In terms of 

size, we observe results close to the nominal level in all scenarios (Web Appendix A, Table 

7). In terms of power, we observe that the Box-Cox approach yields better results compared 

to those achieved by DeLong’s method in almost all scenarios, although the differences are 

not remarkable (Web Appendix A, Table 8). In terms of power, the results from comparing 

the kernel-based approach to DeLong’s method are somewhat inconclusive, yielding only 

minor differences between the two methods in almost all scenarios.

In summary, based on our simulations the use of the statistic Z* is generally to be preferred 

over Z. For high FPR and TPR values the use of statistic Z* performs essentially better in 
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terms of both coverage and power when comparing two correlated ROC curves. Both the 

Box-Cox and the kernel based approach provide coverage close to the nominal level. The 

Box-Cox approach provides higher power compared to the kernel approach when the 

underlying model lies in the Box-Cox family, as expected. The Box-Cox approach seems to 

be robust from deviations to the underlying family, when for example the gamma 

distribution is the true underlying model, and still outperforms the kernel based approach in 

terms of power. This is the price one has to pay for not making any distributional 

assumptions when using the kernel based technique. However, it can be argued that the 

kernel based approach is a safe alternative when the Box-Cox transformation cannot be 

justified by the given data. In addition to the previously discussed simulations we also 

considered comparisons with the non-parametric bootstrap based methods BTI and BTII 

presented in [27]. The results of the simulations that refer to the size and power for all 

normal and gamma related scenarios previously considered, are presented in Web Appendix 

C (Tables 9-11). We observe that both the Box-Cox and and the kernel based approach 

outperform the BTII in terms of size in almost all cases. When compared to the BTI method 

we observe approximately similar results in terms of size, however the performance of BTI 

is outperformed when we focus on high FPR values and this is due to the transformation 

Φ−1(·) which is crucial for that region as we have previously stated. In terms of power, both 

the Box-Cox based approach and the kernel based approach outperform BTI and BTII in all 

cases.

7. Application

We explore our approaches using the data from a prospective multicenter study. The study 

was designed to evaluate RNA assays for T2: ERG fusion and PCA3 for prostate cancer 

diagnosis. The clinical study was conducted from 2009 to 2011 at 11 U.S. centers. An 

objective was to examine whether the combination of biomarkers would improve specificity 

for the detection of aggressive prostate cancer (Gleason score > 7) (personal communication 

with Drs. John Wei and Scott Tomlins, University of Michigan). The study population was 

859 men who had undergone a prostate biopsy for possible diagnosis of prostate cancer. In 

this context, we focus on a subgroup of participants who presented for their initial biopsy 

and for whom the scores of T2:ERG, PCA3, and PSA are available (n=561). For the cases 

and the controls, we considered three scenarios: (1) The diseased men are those who had 

Gleason scores ≥ 7 (nB = 148), and the healthy controls are defined by Gleason scores < 7 

(nA = 413). (2) The diseased men are those who had Gleason scores ≥ 7 (nB = 148), and the 

controls (nA = 297) are those who had a negative biopsy (Gleason score =0). (3) The 

diseased men are those who had a positive biopsy (Gleason score >0) (nB = 264), and the 

controls (nA = 297) are those who had a negative biopsy (Gleason score =0).

The following logistic regression model was developed (personal communication with Dr. 

Scott Tomlins, University of Michigan) in order to combine all three available biomarkers: 

logit(p) = −5.8588 + 0.59038log2(1 + PSA) + 0.55316log2(1 + PCA3) + 0.14371log2(T2 : 

ERG). The scores generated by the aforementioned model can be considered as a new score 

(marker) that combines the information from all three available scores. We are only applying 

a developed model that was obtained by a different data set (personal communication with 

Drs. John Wei and Scott Tomlins, University of Michigan) and consider its coefficients fixed 
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and known to evaluate its performance in different subgroups of the study we explore. As 

pointed out by a referee, in case the coefficients were not considered fixed and known, then 

there is an extra source of variation that needs to be taken into account that refers to the 

estimated coefficients, but this problem is beyond the scope of this paper. A critical objective 

of the study we explore, was to validate the performance of the combined biomarkers, with 

the aim of reducing unnecessary prostate biopsy and overdetection of potential cancer that 

may result from relying on PSA concentrations alone. We examine scenarios (1) and (2) at 

thresholds that correspond to high sensitivity values, namely 0.80, 0.90, and 0.95. The 

rationale for using high sensitivity is that the diseased group for these two scenarios have 

aggressive prostate cancer; therefore, it is crucial to identify them so that they can quickly 

begin treatment. For scenario (3), it is of interest to focus on low FPRs. The rationale for this 

focus is that the diseased group in this scenario has an indolent form of prostate cancer, so 

the aim is to avoid overtreatment. The nominal level used throughout this application is α = 

0.05.

Note that for scenario (2), all individuals that have a Gleason score = 6 are removed from the 

analysis. Apart from the analysis presented in Table 2, for this scenario, we report the 

positivity of the analysis on the basis of the cutoff/threshold that corresponds to a sensitivity 

of 0.95. Using the kernel-based approach, the positivity equals 0.8899 and 0.8989 for the 

PSA and the combined marker, respectively. The corresponding values under the Box-Cox 

approach are 0.9933 and 0.9618.

For the kernel-based approach, we first test for equality in terms of the AUC. The 

corresponding empirical-based and kernel-based ROC curves are presented in Figure 1. The 

kernel-based estimates for AUCPSA and AUCC are 0.6962 (SE=0.0227) and 0.7789 

(SE=0.0196), respectively. The p-value we obtain based on our kernel-based methodology 

equals 5.8740 × 10−4; whereas DeLong’s approach yields p-value = 0.0048. Thus, both 

methods indicate a significant difference in favor of the combined marker in terms of the 

overall discriminatory capability of the markers.

In terms of the ROC curve, we explore comparisons at FPR = 0.05, 0.10, and 0.20 for 

scenario (3) for the reason explained above. The corresponding p-values obtained are all < 

0.0001. This is also visually justified by the corresponding graph, which shows that for 

small FPR values, the two ROC curves exhibit essential differences. For scenarios (1) and 

(2), we compare the biomarkers in terms of fixed TPRs of 0.80, 0.85 and 0.95. For the 

kernel-smoothed ROC estimates (scenario (1)), we derive 

, and for the combined biomarker we have 

. For the values of sensitivity 0.80 and 0.90, 

see Table 2. We are interested in testing for the equality of 

. This in turn can be written as 

, and the corresponding test statistic we use is
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Using the kernel-based approach, we obtain a p-value < 0.0001, which indicates that the 

combined biomarker exhibits significantly greater specificity compared to using the PSA 

alone, at TPR = 0.95. This is also true when sensitivity is fixed at 0.80 or 0.85. The 

conclusions for scenario (2) are similar, since all p-values < 0.0001.

Since the data are not normally distributed (Shapiro-Wilk test rejects normality in all cases), 

we also explore the Box-Cox approach in order to validate our findings obtained by the 

kernel-based method. After applying the Box-Cox transformation, we re-perform the 

Shapiro Wilk test and determine that normality is rejected for the transformed samples 

except for the combined biomarker measurement among the healthy group in both scenario 

(2) and scenario (3). Hence, there is indication that even after the Box-Cox transformation, 

the normality assumption is not justified by the data. Possible ways to check normality are 

the Kolmogorov Smirnov (KS) test, in which however one has to set the mean and variance 

of the underlying normal, the Lilliefors test, which is equivalent to KS and can 

accommodate estimated parameters. The Shapiro Wilk test for which the parameters are left 

unspecified has greater power and is considered as a better alternative. We recommend the 

use of the kernel based approach when marginal normality is not achieved by the 

transformed scores. Here we also proceed to the Box-Cox based the analysis for illustration 

purposes. Using the Box-Cox transformation, the AUC estimates for the combined 

biomarker and the PSA alone are equal to 0.7946 and 0.7118, respectively, which again 

indicates the overall superiority of the combined biomarker over the PSA. In terms of 

comparing the two underlying AUCs, the Box-Cox approach yields a p-value equal to 

2.9732 × 10−4. In terms of comparing the two ROC curves, we investigate comparisons 

similar to those considered for the kernel-based approach. The results are presented in Table 

2. For comparisons involving scenario (1) and scenario (2), we observe statistically 

significant differences (for fixed TPRs). This is in line with what we observe in the kernel-

based analysis. For scenario (3), we observe that for FPRs of 0.05 and 0.10, the difference in 

terms of TPR = ROC(t) is not statistically significant, and this is also visualized by the 

corresponding graph (see Figure 1 in the Web Appendix B). In scenario (2) we observe 

differences between the Box-Cox analysis and the kernel based one. We can rely on the 

kernel based analysis since as stated the marginal normality of the transformed scores is 

rejected.

8. Discussion

Medical decision making should employ statistical methods to properly compare the 

performance of two competing tests or biomarkers at specific false positive and true positive 

rates that are set by clinicians with the appropriate expertise. Such situations are of great 

importance when designing a biomarker study. These issues are addressed in detail in [25] 

who set the guidelines for the appropriate design of a biomarker study and stress that this is 

a crucial issue. A biomarker that results in overdiagnosis or underdiagnosis might have a 

severe impact on how a patient is clinically treated. Healthy subjects need to be spared from 

aggressive and invasive follow up techniques, and hence comparisons should be applied at 

minimally acceptable FPRs. It might as well be the case that a marker needs to be very 

sensitive so as to avoid underdiagnosis, and hence focusing on high values of TPRs might 

also be appropriate. In cases where established and validated markers are considered, it 
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might be of clinical interest to compare them at their established cutoff value. Our methods 

can be used in these cases in order to make inference regarding their performance at the 

decision threshold. It is important to highlight the difference between fixed threshold and 

fixed FPR. Based on our experience in the Early Detection Research Network as well as 

other projects related to continuous biomarkers, the fixed threshold does not occur until a 

very late stage, e.g. FDA registry trial, due to two reasons: First, early stage biomarker 

evaluations usually do not have large enough sample size for a threshold to be established. 

The second reason is that a clinical test for FDA approval requires industry to develop 

clinical grade assay, which is an expensive step. The biomarker evaluation, selection, and 

comparison (before a clinical grade assay is available) are done by research assays used in 

academics. A threshold chosen by a research assay will not be applicable for a clinical grade 

assay developed later. Therefore, in academic settings, most continuous diagnostic 

biomarker comparisons, should be on either AUC, or more clinically relevant criteria such as 

the sensitivity at a fixed FPR level (or FPR at a fixed sensitivity level), depending on the 

clinical context. Therefore, efficient methodology to facilitate these kind of comparisons is 

needed. .

In this study, we develop parametric, as well as power transformation and kernel-based 

methods to address such comparisons. Many authors have focused on comparisons based on 

the AUC. However, clinicians are often interested in making comparisons between 

diagnostic tests or biomarkers, as seen in the present application, thereby exploring the 

incremental value of biomarkers at a specific and tolerable FPR (or at a specific tolerable 

sensitivity rate). Our approaches perform satisfactorily in terms of size and power. The Box-

Cox approach seems to perform well even in scenarios outside the Box-Cox family. The 

kernel-based approach provides an even more robust alternative. Qin et al. [27] consider 

only resampling based approaches for such a problem and the issue of covariates is not 

addressed. This is also the case considered in [29] in which the authors consider density 

ratio models. A Box-Cox based approach is also presented in [28] in which however the 

variability of the transformation parameters is not taken into account. Our approaches can be 

extended to comparisons in terms of the AUC or in terms of ROC−1(t) and also incorporate a 

transformation that conforms with the support of the asymptotic normality of the 

corresponding statistic, which is necessary in many cases as shown in our simulations. Our 

approaches can also be employed in a time-dependent setting (see [30,31]). Along the same 

line, an even more interesting setting, in which our methods are directly applicable, is an 

assessment of a single biomarker at two different time points given the desired FPR. There 

are other issues that need to be explored. For example, the use of more sophisticated 

bandwidths for the kernel-based method might improve the power of the underlying statistic. 

Such bandwidths may involve computationally intensive cross-validation techniques (see 

[24] for an overview on that subject). Another possible approach to improve the kernel-

based technique would be to first apply the Box-Cox transformation and then perform kernel 

smoothing on the transformed data. Such an approach might make the computationally 

simple plugin bandwidths we employ even more appropriate. All these issues deserve further 

study. Other approaches (see [32]) are available for comparing two correlated pAUCs under 

the notion of generalized pivotal quantities. Such an approach could be modified to address 

comparisons of two sensitivities given a specificity level. However, even under the normality 
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assumption their approach involves resampling while we offer asymptotic delta based 

approximate formulas. Furthermore, their Box-Cox version does not take into account the 

variability of the transformation parameter. For our non-parametric counterparts, we provide 

a smooth version of the ROC curve which a natural assumption for the true underlying ROC 
curve. Such smoothness naturally allows a distinct TPR estimate for any given FPR (and 

vice versa). In addition, the involved transformation Φ−1(·) in the numerator of our proposed 

statistic seems to be essential so as to assume approximate normality for the sensitivity/

specificity estimates. This is not addressed in the literature (already referred in our study) 

that involves inference in terms of AUC, pAUC, or ROC(t). A generalized pivotal based 

approach that addresses these issues and can also accommodate covariates would be 

interesting for further research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Empirical-based and kernel-based ROC estimates for PSA alone (thin line) and the 

combined biomarker values (thick line). Left to right (i.e., scenarios (1) to (3)) for the 

empirical-based estimates: (AUCPSA = 0.7185, AUCC = 0.7933), (AUCPSA = 0.7347, AUCC 

= 0.8620), (AUCPSA = 0.6682, AUCC = 0.8342). Left to right (i.e., scenarios (1) to (3)) for 

the kernel-based estimates: (AUCPSA = 0.6962, AUCC = 0.7789), (AUCPSA = 0.7096, 

AUCC = 0.8456), (AUCPSA = 0.6537, AUCC = 0.8203).
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Table 2

Prostate cancer results related to comparisons (one-tailed p-values) using the kernel-based approach (left) and 

the Box-Cox approach (right). Comparisons for scenario (1) are considered for FPR values of 0.05, 0.10 and 

0.20. Comparisons for scenarios (2) and (3) are considered for TPRs=0.80, 0.85 and 0.95.

Kernel-based Box-Cox

Scenario (1) TPRs: 0.80 0.85 0.95 TPRs: 0.80 0.85 0.95

FPRs (PSA): 0.5895 0.6768 0.8648 FPRs (PSA): 0.6003 0.7072 0.9272

FPRs (model): 0.4024 0.4749 0.6897 FPRs (model): 0.3697 0.4419 0.6687

p-values: < 0.0001 0.0003 0.0003 p-values: < 0.0001 < 0.0001 < 0.0001

Scenario (2) TPRs: 0.80 0.85 0.95 TPRs: 0.80 0.85 0.95

FPRs (PSA): 0.5564 0.6422 0.8324 FPRs (PSA): 0.5513 0.6511 0.8846

FPRs (model): 0.2836 0.3586 0.5993 FPRs (model): 0.2481 0.3173 0.5654

p-values: < 0.0001 < 0.0001 < 0.0001 p – values: < 0.0001 < 0.0001 < 0.0001

Scenario (3) FPRs: 0.05 0.10 0.20 FPRs: 0.05 0.10 0.20

TPRs (PSA): 0.1446 0.2339 0.3930 TPRs (PSA): 0.1780 0.2797 0.4312

TPRs (model): 0.3837 0.5141 0.6724 TPRs (model): 0.3951 0.5381 0.7031

p-values: < 0.0001 < 0.0001 < 0.0001 p-values: < 0.0001 < 0.0001 < 0.0001

Scenario (1): Diseased defined by Gleason score ≥7. Healthy defined by Gleason score < 7.

Scenario (2): Diseased defined by Gleason score ≥7. Healthy defined by negative biopsy (Gleason score = 0).

Scenario (3): Diseased defined by Gleason score >0. Healthy defined by negative biopsy (Gleason score = 0).

Stat Med. Author manuscript; available in PMC 2017 February 08.


	Abstract
	1. Introduction
	2. Assuming Bivariate Normality
	2.1. Accommodating Covariates

	3. Box-Cox Transformation
	3.1. Accommodating Covariates

	4. Kernel-based Approach
	4.1. Accommodating Covariates

	5. Comparing Areas under the ROC Curve
	6. Simulation Studies
	7. Application
	8. Discussion
	References
	Figure 1
	Table 1
	Table 2

